+ All Categories
Home > Documents > Overview L2

Overview L2

Date post: 07-Apr-2018
Category:
Upload: tan-yong-liang
View: 219 times
Download: 0 times
Share this document with a friend
58
1 EPM 4056 Feedback Control Analysis and Design Trim. 48- Trimester 2 2011/2012 Ching Seong Tan Multimedia Univer sity
Transcript
Page 1: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 1/58

1

EPM 4056 Feedback Control Analysis and Design

Trim. 48- Trimester 2 2011/2012

Ching Seong Tan

Multimedia University

Page 2: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 2/58

2

Content

Digital Control Systems - part 1

Sampled data systems.

The z-transform

Digital control concepts.

Page 3: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 3/58

Continuous-Time Signals

• A signal that changes continuously in time:

• Defined at all times t (no gap)• Signal can take arbitrary values

• Example: temperature, position, velocity,… 

0,),( t t t e

3

Page 4: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 4/58

Continuous-Time LTI Systems

• A continuous-time system has input and output that are

both continuous-time signals

• Continuous-time linear time-invariant (LTI) system given

by differential equation:

• Model completely determined by the order n of the system, thecoefficients α and β 

)(t e )(t  y

dt 

t dy

dt 

t  yd t e

dt 

t de

dt 

t ed t  y

n

n

nn

n

n

)()()(

)()()(

101        

4

Page 5: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 5/58

Discrete-Time LTI Systems

• A discrete-time system has input and output that are both discrete-time signals

• Discrete-time linear time-invariant (LTI) system given by lineardifference equation

• Model completely determined by the order n of the system, and thecoefficients a and b  

)(k e )(k  y

)()1()()1()()( 0101 nk  yak  yank ebk ebk ebk  y nnn

5

Page 6: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 6/58

Example: Sampler and Zero-Order Hold

)(t e )(t e

)(s E Sampler and zero-order hold

)(s E 

In general, original signal e(t) can not be fully reconstructed

6

Page 7: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 7/58

Discrete-Time Signals

• A signal (sequence, or series) whose values are defined only atdiscrete times:

• Signal defined only at integer times k• Signal can still take arbitrary values

,2,1,0,1,0,1,),( k or k k e

7

Page 8: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 8/58

Where are discrete-time signals from?

• Some come naturally

 – Population of a species in different generations

 – Annual growth percentage of GDP

 – Results of a numerical algorithm in different rounds of iteration

• Some arise by sampling continuous-time signals at regular timeintervals, say, every T seconds

8

Page 9: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 9/58

Digital Signals

• The process of representing an arbitrary continuous value y(kT) with

binary bits of finite word length is called quantization (A/D)• Quantized signal is discrete in both time and value, called a digital

signal

9

Page 10: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 10/58

Sampling and Data Reconstruction

• In the control system, sampling and data reconstruction of signalsare needed to interface the digital computer with the physical world

10

Page 11: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 11/58

Sampled-Data Control System

Digital controller is designed together with sampler anddata hold

• How to characterize the input-output relation from e(t) to u(t) based on the transfer function D(z) of the digital controller?

• Start from the simplest case: digital controller does nothing

)(t eSampler Data hold

)(kT e )(t e

)(t eSampler

Digitalcontroller

)(kT eData hold Plant

)(kT u )(t u )(t  y

11

Page 12: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 12/58

Mathematical Models of Physical Systems

• Control systems give desired output by controlling the input.Therefore control systems and mathematical modeling areinter-linked.

• Mathematical models of control systems are ordinary

differential equations

12

Page 13: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 13/58

Transform methods

• Continuous System and Laplace Transform 

 – differential equations: describe continuous time systems

 – Laplace Transform: analyze linear, time invariant, continuoustime systems (LTICS)

• Discrete Time Systems and z- Transforms

 – difference equations: describe operation of discrete timesystems

 – Z-transform: analyze linear, time invariant, discrete timesystems (LTIDS)

13

Page 14: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 14/58

Laplace Transform

Differential

equations

Inputexcitation e(t)

Output

response r(t) 

Time Domain Frequency Domain

Algebraic

equations

Inputexcitation E(s)

Output

response R(s)

Laplace Transform

Inverse Laplace Transform

14

Page 15: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 15/58

Z-Transform

• Given a discrete-time signal

• Its (double-sided) z-transform is defined by

• Its (single-sided) z-transform is defined by

• z-transform F(z) is a function of the complex variable z,and is only well defined on a region of the z-plane (DOC)• We will always assume single-sided (causal) signals andsingle-sided z-transform, unless otherwise stated

,2,1,01,0,1,),( k or k k  f 

k  k  zk  f k  f  Z  zF  ,1,0,1,,)()]([)(

0

,2,1,0,)()]([)(k 

k k  zk  f k  f  Z  zF 

15

Page 16: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 16/58

Z-Transform

• How to do Z-Transform?

• How to do inverse Z-Transform?

• How to infer properties of a signal from its Z-transform?

16

Page 17: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 17/58

Z-Transform of a Signal

Z-1 

e(0)

e(1)

e(2)

e(3)

e(4)

 

0k 

k  ze(k) E(z)

E(z)Z

e(0) · z 0  

+e(1) · z -1 

+e(2) · z -2  

+e(3) · z -3  

+e(4) · z -4  

 

e(k)

Mapping from a discrete signal to a function of zMany Z-Transforms have this form:

m

 j

 j

 j

n

i

i

i

 zb

 za

 E(z)

0

0

Rational Function of z

Z-1 

e(0)

e(1)

e(2)

e(3)

e(4)

 

0k 

k  ze(k) E(z)

E(z)Z

e(0) · z 0  

+e(1) · z -1 

+e(2) · z -2  

+e(3) · z -3  

+e(4) · z -4  

 

e(k)

Mapping from a discrete signal to a function of zMany Z-Transforms have this form:

Rational Function of z

17

Page 18: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 18/58

Z Transform of Unit Impulse Signal

e impulse (k) E impulse (z)Z 

Z -1 

e(0) = 1

e(1) = 0 

e(2) = 0 

e(3) = 0 

e(4) = 0 … 

1 · z 0  

+0 · z -1 

+0 · z -2  

+0 · z -3  

+0 · z -4 

 … 

-1 0 1 2 3 4 5 6 7 8 90

0.5

1

1(z) E impulse

18

Page 19: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 19/58

Delayed Unit Impulse Signal

e delay (k) E delay (z)Z 

Z -1 

e(0) = 0 

e(1) = 1

e(2) = 0 

e(3) = 0 

e(4) = 0 … 

0 · z 0  

+1 · z -1 

+0 · z -2  

+0 · z -3  

+0 · z -4 

 … 

1 z(z) E delay-1 0 1 2 3 4 5 6 7 8 9

0

0.5

1

19

Page 20: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 20/58

Z-Transform of Unit Step Signal

e step (k) E step (z)Z 

Z -1 

e(0) = 1

e(1) = 1

e(2) = 1

e(3) = 1

e(4) = 1… 

1 · z 0  

+1 · z -1 

+1 · z -2  

+1 · z -3  

+1 · z -4 

 … 

... z z z(z) E step 3211-1 0 1 2 3 4 5 6 7 8 9

0

0.5

1

20

Page 21: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 21/58

Z-Transform of Unit Step Signal

 ,n

 ,|a| 1

a

a

a

)a...aaa)((a...aa

n

nn

1

1

1

111

1

2

2

 A little bit more math … 

assuming

a

a

a

a

)a...aaa)((...aa

n

n

n

n

1

1

1

1lim

1

11lim1

1

22

11

11

1

321

 z

 z

-z... z z z(z) E step

21

Page 22: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 22/58

Z-Transform of Exponential Signal

e exp (k) Eexp(z)Z 

Z -1 

e(0) = 1

e(1) = a 

e(2) = a 2  

e(3) = a 3  

e(4) = a 4 

 … 

1 · z 0  

+a · z -1 

+a 2 · z -2  

+a 3 · z -3  

+a 4 

· z -4 

 … 

1

33221

exp

1

1

1

--az

... za zaaz(z) E 

-1 0 1 2 3 4 5 6 7 8 90

1

2

3

4

5

6

a=1.2

Rememberthis!

22

Page 23: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 23/58

Z-Transform of sin/cos

ik θ ee(k)

11

1-iθ 

 z-e E(z)

2)cos

ik θ ik θ ee

(k θ e(k)

Time Domain Z-Transform

i

ee(k θ e(k)

ik θ ik θ 

2)sin

-ik θ ee(k)

11

1--iθ 

 z-e E(z)

21

1

2121

1

1111

11

cos21

cos1

sincos1

cos1

2sincos1

1

sincos1

1

21

1

1

1

 z zθ 

 zθ 

) zθ () zθ (

 zθ 

)/  zθ i zθ  zθ i zθ 

(

)/  ze z-e

( E(z)iθ -iθ 

21

1

cos21

sin

 z zθ -

 zθ  E(z)

-

-

θ iθ eiθ  sincos Euler Formula:

2cos

iθ iθ  eeθ 

2i

eesin

ii   

 

23

Page 24: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 24/58

Page 25: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 25/58

Properties of z-Transform

 )()1( )(

0

1

 )(

limlim

lim

1zk 

101

2121

1

0

0

22112211

0

 z E  zk e

 E(z) )e(

 E(z) z

 z(z)E  e(n)(k)e

(z)(z)E E  (k)(k)*ee

dz

dE(z)-z ke(k)

)E(zε e(k)ε

e(k)z E(z)z n)u(k)e(k 

 E(z) z n)|n)u(k e(k 

(z) E a(z) E a(k)ea(k)ea

e(k)zE(z)k e

  z

n

-aak 

n

k n

-n

n

-k 

linearity

delayed

forwarded

convolution

initial value

final value

complex trans.

definition

25

Page 26: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 26/58

Inverse Z-Transform

• Table Lookup – if the Z-Transform looks familiar,look it up in the Z-Transform table!

• Power series method (Long Division)

• Partial Fraction Expansion

e(k) E(z)Z 

Z -1? 

(k)u(k)ue(k) rampstep 23

(z) E (z) E 

) z(

 z

 z E(z)

rampstep 23

1

2

1

321

1

1

Z -1? 

26

Page 27: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 27/58

Power Serious Method

• Sort both nominator and denominator withdescending order of z first

21

1

21

3

 z z

 z E(z)

• e(0)=3, e(1)=5, e(2)=7, e(3)=9 ,…, guess:e(k)=3estep(k)+2eramp(k)

27

Page 28: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 28/58

Partial Fraction Expansion

• Many Z-transforms of interest can be expressedas division of polynomials of z

m

 j

 j

 j

n

i

i

i

 zb

 za

 E(z)

0

0

May be trickier:complex rootduplicate root

) p)...(z p)(z p(zb

 zb... zb zbb

mm

m

m

21

2

210

m

 j  j

 j

 p z

cc E(z)

1

0

 , p(k)ek 

 jd  p j

1

exp

m

 j

d  pimpulse(k)e(k)ece(k)

 j

1

exp0

where k>0

1

1

1

1

z p z

 j

28

Page 29: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 29/58

Example

86

141432

2

 z z

 z z E(z)

42

210

 z

c

 z

cc E(z)

042

01

2

1

1

0

k  ,cc

k  ,ce(k)

k k 

(z- 2 )(z- 4 )

E 1(z)=c 0  Z-1  e1(k)=c0*eimpulse(k) 

Z-1 

Z-1  e 2(k)=c1*2k-1 , k>0 

2

12

 z

c(z) E 

4

23

 zc(z) E  e 2(k)=c 2*4k-1 , k>0 

c0?  c1?  c 2? 

29

Page 30: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 30/58

Get The Constants!

86

141432

2

 z z

 z z E(z)

42

210

 z

c

 z

cc E(z)

(z- 2 )(z- 4 )

 , z

c

 z

cc E(z)

42

210

 , z  ,c E(z) 0 3

86

14143lim

2

2

0

 z z

 z zc

 z

 ,c z

)(zc)c(z)E(z)(z-K(z) 2

10

2

444

32

141434 4

2

2

 z|

 z

 z zc)K(

30

Page 31: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 31/58

Page 32: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 32/58

Example  –  Complete Solution

386

14143limlim

2

2

0

 z z

 z z E(z)c

 z z

4

14143

86

141432

2

2

2

2

 z-

 z z

 z z

 z z)(z(z) E 

2

14143

86

141434

2

2

2

4

 z-

 z z z z

 z z)(z(z) E 

86

141432

2

 z z

 z z E(z)

42

210

 z

c

 z

cc E(z)

142

14214232

2

21

-

)( E c

324

14414434

2

42

-

)( E c

4

3

2

13

 z z E(z)

0432

0311

k  ,

k  ,e(k)

k k 

32

Page 33: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 33/58

Solving Difference Equations

m)e(k b...)e(k bn) y(k a...) y(k a y(k) mn 11 11

 E(z) zb... E(z) zbY(z) za...Y(z) zaY(z) mmnn

1111

 E(z) za... za

 zb... zbY(z)

n

n

m

m

1

1

1

1

1

... y(k)

Z

Z-1 Transfer Function

33

Page 34: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 34/58

Page 35: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 35/58

Solve it!

1

1

1

1

11

1

1

1

801

21

401

6080

21

40

60

8040

60

801401

60

401

60

 z.

 z.

 z.

 z.. z

.

. z

.

).)(z.(z

 z.

) z.-)( z.-(

 z. E(z)

 z.

 z.Y(z)

--

-

LTI: y(k)=0.4y(k-1)+0.6e(k-1)e  (k)=0.8 k  y  (k)? 

 E(z) z.Y(z) z.Y(z)11

6040

Z

1801

1

 z.

 E(z)

Z

1180214060k-k 

....- y(k)

Z-1 -1 0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 7 8 90

0.2

0.4

0.6

0.8

1

35

Page 36: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 36/58

Signal Characteristics from Z-Transform

• If E(z) is a rational function, and

• Then Y(z) is a rational function, too

• Poles are more important – determine keycharacteristics of y(k) 

m)e(k b...)e(k bn) y(k a...) y(k a y(k) mn 11 11

m

 j

 j

n

i

i

) p(z

) z(z

 D(z)

 N(z)Y(z)

1

1

zeros

poles

36

Page 37: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 37/58

Why are poles important?

m

 j  j

 j

m

 j

 j

n

i

i

 p z

cc

) p(z

) z(z

 D(z)

 N(z)Y(z)

1

0

1

1

m

 j

k-

 j jimpulse  pc(k)ecY(k)1

1

0

Z-1 

Z domain

Time domain

poles

components

37

Page 38: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 38/58

Various pole values (1)

-1 0 1 2 3 4 5 6 7 8 90

0.5

1

1.5

2

2.5

-1 0 1 2 3 4 5 6 7 8 90

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 7 8 90

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5 6 7 8 9-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 0 1 2 3 4 5 6 7 8 9-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p=1.1

p=1

p=0.9

p=-1.1

p=-1

p=-0.9

-1 0 1 2 3 4 5 6 7 8 9-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

38

Page 39: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 39/58

Conclusion for Real Poles

• If and only if all poles’ absolute values are

smaller than 1, y(k) converges to 0

• The smaller the poles are, the faster thecorresponding component in y(k) converges

• A negative pole’s corresponding component is

oscillating, while a positive pole’s corresponding

component is monotonous

39

Page 40: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 40/58

How fast does it converge?

• e(k)=a k , consider e(k)≈ 0 when the absolute value ofe(k) is smaller than or equal to 2% of e(0)’sabsolute value

|a|k 

..|a|k 

.|a|k 

ln

4

9123020lnln

020

11360

4

70ln

4

70

.|.|k 

.a

Remember

This!

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(k)=0.7k 

y(11)=0.0198

40

Page 41: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 41/58

Why do we need Z-Transform?

• A signal can be characterized with its Z-transform(poles, final value …) 

• In an LTI system, Z-transform of Y(z) is themultiplication of Z-transform of E(z) and the

transfer function

• The LTI system can be characterized by thetransfer function, or the Z-transform of the unitimpulse response

41

Page 42: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 42/58

Sampler and Zero-Order Hold

)(t e )(t e

)(s E Sampler and zero-order hold

)(s E 

In general, original signal e(t) can not be fully reconstructed

42

Page 43: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 43/58

Page 44: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 44/58

Sampler and Zero-Order Hold

the sampler and zero-order hold can be broken up in two steps

In time domain

)(s E  )(* s E  )(s E 

s

Ts

 1

)(t e )(* t e )(t eT 

44

Page 45: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 45/58

Ideal Sampler

)(t e )(* t e

)(t T  

)(t e )(* t eT 

Representation of the idea sampler

Impulsemodulator

)()()(* t t et e T  )(t e

45

Page 46: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 46/58

First Perspectives of Sampler and Hold

In the time domain:

)(t e )(* t e )(t eT Zero-Order Hold

Sampler

In the frequency domain (a mixture of z- and Laplace transforms):

)(s E  )( z E  )(s E T 

Zero-Order HoldSampler

0

)()(k 

k  zkT e z E  is called the z-transform of E(s)

46

Page 47: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 47/58

Second Perspectives of Sampler and Hold

In the time domain:

0

)()(*k 

kTsekT es E 

)(t e )(kT e )(t eT 

Ideal Sampler

In the frequency domain:

)(s E  )(* s E  )(s E T 

is called the star-transform of E(s)

Data hold

s

Ts

 1

47

Page 48: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 48/58

Relating Two Perspectives

48

Page 49: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 49/58

Star-Transform

• Given E(s), find

• Method I

• Method II

• Method III find E(z) either from the table,

or by

then

49

Page 50: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 50/58

Effect of Time Delay on Star-Transform

When is an integer multiple of the sampling period T, wehave the simple relation

nT t  0

50

Page 51: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 51/58

Properties of E*(s) 

• Property 1

E*(s) is periodic in s with period

Example

51

Page 52: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 52/58

Properties of E*(s) 

• Property 2

If E(s) has a pole at p , then E*(s) has poles at

Example

52

Page 53: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 53/58

Data Reconstruction

Shannon’s Sampling Theorem 

• the signal e(t) can be uniquely determined from its

sampling e*(t) with sampling period T if its Fouriertransform E(jω) contains no frequency componentgreater than π/T  

• Or equivalently, one has to sample the signal twice as

fast as the fastest changing part in e(t) in order to beable to reconstruct it uniquely

53

Page 54: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 54/58

Data Reconstruction in Frequency Domain

54

Page 55: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 55/58

Zero-Order Hold

• A physically feasible (causal) data hold transfer functionis given by

with unit impulse response

Frequency response

55

Page 56: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 56/58

First-Order Hold

• Given a sequence of sampled data e(kT ), k = 0, 1, . . .reconstruct the signal between sampling timesapproximately by first order Euler expansion

56

Page 57: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 57/58

Fractional-Order Holds

• Given a sequence of sampled data reconstruct the signalbetween sampling times approximately as follows

57

Page 58: Overview L2

8/3/2019 Overview L2

http://slidepdf.com/reader/full/overview-l2 58/58

58

Thank you!


Recommended