+ All Categories
Home > Documents > Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR...

Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR...

Date post: 01-Apr-2018
Category:
Upload: vankhue
View: 240 times
Download: 5 times
Share this document with a friend
13
19/11/2011 1 Membrane Bioreactor (MBR) Technology Hiren TrivediOVIVO List of Topics MBR Technology Overview MBR Design/Operation Nutrient Removal MBR Supplier Selection Case Studies Conventional Wastewater Treatment Screening & Grit Removal Primary Settlement Secondary Treatment ‘Biological’ Stage Secondary Settlement Treated Water Disinfection Sand Filtration 3mm Screen Membrane Reactor Permeate (disinfected) Membrane Bioreactor Process
Transcript
Page 1: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

1

Membrane Bioreactor (MBR) TechnologyHiren Trivedi‐OVIVO

List of Topics

• MBR Technology Overview

• MBR Design/Operation

• Nutrient Removal

• MBR Supplier Selection

• Case Studies

Conventional Wastewater Treatment

Screening &Grit Removal

Primary Settlement Secondary Treatment‘Biological’ Stage

SecondarySettlement

TreatedWater

Disinfection Sand Filtration

3mm ScreenMembrane

Reactor

Permeate(disinfected)

Membrane Bioreactor Process

Page 2: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

2

A membrane bioreactor is a state of the art wastewater treatment process utilising biological treatment alongside filtration all in one common tank.

What is a membrane bioreactor?

Membrane Bioreactor Process

How does it work ?

Filtration Process

Barrier filtration

Membranes

Separates solids and liquids

Biological Process

Activated sludge (MLSS)

Bacteria

Oxidises organic constituents, BOD, and Nitrification of Ammonia to Nitrate

Membrane + Bioreactor

Membrane Bioreactor Process

Membrane Type

Flat Sheet

•E.g. Kubota / Toray / Huber

•Generally more references

Hollow Fibre

•E.g. Zenon / Memcor / Puron

•Generally more flow

External Tubular

•E.g. Norit

•Newer applications in municipal field 

8

Why Choose MBR Technology?

High Effluent Quality

Small Footprint

Process Stability and Flexibility

Expandability

Cost Effective?

Page 3: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

3

9

<0.05 NTU

ND Fecal Coliform

ND Total Coliform

>3‐log Virus Reduction

ND BOD

ND TSS

<3.0 mg/l TN

<0.03 mg/l TP

ND = Not Detectable by standard test methods.

Achievable Effluent Quality

0.001 0.01 0.1 1.0 10 100 1000

Bacteria

Coal dust Beach sand

Metal ions

Aqueous salts

m (log)

Relative Particle Sizes

Ultrafiltration

Virus

Microfiltration

SeparationProcess

Effective pore size

Nominal pore size

Cryptosporidia Giardia

Membrane Bioreactor Process

List of Topics

• MBR Technology Overview

• MBR Design/Operation

• Nutrient Removal

• MBR Supplier Selection

• Case Studies

Ovivo

Experienced MBR solution provider

•Over 350 MBR plants worldwide in operation or under construction in 5 continents

•Municipal and Industrial

•Licensee for Kubota, Japan

•UK and Ireland – Over 100 MBR plants operational

•US – Over 100 MBR plants operational

•India – Since last four years

Page 4: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

4

1313

Biological Process Design

Plant Hydraulics

Aeration Systems

Pre-TreatmentIntegration

& Controls

Operation &

Maintenance

Solids Handling

Equipment Selection

Biohydraulics

Membrane filtration and biological process design CANNOT be decoupled!

The Ovivo MBR SystemDesign Approach

Design Considerations ‐ Approach

Membrane Biomass

OperatingEnvironment

MBRConfiguration

Hydrophobicity

Porosity / Pore Size

MLSS (viscosity, zeta potential)

EPS (Extracellular polymeric substances)

Floc structure & MPS(Mean Particle Size)

Dissolved Material

Cross Flow Velocity 

Aeration

TransMembrane Pressure

HRT/SRT

Typical MBR System Configuration The Submerged Membrane Unit (SMU)

Manifold

Membrane case

Membrane cartridge

Diffuser case

Diffuser

Tube

Page 5: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

5

1717

Hydraulics‐Pump Forward Designs

Cost of Added QVS

Reduce/Eliminate EQ Basin, Pump, Instr.

Reduce Site Footprint

Reduce Concrete Usage

Balance flows for Energy Optimization

Maintains Constant SWD in Aerated Basins

L

L

L

Gravity Return

Permeate

P

AX PA

Utilize 

Percent of 

Anoxic

Volume

MBR

18

Hydraulics‐Flow Splitting

Goal: Equal flows/solids through Trains & MBR basins

Avoid managing multiple processes

Avoid solids accumulation in MBRs (thickening)

Avoid localized dewatering

Common‐Wall Construction N+1 Construction

Q

AX

AX

AX

AX

PA

PA

PA

PA

MBR

MD

C

FD

C

MR

C

MBR

MBR

MBR

QP

AX

AX

AX

AX

PA

PA

PA

PA

MBR

MBR

MBR

MBR

SB

Q

Q

1919

Hydraulics‐Permeate Collection Methods

Gravity

P

Pumped

Pumping Energy to Convey Permeate

Low SWD

No Pumping Costs

High SWD

2020

Hydraulics‐Pump Assisted Gravity (PAG)

PAG is ~25% more energy efficient than gravity or pumped systems

• Lower blower discharge pressure

•Pumps only used to resolve air lock/high TMP

Clear Well

P

Page 6: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

6

2121

Biological‐T vs. SRT

T=10oC T=15oC T=20oC

Nitrification SRT 10 days 6 days 4 days

Denitrification SRT

7 days 4 days 3 days

Total SRT(No Safety Factor)

17 days 10 days 7 days

2222

Biological‐MBR Process Aeration

Keys:

1. Process Air Capacity and Turndown (Healthy Mixed Liquor/Good Filterability)

2. Scour Air Control (Membrane Biofilm Management)

Process Aeration:

Capacity for Peaks (peak load definitions)

Turndown for Low Loading (over aeration vs motor starts)

MBR Air Scour:

Peak capacity and turndown defined by Ovivo standards

Dependency on Constant MBR SWD

Biological‐Actual Energy Data, Dundee MI

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

Daily Flow (MGD)

En

erg

y C

on

sum

pti

on

(kW

h/m

3)

Avg. SBR Energy Usage 2001‐2005 (0.80kWh/m3)

Ovivo MBR Energy Usage

Actual Total Plant Energy Usage at Design AAF (1.5 MGD)

23

24

Pumped System

Gravity System

Operational‐Measuring TMP

TMP = PS ‐ PP – PG

PG = PS ‐ PP ‐ TMP

PG

PS

PS

PG

TMP = Membrane & biofilm pressure losses

PP = Piping friction losses (fittings, piping, etc.)

PG = Gauge reading during filtration

PS = Static pressure reading at zero filtration

Page 7: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

7

2525

Operational‐Chemical Cleaning (CIP)

Maintenance Cleaning

Intended to remove surface (biofilm or cake) fouling.1

Does not involve taking tanks out of service for extended periods of time (~1‐4hr)

Routine procedure

Can return to MBR filtration mode in ~15 minutes

Recovery Cleaning

• Intended to “dislodge particles from membrane microstructure.”1

• May take from >4‐24hrs.

• Requires that membranes be soaked in concentrated chemical solution.

• Generally a non‐routine procedure

1 Membrane Systems for Wastewater Treatment, WEF 2006.

0

10

20

30

40

50

60

4/8/2006 0:00 4/13/2006 0:00 4/18/2006 0:00 4/23/2006 0:00 4/28/2006 0:00 5/3/2006 0:00 5/8/2006 0:00

Per

mea

bilit

y (g

fd/p

si)

Maintenance Clean Efficiency

Target Perm. = 19 gfd/psi

CIP on April 22, 2006

Ovivo MBR System-Kubota Membranes

McFarland Creek, OH-6.8 MLD

2727

Standardized Automation

Overview

Train Status

Basin Status

Equip Status

Process Data

List of Topics

• MBR Technology Overview

• MBR Design/Operation

• Nutrient Removal

• MBR Supplier Selection

• Case Studies

Page 8: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

8

29

Nitrogen in wastewater

Raw wastewater contains nitrogen in the form of:

1. Organic Nitrogen2. Ammonia‐N (NH3‐N)3. Nitrate‐N (NO3‐N)4. Nitrite‐N (NO2‐N)

• TKN=1+2• TIN: 2+3+4• TN:1+2+3+4

Inert Nitrogen: 2% of TN

30

Biological Nitrogen Removal

Two step process

•Nitrification (Pre‐Air and MBR basin)

•Denitrification (Anoxic basin)

Temperature dependent

30

31

Nitrification

• Presence of oxygen• Occurs in Pre‐Air and MBR basins• Autotrophic bacteria  are slow growing. Longer SRT needed• Nitrification consumes alkalinity @ 7.14 g alkalinity/g NH3‐N

Nitrification (NH3 to NO3) 4.57 gO2/gNH3

•Nitrosomonas•NH3 to NO2 3.43 gO2/gNH3

•Nitrobacter•NO2 to NO3 1.14 gO2/gNO2

•Electron Acceptor: Oxygen

32

Denitrification

• Absence of free oxygen

• Occurs in Anoxic basin

• Heterotrophic bacteria

• Denitrification recovers 50% alkalinity lost in nitrification @ 3.57g alkalinity/g NO3‐N 

Denitrification (NO3 to N2 gas)

• Alcaligens, Pseudomonas• NO3 to N2  2.86 gO2/gNO3

• Oxygen Equivalent of NO3

• Electron Acceptor: Nitrate

• BOD:TN  ratio greater than or equal  to 4

Page 9: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

9

3333

Biological Nitrogen Removal

Need sufficient influent BOD/N ratio 

•>4.0 for Level 1

•>6.0 for Level 2 & 3

Internal recycle – 2.0 to 4.0 (minimum)

DO in internal recycle consumes BOD in anoxic zone

•Can decrease denitrification rates

Sufficient SRT and DO needed for nitrification

•MBRs have less volume for higher SRTs (12 to 40 days)

•MLSS range 8,000 to 18,000 mg/L

NdN process issues same for MBR and Conventional A.S. processes

34

Biological Phosphorus Removal ‐Release & Uptake

Absence of free oxygen Absence of Nitrate‐NPhosphorus Accumulating Bacteria (PAO)Release• Release in the Anaerobic basin – rbCOD is fermented to volatile fatty acids (VFA)

• PAO’s assimilate volatile fatty acids (VFA) and store them as Carbon products. During the process they release Orhtophosphate (O‐PO4)

• Retention time in Anaerobic basin: 0.5 to 1 hrUptake• Uptake in Aerobic and Anoxic Basin• PAO’s consume the stored carbon products and uptake phosphorus during the process.

Phosphorus is removed from wastewater by wasting sludge (PAO’s)Biological sludge w/o EBPR: <2% P by weightBiological sludge w EBPR: >4% P by weight

35

Chemical Phosphorus Removal

Addition of Chemical 

• Alum

• Ferric Chloride

Used for small plants and when low TP is required

Excess sludge generation

May require high metal:P ratio based on effluent quality

Effluent P conc. mg/L Al/P ratio

M/M

0.05 2.5

0.10 2.0

0.50 1.0

3636

•Optimized nitrification and denitrification reduces:

•Number of recycle streams + Recycle flowrate

•Low DO operation in the aeration zone significantly reduces aeration energy consumption

SNdNHRT=2 hr

MBRDO>1 ppm

HRT=2 hr

ANDO=0 ppm

HRT=1 hr

AXDO=0 ppm

HRT=1.5 hr

QQ

2-6 Q

1-2 QChemical

Post-AXDO=0 ppm

HRT=0.5 hr

Chemical

The UNRTM Process: 5‐stage Design

Page 10: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

10

37

Islamorada, Florida

350,000 gpd

4 Stage Process

Designed for AWT Standards

5/5/3TN/1TP limits

Injection Well                     Beneficial Reuse

38

Filtrate

WAS

PRAX SymBio PA MBR

Influent

POAX

Methanol

Plantation Key, Islamorada Biowin Model(UNR3TM Process)

Process Zone Abbreviation

Anaerobic AN

Pre-Anoxic PRAX

Pre-Aeration PA

Post-Anoxic POAX

Membrane MBR

Legend

RR1

RR2

3939

Original BioWin simulationFlow: 0.355 MGDBOD: 250 mg/LTSS: 250 mg/LTKN: 45 mg/L (BOD: TKN ratio: ~6:1)Methanol: 20 gpd (Estimated)CurrentFlow:0.035 MGDBOD: 170 mg/LTSS: 260 mg/LTKN: 69 mg/L (BOD: TKN ratio: ~2.5:1)Methanol: 2 gpd (Actual)Alum: 12 gpd for TP < 1

Plantation Key, FL: Nitrogen Removal

4040

Plantation Key, FL

Parameter CBOD TSS TN NO3 NH3 NO2 TKNTotalOrg.N TP

Limits 5 5 3 1

2007 (Avg.) 2.50 0.62 1.49 1.01 0.12 0.01 0.64 0.55 0.34

2008 (Avg.) 2.06 0.60 2.37 1.83 0.12 0.02 0.51 0.38 0.29

Parameter CBOD TSS TN NH3 TKN T Org.N TP

2007 (Avg.) 153.72 230.35 69.11 47.04 68.99 21.94 9.23

2008 (Avg.) 167.80 259.87 76.68 51.81 76.60 24.91 9.31

Influent

Effluent

Page 11: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

11

List of Topics

• MBR Technology Overview

• MBR Design/Operation

• Nutrient Removal

• MBR Supplier Selection

• Case Studies

List of Topics

MBR Supplier Selection Matrix

•Proven product? (History, Support)

•Cost of ownership? (Flux, Energy Optimization)

•Suitable for RO feed? (Reuse applications)

•Simple to use? (Cleaning and Maintenance)

•Operational flexibility? (MLSS variation, BNR)

MBR Selection‐Product History

WWTPs are usually designed to last for 20‐30 years

Membrane life, warranty become a key selection criteria

Membrane suppliers should provide installation history for evaluation

End client, consulting engineers, EPC companies (Selectors) all have to evaluate:

• Risk to the stakeholders

• Cost of ownership

• After sale support

MBR Selection‐Design Flux

Design Flux selected has a direct impact on:• Quantity of membranes• Capital cost• O&M cost

• Aeration energy• Membrane replacement

Selectors should evaluate the flux values chosen by vendors in terms of: • Average (daily) sustainable flux/Max month flux• Peak daily flux• Peak instantaneous flux• Data from vendors to substantiate their claims

• Third party (independent) testing results

Page 12: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

12

MBR System‐RO Feed Quality Water

Tested Water

Water Temperature

(oC)Turbidity

(NTU) SDICODMn(mg/L)

MBR1 (SRT:300 days) 21.0 0.11 2.46 5.0

MBR 2 (SRT: 300 days) 18.0 0.10 2.66 4.3

MBR 3 (SRT: 120 days) 10.8 0.10 2.61 8.0

MBR 4 (SRT: 120 days) 11.0 0.10 0.40 8.3

MBR 5 (SRT: 120 days) 11.0 0.09 1.28 7.0

MBR 6 (SRT: 120 days) 11.0 0.10 2.60 8.5

MBR 7 (SRT: 10 days) 21.0 0.10 2.79 7.0

MBR 8 (SRT: 10 days) 17.5 0.10 2.28 9.3

MBR 9 (SRT: 2 days) 14.8 0.17 2.12 14.5

MBR 10 (SRT: 2 days) 13.0 0.17 2.75 26.3

Grey Water-1 23.0 0.12 2.19 2.2

Grey Water-2 22.5 0.11 1.96 2.6

Conventional WWTP 17.0 0.82 6.47 9

Tap Water 11.0 0.09 3.42 1

MBR System‐Kubota Membranes

Operational FlexibilityPermeate operation by:•Gravity•SuctionMLSS variation during operation:•8,000‐18,000 mg/L•Beyond 30,000 mg/L in thickening applicationsBiological Nutrient Removal (BNR)•Plants designed for TN, TP removal•Dynamic modeling of plant performance availableSimple screening requirement•3 mm perforated (punched) or 1‐2 mm bar screen•No need to screen RAS

List of Topics

• MBR Technology Overview

• MBR Design/Operation

• Nutrient Removal

• MBR Supplier Selection

• Case Studies

Case Studies

• DJB• GSK• Zydus Cadila• Godrej Tyson• MRPL

Page 13: Ovivo MBR Presentation.ppt - LDCE Alumniev.ldcealumni.net/papers/Ovivo_MBR.pdf · The Ovivo MBR System Design Approach Design Considerations ‐Approach Membrane Biomass Operating

19/11/2011

13

Conclusions

•Increasing interest in the MBR technology for domestic wastewater treatment has occurred due to an increasing demand in water reuse and continuing advancement in membrane technology.

•The MBR process offers several benefits over the conventional activated sludge process, including:  smaller space and reactor requirements, better superior solids removal, and disinfection.

•The effluent water quality from the MBR exceeds the quality of a conventional activated sludge system. THANK YOU

Q&A


Recommended