+ All Categories
Home > Documents > Overview of Polynomial Chaos Methods for Uncertainty ...Polynomial Chaos M.Iskandarani,...

Overview of Polynomial Chaos Methods for Uncertainty ...Polynomial Chaos M.Iskandarani,...

Date post: 23-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
27
Polynomial Chaos M.Iskandarani, A.Srinivasan, W.C. Thacker, O. Knio Background. What? How? Inflow example Setup. Results Omar Overview of Polynomial Chaos Methods for Uncertainty Quantification with Application to HYCOM Mohamed Iskandarani 1 Ashwanth Srinivasan 1 Carlisle Thacker 12 Omar Knio 3 1 University of Miami 2 Atlantic Oceanographic and Meteorological Laboratory 3 Johns Hopkins University February 2011
Transcript
  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Overview of Polynomial Chaos Methodsfor Uncertainty Quantification

    with Application to HYCOM

    Mohamed Iskandarani1 Ashwanth Srinivasan1

    Carlisle Thacker12 Omar Knio3

    1University of Miami

    2Atlantic Oceanographic and Meteorological Laboratory

    3Johns Hopkins University

    February 2011

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Outline

    1 Background.What is polynomial chaos?How does polynomial chaos work?

    2 Uncertain inflow through Yucatan Straits.Setup.Results.

    3 Omar: advanced techniques.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Outline

    1 Background.What is polynomial chaos?How does polynomial chaos work?

    2 Uncertain inflow through Yucatan Straits.Setup.Results.

    3 Omar: advanced techniques.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    What is polynomial chaos?

    • Idea of polynomial chaos originated with NorbertWiener in 1938 — before computers.

    • It is being used by engineers to assess howuncertainties in a model’s inputs manifest in itsoutputs.

    • It can be much more efficient than Monte Carlomethods.

    • Can it be useful to oceanographers?

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Why “polynomial”? Why “chaos”?

    • “Chaos” simply refers to uncertainty. Nothing to dowith strange attractors?

    • Want to compute how uncertainties of a dynamicalsystem’s inputs manifest in its outputs.

    • “Polynomial” refers to use of polynomial expansionsto propagate uncertainties.

    • Idea is to exploit orthogonality of the polynomials.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    HYCOM: uncertain inputs.

    • Initial conditions.• Boundary conditions.• Forcing.• Parameters.

    • Polynomial Chaos can handle only a limited numberof uncertain inputs.

    • But it focuses on all likely values of those fewuncertain inputs.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    HYCOM: uncertain outputs.

    • Every field at every time.• Value of a particular field at a particular point and a

    particular time.• Derived quantities,

    e.g. maximum of the Meridional overturning streamfunction.

    • Polynomial Chaos allows focus to be on points ofinterest.

    • Not necessary to explore all uncertaintiessimultaneously.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Simplest case:one uncertain input, one output of interest.

    • Call the uncertain input ξ and the output φ.• Uncertainty of ξ is specified via its pdf ρ(ξ).• Want pdf of φ or at least information about how it

    varies as ξ varies.• Basic Idea: Express output as a polynomial series.

    φ(ξ) = φ0 + φ1P1(ξ) + φ2P2(ξ) + . . .

    • Orthogonal polynomials Pk are related to pdf ρ.∫Pj(ξ)Pk (ξ)ρ(ξ)dξ = δj,k

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Simplest case, continued:one uncertain input, one output of interest

    φ(ξ) = φ0 + φ1P1(ξ) + φ2P2(ξ) + . . .∫Pj(ξ)Pk (ξ)ρ(ξ)dξ = δj,k

    • Is the series guaranteed to converge?• In practice, it must be truncated.• How to compute the coefficients φ0, φ1, φ2, . . .?

    φk =1

    Nk

    ∫φ(ξ)Pk (ξ)ρ(ξ)dξ

    Nk =∫

    P2k (ξ)ρ(ξ)dξ

    • Use Gaussian quadrature to evaluate the integrals.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Simplest case, continued:one uncertain input, one output of interest

    • Coefficients:

    φk =1

    Nk

    ∫φ(ξ)Pk (ξ)ρ(ξ)dξ

    • Gaussian Quadrature:∫φ(ξ)Pk (ξ)ρ(ξ)dξ ≈

    ∑p

    φ(ξp)Pk (ξp)wp

    • Quadrature points: ξp• Quadrature weights: wp• Computing outputs φ(ξp) for inputs at quadrature

    points ξp requires multiple model runs.• How many quadrature points (runs) are needed?

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Several outputs of interest,one uncertain input.

    • Two outputs:

    φ(ξ) = φ0 + φ1P1(ξ) + φ2P2(ξ) + . . .

    ψ(ξ) = ψ0 + ψ1P1(ξ) + ψ2P2(ξ) + . . .

    • Two or more outputs require no more runs than doesone output.

    • Just save values for all outputs of interest, φ, ψ, . . ..• More coefficients, so more quadrature integrals are

    needed.• Quadrature integrals are computationally cheap.• Can examine uncertainty of an entire field.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    How to use expansion coefficients?

    • mean:〈φ〉 =

    ∫φ(ξ)ρ(ξ)dξ = φ0

    • variance:

    〈(φ− φ0〉)2 =kmax∑k=1

    φ2k

    • covariance:

    〈(φ− φ0〉)(ψ − ψ0)〉 =kmax∑k=1

    φkψk

    • Generate a cheap ensemble.

    φ(ξ) = φ0 + φ1P1(ξ) + φ2P2(ξ) + . . .

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Two uncertain inputs, one output of interest

    • Call the uncertain inputs ξ and χ.• Uncertainties of are specified via joint pdf ρ(ξ, χ).• Now have polynomial series in two variables:

    φ(ξ, χ) = φ0 + φ1P1(ξ, χ) + φ2P2(ξ, χ) + . . .

    • If uncertain inputs are independent, pdf factors:

    ρ(ξ, χ) = ρξ(ξ)ρχ(χ)

    • Then 2D quadrature reduces to two 1D quadratures.• Number of quadrature points (runs) is squared.• Curse of dimensionality.• Sparse cubature might provide economy when

    exploring consequences of several uncertain inputs.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Outline

    1 Background.What is polynomial chaos?How does polynomial chaos work?

    2 Uncertain inflow through Yucatan Straits.Setup.Results.

    3 Omar: advanced techniques.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Problem: How do uncertainties of theYucatan inflow manifest within the Gulf ofMexico?

    • Need to quantify inflow uncertainties.• Inflow is characterized by several 2D time-varying

    fields.• Computational cost increases dramatically with

    number of uncertain parameters.• How to characterize uncertainties of inflow with only

    a few parameters?

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    How to characterize uncertainties of inflowwith only a few independent parameters?

    • Use multivariate EOFs to characterize 2D spatialpatterns of inflow uncertainty.

    • Use corresponding principal components tocharacterize their temporal variability.

    • Each mode’s amplitude is assumed to have aGaussian pdf.

    • Hermite polynomials — Gauss-Hermite quadrature.• Quadrature points dictate the required HYCOM runs.• Each run is the sum of a "favorite" inflow and its

    particular EOF contributions.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Meridional velocity component of EOF.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Eigenvalue spectrum.

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Contours of 17 cm SSH from quadratureensemble of 17 cm runs.

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    17 (cm) SSH Contours − Day −−090

    Latitude

    Long

    itude

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    17 (cm) SSH Contours − Day −−150

    Latitude

    Long

    itude

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    17 (cm) SSH Contours − Day −−240

    Latitude

    Long

    itude

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    17 (cm) SSH Contours − Day −−300

    Latitude

    Long

    itude

    Figure 1. 17 (cm) SSH contours from all 36 realizations at 90, 150, 240 and 300 days.The contours are coloured based on the realization number. Realization numbers increasefrom cool to hot colors.

    1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Mean sea-surface height.

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day090

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day150

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day240

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Mean SSH(m) − Day300

    Latitude

    Long

    itude

    −0.4 −0.2 0 0.2 0.4 0.6

    Figure 1. Mean Sea Surface Height (SSH) at 90, 150, 240 and 300 days obtained from the5th order PC expansion.

    1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Standard deviation of sea-surface height.

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0 0.2 0.4 0.6 0.8 1

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −150

    Latitude

    Long

    itude

    0 0.2 0.4 0.6 0.8 1

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −240

    Latitude

    Long

    itude

    0 0.2 0.4 0.6 0.8 1

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0 0.2 0.4 0.6 0.8 1

    Figure 1. Std dev. of Sea Surface Height (SSH) at 90, 150, 240 and 300 days obtainedwith the 5th order PC expansion

    1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Convergence of series for SSH standarddeviation for day 90.

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −090

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    Figure 1. Std dev. of Sea Surface Height (SSH) on day 90, obtained with 5th (upper left),4th (upper right), 3rd (lower left) and 2nd (lower right) order PC expansions. At 90 daysthe spread among the realizations is still smooth and lower order approximations are ableto capture many of the features as the 5th order approximation, indicating convergence1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Convergence of series for SSH standarddeviation for day 300.

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2 0.25 0.3

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0.05 0.1 0.15 0.2

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Std dev. SSH(m) − Day −300

    Latitude

    Long

    itude

    0.02 0.04 0.06 0.08 0.1 0.12 0.14

    Figure 1. Std dev. of Sea Surface Height (SSH) on day 300, obtained with 5th (upperleft), 4th (upper right), 3rd (lower left) and 2nd (lower right) order PC expansions. At 300days the spread among the realizations is much more pronounced with many realizationsshedding an eddy. In this case the convergence is much slower than at 90 days.1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Covariance of SSH with SSH at one point fordays 90, 150, 240, and 300.

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance SSH−SSH − Day −090

    Latitude

    Long

    itude

    −0.3 −0.2 −0.1 0 0.1 0.2 0.3

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance SSH−SSH − Day −150

    Latitude

    Long

    itude

    −0.2 −0.1 0 0.1 0.2 0.3

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance SSH−SSH − Day −240

    Latitude

    Long

    itude

    −2 −1 0 1 2

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance SSH−SSH − Day −300

    Latitude

    Long

    itude

    −1 0 1 2 3

    Figure 1. Covariance between target point located at 86W/24N (indicated by the whitestar) and all other points at 90, 150, 240 and 300 days obtained from the 5th order PCexpansion.

    1

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Covariance of u,v-velocity with SSH at onepoint for day 90.

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance ssh−vvel − Day −300

    Latitude

    Long

    itude

    −0.05 0 0.05 0.1

    *

    96oW 92oW 88oW 84oW 80oW 18oN

    21oN

    24oN

    27oN

    30oN

    Covariance ssh−uvel − Day −300

    Latitude

    Long

    itude

    −0.06 −0.04 −0.02 0 0.02 0.04 0.06

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Kernel density estimates for mixed-layerdepth at day 90 from artificial ensemble.

    55 56 57 58 59 60 61 62 630

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Mixed Layer Depth [m]

    Den

    sity

    PDF of Mixed Layer depth[m] at 86W/24N −− Day 90

    39 40 41 42 43 44 45 460

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Mixed Layer Depth [m]

    Den

    sity

    PDF of Mixed Layer depth[m] at 86W/24N −− Day 150

    14 14.5 15 15.5 16 16.5 17 17.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Mixed Layer Depth [m]

    Den

    sity

    PDF of Mixed Layer depth[m] at 86W/24N −− Day 240

    42 44 46 48 50 52 54 56 580

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    Mixed Layer Depth [m]

    Den

    sity

    PDF of Mixed Layer depth[m] at 86W/24N −− Day 300

  • Polynomial Chaos

    M.Iskandarani,A.Srinivasan,W.C. Thacker,

    O. Knio

    Background.What?

    How?

    Inflow exampleSetup.

    Results

    Omar

    Outline

    1 Background.What is polynomial chaos?How does polynomial chaos work?

    2 Uncertain inflow through Yucatan Straits.Setup.Results.

    3 Omar: advanced techniques.

    Background.What is polynomial chaos?How does polynomial chaos work?

    Uncertain inflow through Yucatan Straits.Setup.Results.

    Omar: advanced techniques.


Recommended