+ All Categories
Home > Documents > Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Date post: 14-Jan-2016
Category:
Upload: bjorn
View: 34 times
Download: 0 times
Share this document with a friend
Description:
OV/1-2. Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario. H. Takenaga 1) and the JT-60 Team. 1) Japan Atomic Energy Agency. 21st IAEA Fusion Energy Conference 16 - 21 October
 2006 Chengdu, China. 1997. JT-60U. - PowerPoint PPT Presentation
24
Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario H. Takenaga 1) and the JT-60 Team 21st IAEA Fusion Energy Conferen ce 16 - 21 October2006 Chengdu, China OV/1-2 1) Japan Atomic Energy Agency 1997
Transcript
Page 1: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

H. Takenaga1) and the JT-60 Team

21st IAEA Fusion Energy Conference16 - 21 October2006

Chengdu, China

OV/1-2

1) Japan Atomic Energy Agency

1997

Page 2: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Enhanced national and international collaborations.

National collaborations : as the central tokamak in Japanese fusion research.

International collaborations : including IEA/ITPA collaboration.

The JT-60 TeamJT-60U

N.Aiba1), H.Akasaka, N.Akino, T.Ando3), K.Anno, T.Arai, N.Asakura, N.Ashikawa4), H.Azechi5), M.Azumi, L.Bruskin6), S.Chiba, T.Cho7), B.J.Ding8), N.Ebisawa, T.Fujii, K.Fujimoto1), T.Fujita, T.Fukuda5), M.Fukumoto5), A.Fukuyama9), H.Funaba4), H.Furukawa2), M.Furukawa10), P.Gohil11), Y.Gotoh2), L.Grisham12), S.Haga2), K.Hamamatsu, T.Hamano2), K.Hanada13), M.Hanada, K.Hasegawa, H.Hashizume14), T.Hatae, A.Hatayama15), T.Hayashi2), N.Hayashi, T.Hayashi, H.Higaki7), S.Higashijima, U.Higashizono7), T.Hino16), T.Hiraishi17), S.Hiranai, Y.Hirano18), H.Hiratsuka, Y.Hirohata16), J.Hobirk19), M.Honda9), A.Honda, M.Honda, H.Horiike5), K.Hoshino, N.Hosogane, H.Hosoyama2), H.Ichige, M.Ichimura7), K.Ida4), S.Ide, T.Idehara20), H.Idei13), Y.Idomura, K.Igarashi2), S.Iio21), Y.Ikeda, T.Imai7), S.Inagaki4), A.Inoue2), D.Inoue7), M.Isaka, A.Isayama, S.Ishida, K.Ishii2), Y.Ishii, M.Ishikawa14), Y.Ishimoto1), K.Itami, T.Itoga14), Sanae Itoh13), Satoshi Itoh13), K.Iwasaki2), Y.Kagei1), S.Kajiyama22), S.Kakinoto7), M.Kamada1), Y.Kamada, A.Kaminaga, K.Kamiya, S.Kasai, K.Kashiwa, K.Katayama13), T.Kato4), M.Kawai, Y.Kawamata, Y.Kawano, T.Kawasaki13), H.Kawashima, M.Kazawa, K.Kikuchi2), H.Kikuchi2), M.Kikuchi, A.Kimura9), H.Kimura23), H.Kimura, Y.Kishimoto9), S.Kitamura, K.Kiyono, K.Kizu, N.Kobatake22), M.Kobayashi2), S.Kobayashi9), Y.Kobayashi9), T.Kobuchi4), K.Kodama, Y.Kogi13), Y.Koide, A.Kojima1), S.Kokubo17), S.Kokusen2), M.Komata, A.Komori4), T.Kondoh, S.Konishi9), S.Konoshima, S.Konovaliv24), A.Koyama9), M.Koyanagitsu23), T.Kubo5), H.Kubo, Y.Kudoh, R.Kurihara, K.Kurihara, G.Kurita, M.Kuriyama, Y.Kusama, N.Kusanagi2), J.Li24), J.Lonnroth25), T.Luce11), T.Maekawa9), K.Masaki, A.Mase13), M.Matsukawa, T.Matsumoto, M.Matsuoka26), Y.Matsuzawa2), H.Matumura2), T.Matunaga1), K.Meguro2), K.Mima5), O.Mitarai27), Y.Y.Miura5), Y.Miura, N.Miya, A.Miyamoto2), S.Miyamoto5), N.Miyato, H.Miyauchi23), Y.Miyo, K.Mogaki, Y.Morimoto23), S.Moriyama, M.Nagami, Y.Nagasaka22), K.Nagasaki9), Y.Nagase13), S.Nagaya, Y.Nagayama4), H.Naito28), O.Naito, T.Nakahata23), N.Nakajima4), Y.Nakamura4), K.Nakamura13), T.Nakano, Y.Nakashima7), M.Nakatsuka5), M.Nakazato2), Y.Narushima4), R.Nazikian12), H.Ninomiya, M.Nishikawa13), K.Nishimura4), N.Nishino29), T.Nishitani, T.Nishiyama, N.Noda4), K.Noto2), H.Nuga10), K.Oasa, T.Obuchi4), I.Ogawa20), Y.Ogawa10), H.Ogawa, T.Ohga3), N.Ohno17), K.Ohshima2), T.Oikawa, A.Oikawa, M.Okabayashi12), N.Okamoto17), K.Okano30), F.Okano, J.Okano, K.Okuno23), Y.Omori, A.Onoshi23), Y.Ono10), H.Oohara, T.Oshima, Y.Oya10), N.Oyama, T.Ozeki, V.Parail25), H.Parchamy4), B.J.Peterson4), G.D.Porter31), A.Sagara4), G.Saibene32), T.Saito7), M.Sakamoto13), Y.Sakamoto, A.Sakasai, S.Sakata, T.Sakuma2), S.Sakurai, T.Sasajima, M.Sasao14), F.Sato2), M.Sato, K.Sawada33), M.Sawahata, M.Seimiya, M.Seki, J.P.Sharpe34), T.Shibahara17), K.Shibata2), T.Shibata, T.Shiina, R.Shimada21), K.Shimada, A.Shimizu13), K.Shimizu, M.Shimizu, K.Shimomura21), M.Shimono, K.Shinohara, S.Shinozaki, S.Shiraiwa10), M.Shitomi, S.Sudo4), M.Sueoka, A.Sugawara2), T.Sugie, K.Sugiyama17), A.M.Sukegawa, H.Sunaoshi, Masaei Suzuki2), Mitsuhiro Suzuki2), Yutaka Suzuki2), S.Suzuki, Yoshio Suzuki, T.Suzuki, M.Takahashi2), R.Takahashi2), K.Takahashi2), S.Takamura17), S.Takano2), Y.Takase10), M.Takechi, N.Takei, T.Takeishi13), H.Takenaga, T.Takenouchi2), T.Takizuka, H.Tamai, N.Tamura4), T.Tanabe13), Y.Tanai2), S.Tanaka9), J.Tanaka9), S.Tanaka10), T.Tani, K.Tani, H.Terakado2), M.Terakado, T.Terakado, K.Toi4), S.Tokuda, T.Totsuka, Y.Toudo4), N.Tsubota2), K.Tsuchiya, Y.Tsukahara, K.Tsutsumi2), K.Tsuzuki, T.Tuda, T.Uda4), Y.Ueda5), T.Uehara2), K.Uehara, Y.Ueno9), Y.Uesugi35), N.Umeda, H.Urano, K.Urata2), M.Ushigome10), K.Usui, K.Wada2), M.Wade11), K.Watanabe4), T.Watari4), M.Yagi13), Y.Yagi18), H.Yagisawa2), J.Yagyu, H.Yamada4), Y.Yamamoto9), T.Yamamoto, Y.Yamashita2), H.Yamazaki2), K.Yamazaki4), K.Yatsu7), K.Yokokura, I.Yonekawa3), M.Yoshida1), H.Yoshida5), N.Yoshida13), M.Yoshida13), H.Yoshida16), H.Yoshida, A.Yoshikawa23), M.Yoshinuma4), H.Zushi13)

Japan Atomic Energy Agency, 1)Post-Doctoral Fellow, 2)Staff on loan, 3)Nippon Advanced Technology Co.Ltd., Japan

8)Southwestern Institute of Physics, China, 11)General Atomics, USA, 12)Princeton Plasma Physics Laboratory, USA, 19)Max-Planck-Institut fur Plasmaphysik, Germany, 24)JAERI Fellow, 25)Euratom/UKAEA Association, UK, 31)Lawrence Livermore National Laboratory, USA, 32)EFDA Closed Support Unit, Germany, 34)Idaho National Engineering and Environmental Laboratory, USA

4)National Institute for Fusion Science, Japan, 5)Osaka University, Japan, 6)Japan Society of the Promotion of Science Invitation Fellowship, 7)University of Tsukuba, Japan, 9)Kyoto University, Japan, 10)The University of Tokyo, Japan, 13)Kyushu University, Japan, 14)Tohoku University, Japan, 15)Keio University, Japan, 16)Hokkaido University, Japan, 17)Nagoya University, Japan, 18)National Institute of Advanced Industrial Science and Technology, Japan, 20)Fukui University, Japan, 21)Tokyo Institute of Technology, Japan, 22)Hiroshima Insitute of Technology, Japan, 23)Shizuoka University, Japan, 26)Mie University, Japan, 27)Kyushu Tokai University, Japan, 28)Yamaguchi University, Japan, 29)Hiroshima University, Japan, 30)Central Research Institute of Electric Power Industry, Japan, 33)Shinshu University, Japan, 35)Kanazawa University, Japan

Page 3: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

0 1

Saf

ety

fac

tor

r/a

Strong p(r) and q(r) linkage among physics with various time scales

Transport

MHD stability

Current diffusion

Bootstrap current Plasma Wall Interaction

HeatingRotation controlCurrent driveFuelling

JT-60U objectives and strategy

ITER Physics R&D Advanced Tokamak (AT) Concepts for ITER & DEMO

AT plasmas : high N & high bootstrap current fraction (fBS) high p mode plasma

JT-60U

0 1

Pre

ssu

re

ITB

weakstrong

r/a

ETB

reversed shear (RS) plasma

Sustainment of high N below no wall ideal limit and high fBS longer than the current diffusion time.

High N exceeding no wall ideal limit. Integrated performance in the long high N discharges. Development of real time control systems towards intelligent control

for the high fBS plasmas.

'05-'06

'03-'04Main topics

Page 4: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Schematic view of research area in N-fBS spaceJT-60U

Ferritic Steel Tiles (FSTs) are installed inside the vacuum vessel to reduce toroidal field ripple.

Decrease in fast ion loss with the large volume configuration close to the wall, where wall stabilization effectively works.

N

DEMO

JT-60SA

ITER-SS

ITER-Hybrid

ITER-Inductive

NTM

RWM

fBS

p(r) & q(r) linkage

No wall limit

Ideal wall limit

High N exceeding no wall limit

– Wall stabilization effect– Suppression of resistive wall mode

(RWM) by plasma rotation

Integrated performance– Confinement improvement– Robustness for current profile diffusion– Effect of plasma wall interaction

Real-time control systems– Pressure profile control– Real-time current profile control

0

1

2

3

4

5

0 20 40 60 80 100

Page 5: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Contents

1. Installation of ferritic steel tiles and its effects in L- and H-mode plasmas

2. Extension of operation regime to high N exceeding no wall ideal limit and RWM study

3. Integration of plasma performance in the long high N discharges

4. Development of real time control with high bootstrap current fraction

5. Physics studies on issues implicated for ITER

6. Summary

JT-60U

Page 6: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

1. Installation of ferritic steel tiles and its effects in L- and H-mode plasmas.

FSTs cover ~10% of the surface.

Large effect is obtained at BT < ~2 T.

3-D Monte-Carlo simulations (F3D OFMC) for fast ion behavior indicated that total NB absorbed power is increased by 30% (by 50% for perpendicular NB) in the large volume configuration.

K. Shinohara (FT/P5-32, Thu.)

FSTs

0.0

20.0

40.0

60.0

80.0

100.0

total perp. co ctr co

w/o FSTs w FSTs

Abs

orbe

d po

wer

(%

)

P-NB N-NB

Ip = 1.1 MA, BT = 1.86 T, VP = 79 m3

quasi-ripple well region

w FSTs

w/o FSTs

JT-60U

The present

Page 7: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Spin-up of toroidal rotation in co-direction due to

reduction of fast ion loss.

Ripple trapped loss

F3D OFMC calculation< 0.3 MW/m2 w FSTs > 1 MW/m2 w/o FSTs

< 0.2 MW/m2

Heat flux in the ripple trapped loss region measured with IRTV is consistent with that calculated by F3D OFMC.

Toroidal rotation shifts to co-direction due to the reduction of the fast ion loss.

K. Shinohara (FT/P5-32, Thu.) M. Yoshida (EX/P3-22, Wed.)

JT-60U

Ip = 1.2 MA, BT = 2.6 T, q95 = 4.1, Vp = 75 m3, L-mode

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1

VT (

km/s

)

r/a

w/o FSTs

w FSTs

1u perp. & 2u co-NB

w FSTs

w FSTs

w/o FSTs

Page 8: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Pedestal parameters and confinement are enhanced with co-rotation in H-mode.

Ip = 1.2 MA, BT = 2.6 T, q95 = 4.1, Vp = 75 m3

Pedestal pressure increases with the increase in toroidal rotation at the pedestal in co-direction.

Energy confinement is improved by enhancing core toroidal rotation in co-direction.

Pedestal pressure and confinement are raised with FSTs even at a given toroidal rotation.

H. Urano (EX/5-1, Thu.)

0.7

0.8

0.9

1

1.1

-300 -200 -100 0 100 200

HH

98(y

,2)

VT(r/a=0.2) (km/s)

2

4

5

6

7

-100 -50 0 50VT

ped (km/s)

P p

ed (

kPa)

JT-60U

3

ctr-

bal-co-NB

w FSTs

w/o FSTsctr- bal-co-NB

ctr-

bal-

co-NBw FSTs

w/o FSTsctr-

bal-co-

Page 9: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

2. Extension of operation regime to High N exceeding no wall ideal limit and RWM study

• Suppression of RWM by plasma rotation is a key.• Estimation of critical rotation velocity for suppressing RWM is i

mportant.

N

DEMO

JT-60SA

ITER-SS

ITER-Hybrid

ITER-Inductive

NTM

RWM

fBS

p(r) & q(r) linkage

No wall limit

Ideal wall limit

0

1

2

3

4

5

0 20 40 60 80 100

Page 10: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

0

1

2

3

4

5

0.8 0.9 1 1.1 1.2 1.3 1.4

N reaches ideal wall limit.

M. Takechi (EX/7-1Rb, Fri.)

High p ELMy H-mode plasma : BT=1.58 T, Ip=0.9 MA, 0~20 cm (d/a=1.2) Increase in net heating power due to the FSTs installation allows to acces

s high N up to 4.2 with li=0.8-1. n=1 mode at high beta region. Growth time of 1/~1 ms (< w~10 ms) before collapse. RWM is suppressed by plasma rotation (100km/s at r/a=0.3).

li

N

Vp>70 m3N=5xliN=4xli N=3xli

JT-60U

ideal wall limit

no wall limit

1/~1ms

w FSTs

w/o FSTsafter 20th IAEA

before 20th IAEA

-0.01

0

0.01

6.5 6.55 6.6 6.65 6.7Time (s)

3

3.5

4

-0.01

0

0.01

6.64 6.645 6.65 6.655 6.66Time (s)

NB

(a.

u.)

~B

(a.

u.)

~

li~0.9E045480

Page 11: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

05

1015

5.5 6 6.5 7Time(s)

0

5

0

5

05

10152025

-100

-50

02

2.5

3

Small critical rotation velocity of VC/VA~0.3% is found at q95=3.5 for suppressing RWM.

JT-60U Less counter rotation due to the FSTs installation enables to change the r

otation in co-direction close to zero.

N

VT

(km

/s)

B (

G)

~P

NB

ctr

(MW

)P

NB

co

(MW

)P

NB

perp

(MW

)

ctr

co

M. Takechi (EX/7-1Rb, Fri.)

no wall ideal limit

VC~15 km/s Growth time of 1/~10 ms (~ W) No increase in VC for higher C. Large impact on ITER & DEMO.

no wall limit

 ( N

 -  N

no_w

all )

(N

idea

l_w

all  - 

Nno

_wal

l )C

 =

at q=2

E046710E046743

G. Matsunaga (EPS 2006)

-0.2

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50V

T (km/s)

ideal wall limit

switch from ctr- to co-NB

Page 12: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

3. Integration of plasma performance in the long high N discharges.

• Confinement improvement is a key.• Robustness for current profile diffusion should be demonstrated.• Change of wall pumping with a long time scale is important issue.

N

DEMO

JT-60SA

ITER-SS

ITER-Hybrid

ITER-Inductive

NTM

RWM

fBS

p(r) & q(r) linkage

No wall limit

Ideal wall limit

0

1

2

3

4

5

0 20 40 60 80 100

Page 13: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

High NHH98(y,2)=2.2 is sustained for 23.1 s (~12R) with f

BS=36-45% at q95~3.3.

• High p ELMy H-mode plasmas : Ip = 0.9 MA, BT = 1.6 T, Vp = 67 m3

• Increase in net heating power due to the FSTs installation allows flexible combination of NB units. peaked heating profile and co-injection.

• Density increase degrades confinement in the latter phase.

N. Oyama (EX/1-3, Mon.)

0 5 10 15 20 25 30 35Time (s)

0

3

12

1

0.5

0

0123

151050

4

2

0

I p (

MA

) N

, H

H98

(y,2

)

n e(1

019 m

-3)

PN

BI (

MW

)I D

(

a.u.

)

N

HH98(y,2)

JT-60U

R=0<>a2/12 : D.R. Mikkelsen, Phys. Fluids B 1 (1989) 333.

ITERBaseline

ITERHybrid

N H

H98

(y,2

) after 20th IAEAw FSTs

before 20th IAEA, w/o FSTs

.

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35Sustained duration (s)

r/a

0

10

20

30

40

50

0

1

2

3

4

5

-60

-40

-20

0

20

4060

0 0.2 0.4 0.6 0.8 1

Pth (

kPa)

q

VT (

km/s

)

w FSTs

w FSTs

w/o FSTs

w/o FSTs

ITER-SS(I)ITER-hybrid (A C C Sips, et al., PPCF 47 (2005) A19.)w FSTs (45436@18s)w/o FSTs (44092@15s)

HH98(y,2)N

fBS

fCD

Fuel purity

Prad/Pheat

ne/nGW

0.56

0.83

1.32.56

0.5

1

0.77

Page 14: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Density is successfully controlled by divertor pumping in enhanced recycling region.

H. Kubo (EX/P4-11, Thu.)

1018 1019 1020

1020

1021

1022

Fuelling ofPNB~10 MW

Div

erto

r p

um

pin

g (

/s)

IDdiv (a.u.)

=0.3

=0.24

JT-60U

0 0

0

Wd

ia

(MJ)

ne

(1019

m-3)

PN

B

(MW

)

0

2

0

10

-0.5

(1022

s-1) 0

(1

022 s

-1)

I D

(1021

s-1)

1

4

200400

600

0 5 10 15 20 25 30Time (s)

T (

°C)

Divertor-plate temperature

NBIDivGas

E045334

Wall-pumping rate

4

1.5

2.5

800

8

20

The outgas could be attributed to increase in divertor plate temperature.

HH98(y,2) ~ 0.71 at 0.64nGW. High confinement at high density

is remaining issue.

Ip = 1.2 MA, BT = 2.2 T, q95 = 3.6

wall pumping

Divertor pumping depends o

n recycling.

Page 15: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

4. Development of real time control with high bootstrap current fraction

Understanding of p(r) and q(r) linkage. Current profile control is important for AT plasmas.

p(r) q(r)

V(r)

MSELH

Fast-CXRSco- & ctr-NB

Fast-CXRSECEOn & off-axis NB

detector

actuator

N

DEMO

JT-60SA

ITER-SS

ITER-Hybrid

ITER-Inductive

NTM

RWM

fBS

p(r) & q(r) linkage

No wall limit

Ideal wall limit

0

1

2

3

4

5

0 20 40 60 80 100

Page 16: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

6.8 s7.6 s

High fBS of 70% is sustained for 8 s by p(r) control at q

min= 4 with real time qmin estimation.

Y. Sakamoto (EX/P1-10, Tue.)

00.20.40.60.8

-0.500.51

I p (

MA

)

Vlo

op (

V)

00.5

11.5

051015

02468

10

0246810

0123

0

5

1

4 6 8 10 12 14Time (s)

PN

B (

MW

)T

e (

keV

)I D

(

a.u.

)

NT

i (ke

V)

n e(1

019 m

-3)

JT-60U

ctr-NB

q min

345

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

6.8 s8.3 s

q

r/a

02468

-500

50100150

0.4 0.6 0.8r/a

Ti (

keV

)V

T (

km/s

)

qmin=4

Wdia control by NB

RS plasma : q95~8.5, HH98(y,2)~1.8, N~1.4. Ctr-NB off for p(r) control at qmin=4 for 1.0s.

j(r) approaches SS, while, ne(r) still evolves for >

p*(~2s) and plasma collapses.p(r) control is important even with nearly SS j

(r) and qmin being not integer.

MSE

co- & ctr-NB

2

4

6

8

10

1208.3s09.3s10.3s11.3s12.3s13.3s

-0.1-0.05

00.05

0.10.15

5.8 - 6.8 s8.3 - 10.3 s11.8 - 13.3 s

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

t=10.3 st=13.3 s

r/a

E045903

Page 17: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Real time qmin control demonstrated with MSE diagnostics and LHCD at fBS=0.46.

• Reduction of fast ion loss due to the FSTs installation increases compatibility of LHCD with high power heating.

• qmin control is affected by dynamic behavior related to the strong linkage of p(r) and q(r).

T. Suzuki (EX/6-4, Thu.)

JT-60U

qMSE qmin qmin,ref

PLH

LHMSE

Real time qmin control scheme

0

10

20

0

0.8

1.6

0

0.5

1.0

1.5

1

1.5

2

7 8 9 10 11 12 13 14 15Time (s)

q min

PLH

(M

W)

PN

B (

MW

)

N

ref.

command

02468

Te

(keV

)

MSELH

Transport reduction at t=12.4 s

Time delay in response of qmin

jOH or jBS change

r/a~0.20.4

0.6

Page 18: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Control for bootstrap sustained plasma (fBS~100%) is challenging.

Y. Takase (EX/1-4, Mon.)

Bootstrap sustained plasma can reduce center solenoid (CS) coil capability, which has a large impact on the economic aspect.

Nearly constant current (~0.54 MA) is maintained by BS current with constant ICS and negative NBCD current for ~1 second.

Both Wdia and Ip gradually decrease in the strong linkage even with constant Wdia control.

0.6

01.5

04.5

020

01

03 4 5 6Time (s)

5

-525

04

0-2

-46

0V

loop

(V)

PN

B

(MW

) p

I CS

(kA

)S

n

(1014

s-1)

I p (

MA

)W

dia

(MJ)

N

n e(1

019 m

-3)

I VT, I

VR

(kA

)I D

(a.u

.)

N

Wdia

IVT

IVR

E046687

JT-60U

BT = 4 T, N=1.15ICS constantWdia constant FB

Page 19: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

5. Physics studies on issues implicated for ITER.

NTM suppression by ECCDJEC/JBS

Dependence of EC deposition positionModeling

• Behavior of energetic ions with Alfvén eigenmodesNeutron emission profile measurementsComparison with classical calculation

• ELM propagation in SOL plasmaMeasurements with multi reciprocating probes (LFS and HFS)

JT-60U

Page 20: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

2/1 NTM is suppressed at JEC=0.5JBS with well aligned ECCD to q=2 surface.

• 2/1 NTM is destabilized with the misalignment comparable to the island width.

• TOPICS simulation well reproduces the experimental results with the same set of coefficients of the modified Rutherford equation.

A. Isayama (EX/4-1Ra, Thu.)

EC

0

1

2

3

B (

a.u

.)~

EC0

1

2

3

EC

139 10 11 12time [s]

0

1

2

3

B (

a.u

.)~

B (

a.u

.)~

EC=0.62

EC=0.60

EC=0.44

JT-60U

0.5Wisland<<Wisland

~0.5Wisland

>Wisland

(A)

(B)

(C)

(A)

(B)(C)

=|EC-island-center|

Page 21: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Energetic ions are transported from core region due to AEs with moderate amplitude.

JT-60U

• Understanding of the alpha particle transport in the presence of AEs is one of the urgent research issues for ITER.

M. Ishikawa (EX/6-2, Thu.)

(A) with AEs (t=6.4s) (B) with weak AEs (t=7.8s)

The measured neutron yield is significantly smaller than the classical calculation during AEs with moderate amplitude in the central region.

Neutron measurements

0

2

4

6

8

10

5 5.5 6 6.5 7 7.5 8

time (s)

-- r/a ~ 0.19

-- r/a ~ 0.32

-- r/a ~ 0.46

-- r/a ~ 0.56

-- r/a ~ 0.73

-- r/a ~ 0.84

NNB NNB

20

40

60

80

100

(A) (B)

0

2

4

6

8

10 MeasurementTOPICS

0 0.2 0.4 0.6 0.8 1

r/a

02468

101214 Measurement

TOPICS

0 0.2 0.4 0.6 0.8 1

r/a

Page 22: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Non-diffusive ELM propagation is observed in LFS SOL, but not in HFS SOL.

N. Asakura (EX/9-2, Fri.)

-0.5

0

0.5

0123

0 0.1 0.2 0.3time (ms)

0.4

-0.5

0

0.5

0246rmid=1.0cm

R (m) 2 3 4

-1

0

Z (m)

SOL

SOL

Midplane Mach probe

X-point Mach probeHigh-field-side Mach probe

Target probe array (18 probes)

23cm

Probes and fast TV in JT-60U

rmid=0.8cm

HFS

LFS

JT-60U• Transient heat and particle load to the plasma facin

g components (PFC) is a crucial issue.• Vperp

mid(peak)=0.4-1.2 km/s (rmid<5 cm), 1.5-3 km/s (rmid>6 cm)

j sHF

S

(105

Am

-2)

B (

a.u.

)j sLF

S

(105

Am

-2)

B (

a.u.

)LFS

HFS

mid (peak)=25sperp

LFS

~LCHFS/Cs

~convection time scale

ELM crash

Page 23: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

6. Summary

The installation of FSTs enables to access new regimes.

• High N exceeding no wall ideal limitN~4.2 (=ideal wall limit)Small critical rotation of VC/VA=0.3% and no increase of critical rotation velocity in high C regime for suppressing RWM

High N in ITER and DEMO

• Long sustainment of integrated performanceNHH98(y,2)=2.2 for 23.1 s (~12R) with fBS=36-45%

ITER hybrid scenario

Development of real time control methods for pressure profile control and current profile control.

intelligent control for the high fBS plasmas in DEMO

• Progress in physics studies implicated for ITER.NTM suppression, Energetic ions with AEs and ELM.

• JT-60SA (super advanced) design is optimized to support and supplement ITER toward DEMO. (M. Kikuchi, FT2-5, Fri.)

JT-60U

Page 24: Overview of JT-60U Results for Development of Steady-State Advanced Tokamak Scenario

Presentations from JT-60U

Mon. Long high N dischargesBootstrap sustained discharges

Tue. ITB study in high p mode plasmasHigh bootstrap discharges

Wed. FSTs effects on rotation & momentum transport

Thu. NTM suppression by ECCDFSTs effects on pedestal and confinementEnergetic ions with AEsCurrent profile control & off-axis current driveParticle control under wall saturationHydrogen retention and carbon deposition Radiation processes of impurities and hydrogenITB study in RS plasmas Installation of FSTs

Fri. High N and RWM studyELM propagation and fluctuation in SOLSpontaneously excited waves near ICRF

Sat. High density limit with high liNTM suppression by ECCDHigh N and RWM study

JT-60UN. Oyama (EX/1-3)Y. Takase (EX/1-4)

S. Ide (EX/P1-5)Y. Sakamoto (EX/P1-10)

M. Yoshida (EX/P3-22)

A. Isayama (EX/4-1Ra)H. Urano (EX/5-1)M. Ishikawa (EX/6-2)T. Suzuki (EX/6-4)H. Kubo (EX/P4-11)K. Masaki (EX/P4-14)T. Nakano (EX/P4-19)K. Ida (EX/P4-39)K. Shinohara (FT/P5-32)

M. Takechi (EX/7-1Rb)N. Asakura (EX/9-2)M. Ichimura (EX/P6-7)

H. Yamada (EX/P8-8)A. Isayama (EX/4-1Ra, P)M. Takechi (EX/7-1Rb, P)


Recommended