+ All Categories
Home > Documents > Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh...

Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh...

Date post: 22-May-2018
Category:
Upload: lamhanh
View: 229 times
Download: 1 times
Share this document with a friend
21
Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting R&D Workshop January 27–29, 2015 • San Francisco, CA
Transcript
Page 1: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Overview of Transparent Metal

Mesh Electrode Technologies

Mike Mastropietro, NovaCentrix

2015 DOE Solid-State Lighting

R&D Workshop

January 27–29, 2015 • San Francisco, CA

Page 2: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Product Snapshot

PulseForge ® Photonic Curing Tools

Metalon ®, PChem Conductive Inks

Also: Ag, Ni, Co, others

SimPulse ® Numerical Simulation

Nanomaterials

2

Page 3: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Introduction

• What are transparent metal ‘mesh’ or

‘grid’ electrodes?

• Methods to produce & pattern metal

mesh electrodes

− Additive vs semi-additive vs subtractive

• Challenges to manufacturing & use

3

Page 4: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Definitions & key parameters • ‘Transparent’: per the normal definition. However, typically the

metal structures block light, but due to very low surface coverage and

microscopic feature size they appear transparent to the observer.

• ‘Mesh’: the microscopic patterns of the conductive metal or metallic

particles that carry current often resemble a typical macroscopic

woven or stamped “mesh”. Some use the term ‘grid’.

• Transmission or Visible Light Transmission (VLT): the % of light in a

specified wavelength range that is transmitted by the conductive

coating and substrate. Often the absorption of the substrate is

subtracted and the transmission of the coating itself reported.

• Sheet resistance (Ω/): the resistance across a segment of the

coating of equal length and width. By itself as resistance (vs

resistivity) it does not indicate how good a conductor the coating is,

but when graphed as a function of VLT does indicate performance of

the film.

4

Page 5: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

A little bit on sheet resistance

Electric field spreading will result in lower

than actual sheet resistance values if

sample is not cut to width of “square

probe” !!!

5

Page 6: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Types of metal meshes

• Percolated networks of high aspect ratio

silver nanowires

• Self assembled and sintered nanoparticle

(NP) films

• Etching of PVD films patterned by lithography

• ‘Trenches’ filled with sintered nanoparticles

• Printed and sintered nanoparticle films

6

Page 7: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Percolated networks of high

aspect ratio silver nanowires

Image: http://www.cambrios.com/sites/all/themes/cambrios/images/technology.png

Typical avg. diameters of 25-200 nm and lengths from 2-100+ µm

7

Page 8: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

$ $

Percolation vs metallic conduction

Sinter able metallic nanoparticle and metallorganic based inks allow for reduced

metal usage and potentially lower materials cost

Current must tunnel through resistive

polymer/organic between particles

Atomic diffusion results in true

metallic paths for current to flow

8

Page 9: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Self assembled & sintered NP films

Images source: http://www.sid.org/Portals/5/pdf/Cima_Nanotech_DW2013.pdf 9

Page 10: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Etched (PVD) metal films

patterned by lithography

• Nanowire and self assembled NP films

are also primarily etched to pattern

• Nano Imprint Lithography (NIL)

• Rolling Mask Lithography (RML™)

• Micro contact printing of a self-

assembled monolayer ‘resist’

• Traditionally printed resist

10

Page 11: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

‘Trenches’ filled with sintered NPs

Yaowen Li, et al. ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer.

Solar Energy Materials & Solar Cells 2013. 113, pp. 85–89. Elsevier. 11

Page 12: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Printed and sintered nanoparticle films

PEDOT:PSS ITO Flexo printed grid 12

Page 13: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

SER vs %VLT

1

10

100

1000

70% 75% 80% 85% 90% 95% 100%

%VLT (no PET)

SE

R (

oh

ms

/sq

)

Orgacon Gen 1

Orgacon Gen 2

Orgacon Gen 3

Orgacon Gen 4

Orgacon Gen 5

10-300

10-500

10-1000

20-500

20-1000

20-1250

30-750

30-1250

30-1500

40-1000

40-1500

ITO

PChem Grids

(measured data)

Orgacon (data from SER*OD)

13

Page 14: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

High Speed Flexo Printing Video

Inexpensive plates, widths from 6-60”, 660 FPM demonstrated at Clemson

http://www.youtube.com/watch?v=W6n4OOAp3og 14

Page 15: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Profile of a flexo printed grid line

15

Page 16: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Print & plate approach

Source: http://www.unipixel.com/home/products/intouch-sensors-2/

6µm trace x 300µm grid

16

Page 17: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Metal mesh electrode obstacles

• Mesh line resolution − Narrower metal features result in

improved VLT, but higher SR.

• Mesh thickness − Thicker metal structures have lower

SR, but are a challenge to level prior to coating the OLEP materials.

• Electric field isolation − In OLEDS an electric field is

established through the stack between upper and lower electrodes. Depending on spacing the field lines may not fully extend into the areas between grid lines to activate the material there.

− A second transparent conductor like PEDOT, Ag nanowire, CNT coatings, etc. is often required as a charge spreading layer for OLED applications to replace ITO

Image of functioning NanoChromic display

made with PGrid TCF courtesy of NTERA

17

Page 18: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Printed Grid/PEDOT TCFs

OLED made with:

PChem PGrid100

~35/300 μm L/S

Heraeus Clevios™ P VP AI 4083

Conductivity: 10-3 S/cm

OLED made with:

PChem PGrid100

~35/300 μm L/S

Heraeus Clevios™ F CE

Conductivity: 200 S/cm

OLEDs & Photos courtesy of A. Elschner, Heraeus Precious Metals GmbH & Co. KG

18

Page 19: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Planarizing metal meshes for

deposition of OLED layers

http://www.cimananotech.com/sante-technology/transfer 19

Page 20: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Transparent anode & cathode

20

Page 21: Overview of Transparent Metal Mesh Electrode Technologies · Overview of Transparent Metal Mesh Electrode Technologies Mike Mastropietro, NovaCentrix 2015 DOE Solid-State Lighting

Transparent metal ‘mesh’

electrodes • Allow for an improved VLT/SR performance

ratio over ITO and IMI (ITO-Ag-ITO)

• Can potentially offer lower cost

• Better mechanical performance

SR

Sub

Cost

Semi

Perf

OLED

VLT

Add

21


Recommended