+ All Categories
Home > Documents > Oxalic Acid

Oxalic Acid

Date post: 13-Apr-2015
Category:
Upload: veasbam
View: 102 times
Download: 2 times
Share this document with a friend
Description:
varroa
23
Apidologie 37 (2006) 98–120 © INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2005063 Review article Oxalic acid for the control of varroosis in honey bee colonies – a review 1 Eva RADEMACHER*, Marika HARZ Free University of Berlin, Dept. of Biology/Chemistry/Pharmacy, Neurobiology, Königin-Luise-Str. 28–30, 14195 Berlin, Germany Received 17 February 2005 – revised 17 June 2005 – accepted 26 July 2005 Abstract The review summarizes research results on the use of oxalic acid as an acaricide in honey bee colonies. Three different treatment techniques (i.e. trickling, evaporation and spraying) have been developed for the application of oxalic acid. Detailed information is given on the efficacy against Varroa destructor, tolerability by Apis mellifera, protective procedures for the user, residue situation and consumer safety, as well as recommendations for use. oxalic acid dihydrate / varroosis / honey bee / residues 1. INTRODUCTION In the middle of the 20th century Varroa destructor moved onto the Western honey bee, Apis mellifera, as a new host and subsequently spread globally. Because there is no natural bal- ance between the new host and parasite; V. destructor destroys honey bee colonies within a few years. Since V. destructor appeared in A. mellifera colonies beekeepers have been forced to use acaricides regularly to keep mite popu- lations under control. In Europe, many bee- keepers rely on coumaphos and synthetic pyrethroids to control varroosis. Over the last 10 years the mite’s resistance to synthetic aca- ricides has increased tremendously, necessitat- ing a new strategy to combat it, including the development of new veterinary medications (Elzen et al., 1998; Lodesani et al., 1995; Milani, 1995; Moosbeckhofer and Trouiller, 1996; European Group for Integrated Varroa Control, 1999). Due to the biology of host and parasite, dif- ferent treatment methods are required during the year (Concept of Integrated Varroa Con- trol). Biotechnical methods such as the removal of drone brood and the use of trapping combs (Arbeitsgemeinschaft der Institute für Bienen- forschung, 2001) and formic acid or thymol (Imdorf et al., 1999; Rademacher, 1995, 1996; Rademacher et al., 1999) can be used to reduce mite populations during the summer months. During autumn and winter months the bee col- onies can be treated with lactic acid or oxalic acid (Charrière and Imdorf, 2002; Kraus et al., 1993; Nanetti et al., 2003a). Lactic acid is only practical for small apiaries. Within the Concept of Integrated Varroa Control, autumn treatment of large apiaries is based on the use of oxalic acid. This substance provides a wide range of possible application methods at the appropriate time for the year. Oxalic acid has been known to be effective against V. destructor since the end of the 20th century (Popov et al., 1989). Most investiga- tions into the development of oxalic acid as a drug in bee colonies have been carried out in EU countries and Switzerland using three * Corresponding author: [email protected] 1 Manuscript editor: Stefan Fuchs Article published by EDP Sciences and available at http://www.edpsciences.org/apido or http://dx.doi.org/10.1051/apido:2005063
Transcript
Page 1: Oxalic Acid

Apidologie 37 (2006) 98–120© INRA/DIB-AGIB/ EDP Sciences, 2006DOI: 10.1051/apido:2005063

Review article

Oxalic acid for the control of varroosis in honey beecolonies – a review1

Eva RADEMACHER*, Marika HARZ

Free University of Berlin, Dept. of Biology/Chemistry/Pharmacy, Neurobiology, Königin-Luise-Str. 28–30,14195 Berlin, Germany

Received 17 February 2005 – revised 17 June 2005 – accepted 26 July 2005

Abstract – The review summarizes research results on the use of oxalic acid as an acaricide in honey beecolonies. Three different treatment techniques (i.e. trickling, evaporation and spraying) have beendeveloped for the application of oxalic acid. Detailed information is given on the efficacy against Varroadestructor, tolerability by Apis mellifera, protective procedures for the user, residue situation and consumersafety, as well as recommendations for use.

oxalic acid dihydrate / varroosis / honey bee / residues

1. INTRODUCTION

In the middle of the 20th century Varroadestructor moved onto the Western honey bee,Apis mellifera, as a new host and subsequentlyspread globally. Because there is no natural bal-ance between the new host and parasite; V.destructor destroys honey bee colonies withina few years. Since V. destructor appeared in A.mellifera colonies beekeepers have been forcedto use acaricides regularly to keep mite popu-lations under control. In Europe, many bee-keepers rely on coumaphos and syntheticpyrethroids to control varroosis. Over the last10 years the mite’s resistance to synthetic aca-ricides has increased tremendously, necessitat-ing a new strategy to combat it, including thedevelopment of new veterinary medications(Elzen et al., 1998; Lodesani et al., 1995;Milani, 1995; Moosbeckhofer and Trouiller,1996; European Group for Integrated VarroaControl, 1999).

Due to the biology of host and parasite, dif-ferent treatment methods are required during

the year (Concept of Integrated Varroa Con-trol). Biotechnical methods such as the removalof drone brood and the use of trapping combs(Arbeitsgemeinschaft der Institute für Bienen-forschung, 2001) and formic acid or thymol(Imdorf et al., 1999; Rademacher, 1995, 1996;Rademacher et al., 1999) can be used to reducemite populations during the summer months.During autumn and winter months the bee col-onies can be treated with lactic acid or oxalicacid (Charrière and Imdorf, 2002; Kraus et al.,1993; Nanetti et al., 2003a). Lactic acid is onlypractical for small apiaries. Within the Conceptof Integrated Varroa Control, autumn treatmentof large apiaries is based on the use of oxalicacid. This substance provides a wide range ofpossible application methods at the appropriatetime for the year.

Oxalic acid has been known to be effectiveagainst V. destructor since the end of the 20thcentury (Popov et al., 1989). Most investiga-tions into the development of oxalic acid as adrug in bee colonies have been carried out inEU countries and Switzerland using three

* Corresponding author: [email protected] Manuscript editor: Stefan Fuchs

Article published by EDP Sciences and available at http://www.edpsciences.org/apido or http://dx.doi.org/10.1051/apido:2005063

Page 2: Oxalic Acid

Oxalic acid for the control of varroosis 99

different application forms. The EuropeanGroup for Integrated Varroa Control testedoxalic acid in coordinated experiments. Theiraim was to provide beekeepers with a fullydeveloped treatment method (Nanetti et al.,2003a). To use oxalic acid legally it must beregistered as a drug for bees; to achieveapproval, each country’s legislation must beconsidered (Mutinelli and Rademacher, 2002).This review presents and evaluates currentknowledge about oxalic acid with regard to itsapplicability as a control for V. destructor. Inaddition to the scientific literature, we haveincluded articles from practical beekeepingjournals, because many studies were only pub-lished there.

2. EFFICACY OF OXALIC ACID AGAINST VARROA DESTRUCTOR AND TOLERABILITY BY APIS MELLIFERA

2.1. Trickling

Using a syringe or a similar applicator,oxalic acid dihydrate solution was trickleddirectly onto the bees in the spaces betweencombs, normally when colonies were in thebroodless phase. The application is quick(about 1 min per hive), cost-effective and easy.Trials were conducted in Southern, Central andNorthern Europe as well as North Americawhen outside temperature ranged from 3 to13 °C1. The investigations are listed in Table I,grouped by climatic area, season, number ofapplications and concentration of oxalic aciddihydrate solution.

2.1.1. Efficacy

The majority of trials were conducted inmoderate climates in Central Europe. Theinvestigators focused on the application ofoxalic acid in autumn when colonies are brood-less, as oxalic acid does not kill the mites insealed brood cells.

Single treatments during autumn were eval-uated by applying 5 mL per bee space (30–50 mL per hive) of various concentrations of

oxalic acid dihydrate. A concentration of 3%oxalic acid dihydrate provided an efficacy of> 90% in most trials (Charrière, 2001; Charrièreand Imdorf, 2002; Nanetti et al., 2003a); onlyin one investigation was an efficacy < 90%described (Nanetti et al., 2003a). A 3.5% solu-tion provided > 95% (Charrière and Imdorf,2002; Charrière et al., 2004). A lower dose of10–15 mL/hive (3.5%) showed a similarlygood acaricidal effect (98%) when smallercolonies were treated (2-Zanderflachzargen,Moosbeckhofer, 2001).

Büchler (2000) quantified a dose per beeafter estimating colony size. The applied dos-age was 3 µL per bee. A dose of 22 mL (smallcolonies, approx. 7400 bees) and 79 mL perhive (very strong colonies, approx. 26 500 bees)respectively, reached an efficiency of 91.3%using 3% oxalic acid dihydrate solution. Whena 4.6% oxalic acid dihydrate solution wasapplied, mite mortality increased to 98.4%. Theoverall dosage in the trials (22 mL with 4.6%and 79 mL with 3%) equalled 5 mL per beespace at 3.5% oxalic acid dihydrate solution.Trials using lower dosages (3.2 mL per beespace) and 3% oxalic acid dihydrate showed areduced efficacy of only 84.8% (Büchler,1999). Higher oxalic acid dihydrate concentra-tions of 4.6 and 6% (3.2 mL per bee way) killed92.2% and 94.3%, respectively, of the mitesparasitizing the colonies (Büchler, 1999).

Applying a similar overall dose, but dividingthe dose per bee in half in one group (3.0 and1.5 µL, respectively) and doubling the concen-tration from 2.3 to 4.6% oxalic acid dihydrateresulted in an obviously higher efficacy of 98%(2.3% solution) and 80% mite fall using thehigh oxalic acid dihydrate solution (4.6%;Büchler, 2000).

Trials in which more than 3.5% oxalic aciddihydrate solution were applied showed thathigher dosages do not clearly lead to anincreased efficacy (Charrière, 2001; Charrièreand Imdorf, 2002; Liebig, 1998; Nanetti et al.,2003a). There is a tendency that the highestconcentrations and doses of 6 or 8% (Liebig,1997, 1998) actually reduced the efficacy.Using these high dosages to combat varroosisis not feasible because the bees cannot toleratethem (see Sect. 1.1.2 Tolerability).

During summer in breeding colonies theefficacy was reduced to 36% (Schuster and1 Temperature not mentioned in all papers.

Page 3: Oxalic Acid

100 E. Rademacher, M. HarzTa

ble

I. T

rial

s on

tric

klin

g of

oxa

lic a

cid

dihy

drat

e.

Aut

hor

Yea

rN

o.C

onc.

Con

c.C

onc.

Dos

age

Eff

icac

y (%

) B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A

dih.

O

A

anh.

su

gar

(mL

)m

ean

sd,

mor

talit

yof

(siz

e if

men

tion

ed)

(cel

ls)

appl

.(%

)#(%

)#(%

)#m

in–m

axco

l.

Cen

tral

Eur

ope

– T

reat

men

t in

aut

umn

Nan

etti

et a

l.20

03a

13

2.1

605

p.b.

w.

74.9

and

94.

3-

wea

keni

ng-

colo

ny (

CH

& D

B)

no

Cha

rriè

re a

nd20

021

32.

150

30–5

0 p.

h.93

+/–

1.6

–-

good

ove

rwin

teri

ng40

colo

ny (

CH

& D

B)

no

Imdo

rf98

+/–

0.7

* (

9000

–120

00)

Büc

hler

2000

13

2.1

5022

–79

p.h.

91

.3, 8

6.4–

-sl

ight

wea

keni

ng (

n.s.

)6

colo

ny-

(3 µ

L/b

ee)

96.6

(74

00–2

6500

)

Lie

big

1998

13

2.1

5060

p.h

.94

.7, 7

7–10

0-

-5

colo

ny

Büc

hler

1999

13

2.1

603.

2 p.

b.w

.84

.8, 5

1.1–

9371

8 b/

col

wea

keni

ng9

col

ony

(848

4)-

over

21

d

Cha

rriè

re20

011

32.

150

30–5

0 p.

h.56

.2 +

/– 4

.6–

95.9

+/–

1.5

*lo

wgo

od o

verw

inte

ring

37(1

0000

)no

Cha

rriè

re e

t al.

2004

13.

52.

550

30–5

0 p.

h.>

95*

***

-20

–30%

red.

col

ony

stre

ngth

(n.

s.)

18co

lony

(12

com

bs, D

B)

no

Büc

hler

2002

13.

52.

550

30–5

0 p.

h.-

good

ove

rwin

teri

ng11

col.

(141

84 +

/– 3

019)

(100

0)

Büc

hler

2002

13.

52.

550

30–5

0 p.

h.-

-go

od o

verw

inte

ring

7co

l. (2

1643

+/–

295

0)(1

000)

Spin

ks20

021

3.5

2.5

5030

–50

p.h.

--

good

ove

rwin

teri

ng6

5–6

o.c

.no

Moo

sbec

khof

er20

011

3.5

2.5

5010

–15

p.h.

98, 9

8–10

0-

2 co

l. lo

st4

colo

ny (

2-Z

.-no

Fla

chz.

)

Cha

rriè

re a

nd20

021

3.7

2.6

5030

–50

p.h.

98 +

/– 2

.3–

-go

od o

verw

inte

ring

51co

lony

(C

H &

DB

)no

Imdo

rf99

+/–

0.3

*(9

000–

1200

0)

Cha

rriè

re20

011

4.5

3.2

5030

–50

p.h.

97.8

+/–

1.4

–99

.2 +

/– 0

.1lo

wre

duce

d co

lony

str

engt

h14

(100

00)

no

Cha

rriè

re a

nd20

021

4.6

3.2

5030

–50

p.h.

92 +

/– 0

.9–

-go

od o

verw

inte

ring

68co

lony

(C

H &

DB

)no

Imdo

rf99

+/–

0.9

*(9

000–

1200

0)

Page 4: Oxalic Acid

Oxalic acid for the control of varroosis 101

Tabl

e I.

Con

tinu

ed.

Aut

hor

Yea

rN

o.C

onc.

Con

c.C

onc.

Dos

age

Eff

icac

y (%

) B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A

dih.

O

A

anh.

su

gar

(mL

)m

ean

sd,

mor

talit

yof

(siz

e if

men

tion

ed)

(cel

ls)

appl

.(%

)#(%

)#(%

)#m

in–m

axco

l.

Cha

rriè

re a

nd20

021

4.6

3.2

3030

–50

p.h.

88 +

/– 3

.8–

-go

od o

verw

inte

ring

24co

lony

(C

H &

DB

)no

Imdo

rf97

+/–

*(9

000–

1200

0)

Büc

hler

2000

14.

63.

250

22–7

9 p.

h.98

.4, 9

5.5–

-w

eake

ning

(s.

)6

colo

ny-

(3 µ

L/b

ee)

99.3

(740

0–26

500)

Büc

hler

1999

14.

63.

260

3.2

p.b.

w.

92.2

, 82.

6–64

8 b/

col

wea

keni

ng10

colo

ny (

8744

)-

97.3

over

21

d

Nan

etti

et a

l.20

03a

14.

63.

260

5 p.

b.w

.99

.1-

redu

ced

colo

ny s

tren

gth

-co

lony

in D

B

no

Lie

big

1998

15

3.5

050

p.h

.91

.8, 7

5–99

.4hi

ghw

eake

ning

7co

lony

(150

0–35

00)

Lie

big

1999

15

3.5

050

p.h

.>

90

high

wea

keni

ng

-co

lony

no

Nan

etti

et a

l.20

03a

16

4.2

605

p.b.

w.

95.6

and

99

-w

eake

ning

-co

lony

(C

H &

DB

)no

Büc

hler

1999

16

4.2

603.

2 p.

b.w

. 9

4.3,

89.

9–73

3 b/

col

wea

keni

ng

10co

lony

(10

273)

-

97.9

Ove

r 21

d

Cha

rriè

re20

011

64.

250

30–5

0 p.

h.85

.4 +

/– 3

.999

.9

+/–

0.2

*lo

wre

duce

d co

lony

str

engt

h47

(10

000)

no

Cha

rriè

re20

011

64.

20

30–5

0 p.

h.92

.2 +

/– 5

.8,

92.3

+/–

13.

6lo

w-

12co

lony

no

Cha

rriè

re e

t al.

1998

16

4.2

6030

–50

p.h.

98.5

low

-95

colo

nyno

Lie

big

1997

16

4.2

6030

–50

p.h.

87.2

, 72–

98.7

--

3 c

olon

y-

Lie

big

1998

18

5.7

050

p.h

.78

, 55–

97.9

high

-5

colo

ny(1

500–

3500

)

Büc

hler

2000

22.

31.

650

22–7

9 p.

h.98

**-

slig

ht w

eake

ning

(n.

s.)

6co

lony

-

(3 µ

L/b

ee)

(740

0–26

500)

Büc

hler

2000

24.

63.

250

11–3

9 p.

h.

80.2

-sl

ight

wea

keni

ng (

n.s.

)6

colo

ny

-

(1.5

µL

/bee

) (

7400

–26

500)

Page 5: Oxalic Acid

102 E. Rademacher, M. HarzTa

ble

I. C

onti

nued

.

Aut

hor

Yea

rN

o.C

onc.

Con

c.C

onc.

Dos

age

Eff

icac

y (%

) B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A

dih.

O

A

anh.

su

gar

(mL

)m

ean

sd,

mor

talit

yof

(siz

e if

men

tion

ed)

(cel

ls)

appl

.(%

)#(%

)#(%

)#m

in–m

axco

l.

Cen

tral

Eur

ope

– T

reat

men

t in

sum

mer

Büc

hler

1998

14.

13

6040

per

sw

arm

6316

.8%

-

5sw

arm

(23

333)

-

Büc

hler

1998

18.

36

6040

per

sw

arm

8135

.2%

-5

swar

m (

2311

1)-

Büc

hler

1998

111

8.5

6040

per

sw

arm

100

46.1

%-

5sw

arm

(22

756)

-

Lie

big

1999

2 or

33

2.1

0-

< 9

0hi

gh-

-co

lony

yes

Cha

rriè

re20

013#

#6

4.2

6030

–50

p.h.

Low

high

redu

ced

colo

ny s

tren

gth

-(u

p to

20

000)

yes

“Bie

nenw

ohl”

and

“Ip

erea

t” (

read

y-m

ixed

sol

utio

ns c

onta

inin

g ot

her

subs

tanc

es)

– T

reat

men

t in

aut

umn

Lie

big

1999

13.

52.

5-

50 p

.h.

92.

8, 8

0–99

high

--

colo

nyno

Moo

sbec

khof

er20

011

3.5

2.5

-10

–40

g 96

, 82–

100

-5

colo

nies

dea

d19

colo

ny (

2-Z

.-no

p.h.

**F

lach

z.)

Mut

inel

li a

nd20

021

4.2

3-

5 p.

b.w

.92

+/–

7.8

-go

od o

verw

inte

ring

10co

lony

no

Bag

gio

Mut

inel

li a

nd20

021

4.2

3-

5 p.

b.w

.93

.9 +

/– 6

.2-

good

ove

rwin

teri

ng7

colo

nyno

Bag

gio

“Bie

nenw

ohl”

– T

reat

men

t in

sum

mer

Lie

big

1999

2 or

33.

52.

5-

-<

90

high

--

colo

nyye

s

Schu

ster

and

2003

33.

52.

5-

20 p

.h.

max

. 36%

-8

colo

nies

dea

d36

colo

ny

yes

Sch

ürzi

nger

4 qu

eenl

ess

(11.

4–13

.9 o

.c.)

Sout

hern

Eur

ope

– T

reat

men

t in

aut

umn

Nan

etti

and

Str

adi

1997

13.

12.

260

5 p.

b.w

.89

.636

.9 b

/col

.no

que

en lo

ss30

colo

ny (

10 c

ombs

, DB

)(2

00–2

000)

Ove

r 14

d

Mut

inel

li a

nd20

021

53.

6-

5 p.

b.w

.89

.7 +

/– 9

.6-

good

ove

rwin

teri

ng5

colo

nyno

Bag

gio

Page 6: Oxalic Acid

Oxalic acid for the control of varroosis 103

Tabl

e I.

Con

tinue

d.

Aut

hor

Yea

rN

o.C

onc.

Con

c.C

onc.

Dos

age

Eff

icac

y (%

) B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A

dih.

O

A

anh.

su

gar

(mL

)m

ean

sd,

mor

talit

yof

(siz

e if

men

tion

ed)

(cel

ls)

appl

.(%

)#(%

)#(%

)#m

in–m

axco

l.

Ferr

ero

et a

l.20

041

64.

260

5 p.

b.w

.94

.3 +

/– 6

.5,

78.4

–98.

6-

good

ove

rwin

teri

ng9

colo

nyno

Ferr

ero

et a

l.20

041

64.

230

5 p.

b.w

.93

.8 +

/– 4

.8,

84.2

–97.

9-

good

ove

rwin

teri

ng7

colo

nyno

Ferr

ero

et a

l.20

041

64.

215

5 p.

b.w

.92

.9 +

/– 4

.1,

85.2

–98.

6-

good

ove

rwin

teri

ng9

colo

nyno

Mut

inel

li an

d20

021

64.

2-

5 p.

b.w

.96

.9 +

/– 4

.4-

good

ove

rwin

teri

ng7

colo

nyno

Bag

gio

Bag

gio

and

2003

a1

64.

2-

5 p.

b.w

.91

+/–

12.

3,

low

good

ove

rwin

teri

ng7

colo

nyno

Mut

inel

li70

.3–1

00

Nan

etti

et a

l.20

03a

16

4.2

605

p.b.

w.

90.3

-w

eake

ning

-

colo

ny-

Nan

etti

and

St

radi

1997

16

4.2

605

p.b.

w.

96.8

47.6

b/c

ol.

no q

ueen

loss

30co

lony

(10

com

bs, D

B)

(200

–200

0)

Ove

r 14

d

Bag

gio

and

2003

b3

64.

250

5 p.

b.w

.56

.2 +

/– 3

1.6,

-

-5

colo

ny (

10 c

ombs

)ye

s

Mut

inel

li48

.5–7

6.7

Mut

inel

li et

al.

1997

37

520

5 p.

b.w

.

95 +

/– 7

.39

12.5

9 b/

d(n

.s.)

no q

ueen

loss

10(5

–6 o

.c.,

DB

)(3

400

p.h.

)

Gre

gorc

and

Pl

anin

c20

011

4.1–

5.2

w/w

2.9–

3.7

w/w

31.9

–26.

1 w

/w50

p. h

.99

.4 +

/– 0

.54

1.63

+/–

1.3

2b/

dno

rmal

ove

rwin

teri

ng24

colo

nyno

Sout

hern

Eur

ope

– T

reat

men

t in

sum

mer

Gre

gorc

and

Pl

anin

c20

013

4.1

w/w

2.9

w/w

31.9

w/w

50 p

. h.

39.2

3.25

+/–

1.2

5b/

d (n

.s.)

norm

al o

verw

inte

ring

7co

lony

5–7

com

bs

Gre

gorc

and

Pl

anin

c20

013

4.8

w/w

3.4

w/w

47.6

w/w

50 p

. h.

52.3

3.25

+/–

1.2

5b/

d (n

.s.)

norm

al o

verw

inte

ring

6co

lony

5–7

com

bs

Gre

gorc

and

Pl

anin

c20

013

5.2

w/w

3.7

w/w

26.1

w/w

50 p

. h.

40.7

3.25

+/–

1.2

5b/

d (n

.s.)

norm

al o

verw

inte

ring

7co

lony

5–7

com

bs

Page 7: Oxalic Acid

104 E. Rademacher, M. HarzTa

ble

I. C

onti

nued

.

Aut

hor

Yea

rN

o.C

onc.

Con

c.C

onc.

Dos

age

Eff

icac

y (%

) B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A

dih.

O

A

anh.

su

gar

(mL

)m

ean

sd,

mor

talit

yof

(siz

e if

men

tion

ed)

(cel

ls)

appl

.(%

)#(%

)#(%

)#m

in–m

axco

l.

Nor

ther

n E

urop

e –

Tre

atm

ent

in a

utum

n

Frie

s20

011

2.2

1.6

5060

p.h

.68

.3-

3 co

loni

es d

ead

(n.s

.)30

colo

ny (

10 c

ombs

)no

Nan

etti

et a

l.20

03a

13

2.1

305

p.b.

w.

57.6

, 24.

7–75

.3-

bett

er th

an 6

% O

A d

ih.

-co

lony

no

Nan

etti

et a

l.20

03a

13

2.1

605

p.b.

w.

61.5

, 26.

3–78

.2-

bett

er th

an 6

% O

A d

ih.

-co

lony

no

Frie

s20

011

4.5

3.2

5030

p.h

.92

.2-

1 co

lony

dea

d (n

.s.)

28co

lony

(10

com

bs)

no

Nan

etti

et a

l.20

03a

16

4.2

305

p.b.

w.

90.4

, 88.

5–94

.6-

wor

se th

an 3

% O

A d

ih.

-co

lony

no

Nan

etti

et a

l.20

03a

16

4.2

605

p.b.

w.

92.6

, 85–

96.1

-w

orse

than

3%

OA

dih

.-

colo

nyno

Nor

th A

mer

ica

– T

reat

men

t in

aut

umn

Nas

r et

al.

2001

12.

82

5040

–50

p.h.

55.5

+/–

6.4

8-

25%

of

colo

nies

sur

vivi

ng**

*8

4–9

o.c.

yes

Nas

r et

al.

2001

13.

52.

550

40–5

0 p.

h.89

.4 +

/– 2

.39

-71

.4%

of

colo

nies

sur

vivi

ng**

*7

4–9

o.c.

yes

Con

cent

rati

ons

refe

r to

oxa

lic

acid

dih

ydra

te: M

ol. w

eigh

t: 1

26.0

4 g;

* m

ean

effi

cacy

of

apia

ries

;

o.c.

: occ

upie

d co

mbs

;**

dos

age/

effi

cacy

in g

ram

;n.

s.: n

ot s

igni

fica

nt;

p.h.

: per

hiv

e;**

* co

ntro

l wit

h A

pist

an 6

2.5%

of

colo

nies

sur

vivi

ng;

s.: s

igni

fica

nt;

p.b.

w.:

per

bee

way

;**

** e

ffic

acy

take

n fr

om f

igur

e;co

l.: c

olon

y;

red.

: red

uced

;A

ppl.:

app

licat

ion;

DB

: Dad

ant-

Bla

tt;

b: b

ees;

OA

dih

: oxa

lic

acid

dih

ydra

te;

CH

: Sch

wei

zerk

aste

n (a

Sw

iss

type

hiv

e);

d: d

ay;

Con

c.: c

once

ntra

tion

;#:

con

cent

ratio

ns a

re g

iven

as

w/v

unl

ess

mar

-ke

d as

w/w

.

hyph

en: n

ot m

entio

ned

in o

rigi

nal a

rtic

le;

2-Z

.-Fl

achz

.: 2-

Zan

der-

Flac

hzar

gen

(= n

arro

w s

uper

s).

##: T

reat

men

t fro

m A

ugus

t to

Nov

embe

r.

Page 8: Oxalic Acid

Oxalic acid for the control of varroosis 105

Schürzinger, 2003). The presence of broodseemed to be the main reason for low mite mor-tality in summer treatments. An efficiency ofup to 100% was reached in broodless artificialswarms (Büchler, 1998).

Investigations from Canada in a climaticregion comparable to Central Europe con-firmed the results of autumn treatments: 2.8%oxalic acid dihydrate solution (40–50 mL/hive)killed about 55% of the mites, 3.5% about 90%in colonies with remaining brood (Nasr et al.,2001).

Different concentrations of oxalic acid werefound to be effective depending upon the Euro-pean climatic region. A higher oxalic acid dihy-drate concentration appeared more suitable ina southern climate. Treatments with 6% oxalicacid dihydrate, 5 mL per bee way, resulted inan efficiency of > 90% and > 95%, respec-tively, while treatments with 3.1 and 5% oxalicacid dihydrate resulted in < 90% (Ferrero et al.,2004; Mutinelli et al., 1997; Mutinelli andBaggio, 2002; Nanetti and Stradi, 1997;Nanetti et al., 2003a).

Only one investigation resulted in high mitemortality of 99%; low concentrations of 4.1–5.2% oxalic acid dihydrate were applied invarying sugar solutions calculated as w/w(Gregorc and Planinc, 2001). For comparabil-ity, this corresponds to approximately 4.5–5.9% oxalic acid dihydrate w/v as described inother studies.

Repeated treatments with a high concentra-tion (6 and 7%) did not increase the efficacy(Mutinelli et al., 1997); one study evendescribed a reduced mite mortality of 56.2%(Baggio and Mutinelli, 2003b).

Mutinelli and Baggio (2002) appliedIpereat, a ready mixed solution containingabout 4.2% oxalic acid dihydrate, ethereal oils,propolis and sugar and reported efficacies up to93.9%.

Gregorc and Planinc (2001) treated colonieswith brood three times in the summer by apply-ing 4.1–5.2% oxalic acid dihydrate in varyingsugar solutions w/w corresponding to approx-imately 4.5–5.9% oxalic acid dihydrate w/v.An efficacy of 39–52% was achieved.

In a northern climate, a concentration of 4.5and 6% oxalic acid dihydrate was described aseffective with > 90% mite fall, while lower con-centrations (2.2 and 3%) led only to approxi-

mately 60% efficacy (Fries, 2001; Nanetti et al.,2003a).

Most authors applied oxalic acid dihydratein sugar syrup. By adding sugar to oxalic aciddihydrate solutions in a concentration of 50–60% the efficacy could be increased comparedto 0 or 30% sugar (Charrière, 2001; Charrièreand Imdorf, 2002; Nanetti et al., 2003a). Theaddition of higher concentrations of sugarincreased the efficacy by about 5% (Charrière,2001).

2.1.2. Tolerability

In Central Europe, a single treatment withoxalic acid dihydrate solutions in autumn inmost cases is well-tolerated by the bees in con-centrations up to 4.6% (Büchler, 1999, 2000,2002; Charrière, 2001; Charrière and Imdorf,2002; Charrière et al., 2004; Nanetti et al.,2003a; Spinks, 2002). A normal weakening ofthe colonies during winter was described, sim-ilar to controls (Büchler, 1999, 2000; Charrièreet al., 2004; Nanetti et al., 2003a). Büchler andCharrière et al. observed in their repeated stud-ies a slight, but not significant, tendencytowards better overwintering of the controls(ANOVA; Duncan-test, P > 0.05); the devel-opment of the colonies in spring of both groupswas equal (ANOVA, Charrière et al., 2004).Relatively high bee mortality (8%) was observedduring 3 weeks after treatment with 3, 4.6, 6%oxalic acid dihydrate and in the control group(Büchler, 1999). The author suggested that badweather conditions during the time bees wereflying could have caused the high mortality.Büchler (2002) found equivalent bee tolerabil-ity when comparing the treatments of 3.5%oxalic acid dihydrate, lactic acid and Perizin.

At a concentration of 4.6% oxalic acid dihy-drate (3 µL per bee), the treated coloniesshowed a significant weakening during wintercompared to controls (Duncan-test, P < 0.05;Büchler, 2000). Studies with a higher concen-tration of 5% described doubled bee mortalityin autumn, bad overwintering (reduced colonystrength) of treated colonies and impairedspring development (Charrière, 2001; Liebig,1998, 1999).

Multiple autumn or summer treatments (2–3) by trickling were poorly tolerated by the beesin this Central European region (Büchler, 1998;Charrière, 2001; Liebig, 1999).

Page 9: Oxalic Acid

106 E. Rademacher, M. Harz

The ready-mixed solution “Bienenwohl”(oxalic acid, citric acid, alcohol, ethereal oilsand propolis) applied repeatedly in late summerand autumn (20 mL per hive) can causecolony losses during the winter (Schuster andSchürzinger, 2003). A single application of50 mL per hive in autumn induced highbee mortality over the winter period (Liebig,1999). The losses of colonies in studies byMoosbeckhofer (2001) cannot be definitelyattributed to the application of “Bienenwohl”or oxalic acid dihydrate, as the colonies werealready weak at the beginning of the treatment.Mutinelli and Baggio (2002) reported good beetolerability applying Ipereat (composed simi-larly to Bienenwohl).

Investigations in comparable climatic regionsin Canada described bad overwintering withcolony break down in both the oxalic acid andthe Apistan groups. The damages could not beattributed to the oxalic acid treatment (Nasret al., 2001).

It is noticeable that there are differences intolerability in varying climatic areas. In South-ern Europe, oxalic acid dihydrate concentra-tions up to 7% are tolerated (Gregorc andPlaninc, 2001; Mutinelli et al., 1997; Mutinelliand Baggio, 2002; Nanetti and Stradi, 1997;Nanetti et al., 2003a) even if the bee coloniesare treated 3 times. No losses of queens werereported and bee mortality did not increase.After winter, all colonies showed reduced sizebut the treated colonies did not differ from con-trols. In Northern Europe, bee tolerance of upto 6% oxalic acid dihydrate is described, butcolony size after overwintering following treat-ment with 6% was slightly poorer than in col-onies treated with 3% oxalic acid dihydrate(Nanetti et al., 2003a).

2.2. Evaporation

Oxalic acid dihydrate in the form of crystals,gelatine capsules or tablets was heat-evapo-rated (the correct chemical term is “subli-mated”) with different types of evaporators,predominantly during the broodless period.The application took about 4 minutes per hiveand required complex equipment. The trialswere mainly conducted in Central Europe,except for two studies from Southern Europeand Asia. Oxalic acid was applied at an outside

temperature ranging from 2 to 16 °C2. Theinvestigations are listed in Table II, grouped bytype of evaporator, geography and oxalic acidformulation.

2.2.1. Efficacy

A Varrox evaporator was used in most trials.This is a small electrical heating device whichcan be inserted into the hive in the entrance andallows the evaporation of oxalic acid in theclosed hive (Radetzki, 2000). This applicationdevice, with a dose of 1–2 g oxalic acid dihy-drate (crystals, capsules or tablets), providedhigh acaricidal effectiveness of > 90%, even95% or more in most studies (Charrière et al.,2004; Imdorf et al., 2002; Radetzki et al., 2000;Radetzki and Bärmann, 2001). One exceptionwas a study by Moosbeckhofer and Baumgartner(2002) with low efficacy (78%), but the authorssuggested that a very high mite populationmight have been the cause. In another study,carried out in Southern Europe, less than 90%mite mortality was reached (Baggio andMutinelli, 2003a), but it is known from Nanettiand Stradi (1997, using the trickling method)that in southern climates higher oxalic aciddihydrate concentrations are needed to achievehigh mite mortality. Ferrero et al. (2004) showeddifferences in efficacies over three years (64%,93.9%, 97%) after double administration of 2 goxalic acid dihydrate. The author suggestedthat high humidity during treatment could havecaused the low efficacy in one of the years.

A higher dosage of 2.8 g did not lead to anincreased efficacy (Ferrero et al., 2004;Radetzki et al., 2000). Application of 3 g or 5 g(more than doubled dosage when compared to1–2 g) oxalic acid dihydrate resulted in an effi-ciency of 99%. Using a dose of 0.5 g oxalic aciddihydrate crystals per hive did not ensure suf-ficient effectiveness: Radetzki et al. (2000)achieved 82.8%. The threshold for high effi-ciency seems to be 1 g per colony. This dosageshould be used in single-story hives; largerhives should be treated with 2 g oxalic aciddihydrate (Radetzki (2004) – personal commu-nication).

In colonies with brood a comparativelylower mite fall of 91.4% was achieved by

2 Temperature not mentioned in all papers.

Page 10: Oxalic Acid

Oxalic acid for the control of varroosis 107

Tabl

e II

. Tri

als

on e

vapo

ratio

n of

oxa

lic a

cid

dihy

drat

e.

Aut

hor

Yea

rSe

ason

No.

Eva

pora

tor

Dos

age

Eff

icac

y (%

)B

eeO

verw

inte

ring

No.

Col

ony

or s

war

mB

rood

ofO

A d

ih.

mea

n sd

,m

orta

lity

of

(siz

e (c

ells

)

appl

.(g

)m

in–m

axco

l.if

men

tion

ed)

Cen

tral

Eur

ope

Rad

etzk

i et a

l.20

00

autu

mn

1V

arro

x0.

5 (c

r.)82

.8, 5

1.7–

96.0

20

0–25

0*no

que

ens

loss

12

colo

ny

no

Rad

etzk

i et a

l.20

00au

tum

n1

Var

rox

1 (c

r.)96

.0, 9

3.2–

99.2

100–

150*

no q

ueen

s lo

ss10

colo

ny

no

Rad

etzk

i et a

l.20

00au

tum

n1

Var

rox

2 (c

r.)97

.2, 9

1.7–

99.6

150–

200*

no q

ueen

s lo

ss13

colo

ny

no

Imdo

rf e

t al.

2000

autu

mn

1V

arro

x2

(cr.)

96.8

--

5co

lony

no

Cha

rriè

re e

t al.

2004

aut

umn

1V

arro

x2

(cr.)

> 9

5***

*-

15–3

0% r

educ

ed12

(130

00, D

B)

no

col.

stre

ngth

(n.

s.)

Rad

etzk

i20

00au

tum

n1

-3

(cr.)

-13

4 +

/– 3

1.3

good

ove

rwin

teri

ng19

6484

no

Rad

etzk

i et a

l.20

00au

tum

n1

Var

rox

3 (c

r.)99

.0, 9

8.1–

99.7

200*

no q

ueen

s lo

ss11

colo

ny

no

Rad

etzk

i et a

l.20

00au

tum

n1

Var

rox

5 (c

r.) 9

9.2,

99.

0–99

.820

0–25

0*no

que

ens

loss

5co

lony

no

Rad

etzk

i & B

ärm

ann

2001

autu

mn

1V

arro

x1.

4 (c

ap.)

95.7

150–

200*

-20

8co

lony

no

Rad

etzk

i & B

ärm

ann

2001

autu

mn

1V

arro

x1.

4 (c

ap.)

92.9

150–

200*

-63

colo

ny ye

s

Rad

etzk

i & B

ärm

ann

2001

autu

mn

1V

arro

x2.

8 (c

ap.)

96.0

150–

200*

-32

7co

lony

no

Rad

etzk

i & B

ärm

ann

2001

autu

mn

1V

arro

x2.

8 (c

ap.)

91.4

150–

200*

-88

colo

ny ye

s

Moo

sbec

khof

er

2002

win

ter

1V

arro

x1

78.1

+/–

13.

3,

--

6co

l. (2

-Z.-

Flac

hz.)

no

and

Bau

mga

rtne

r(t

able

t***

)65

.2–9

4.3

Moo

sbec

khof

er

2002

win

ter

1V

arro

x1–

2 86

.6 +

/– 1

0.1,

-

-6

colo

ny

no

and

Bau

mga

rtne

r(t

able

ts)

67.4

–96.

8

Büc

hler

2002

autu

mn

1V

arro

x2

tabl

ets

-lo

wsl

ight

8

colo

ny

(100

0)

wea

keni

ng(2

1350

+/–

418

4)

Moo

sbec

khof

er e

t al.

2002

sp,s

u,au

1V

arro

x1

(tab

let)

/box

-in

crea

sed

-

7220

bee

s /c

age*

*no

Page 11: Oxalic Acid

108 E. Rademacher, M. HarzTa

ble

II. C

ontin

ued.

Aut

hor

Yea

rSe

ason

No.

Eva

pora

tor

Dos

age

Eff

icac

y (%

)B

eeO

verw

inte

ring

No.

Col

ony

or

swar

mB

rood

ofO

A d

ih.

mea

n sd

,m

orta

lity

of

(siz

e (c

ells

)

App

l.(g

)m

in–m

axco

l.if

men

tion

ed)

Imdo

rf e

t al.

2002

autu

mn

1V

arre

x2

(cr.)

90.6

--

12co

lony

no

Lie

big

& H

ampe

l20

02la

te

1V

arre

x(c

r.)45

.0hi

gh-

6co

lony

(2

000–

sum

mer

7000

)

Imdo

rf e

t al.

2004

autu

mn

1V

arro

gaz

2.4

(cr.)

92.0

--

7co

lony

no

Imdo

rf e

t al.

2004

autu

mn

1K

rüso

2.4

(cr.)

29.0

--

7co

lony

no

Imdo

rf e

t al.

2004

autu

mn

1Is

enri

ng3

(cr.)

88.6

--

5co

lony

no

Sout

hern

Eur

ope

Bag

gio

and

2003

aau

tum

n1

Var

rox

2 (c

r.)83

.4 +

/– 1

2.4,

lo

w (

n.s.

)-

7co

lony

no

Mut

inel

li71

.7–9

5.7

Ferr

ero

et a

l.20

04au

tum

n1

Var

rox

2.8

95.8

+/–

2.3

,92

-98

-go

od o

verw

inte

ring

5co

lony

no

Ferr

ero

et a

l.20

04au

tum

n2

Var

rox

264

.0 +

/– 5

.64,

56.2

–73.

3-

good

ove

rwin

teri

ng8

colo

nyno

Ferr

ero

et a

l.20

04au

tum

n2

Var

rox

293

.9 +

/– 5

.5,

83.6

–99.

1-

good

ove

rwin

teri

ng8

colo

nyno

Fer

rero

et a

l.20

04au

tum

n2

Var

rox

297

.0 +

/– 1

.9,

94.8

–99.

0-

good

ove

rwin

teri

ng6

colo

nyno

Asi

a

Rom

mel

1999

a.l.h

.3

self

mad

e1

(cr.)

> 9

0%lo

wno

que

ens

loss

60C

olon

y -

Con

cent

rati

ons

refe

r to

oxa

lic a

cid

dihy

drat

e: M

ol. w

eigh

t: 1

26.0

4 g;

hyph

en: n

ot m

enti

oned

in o

rigi

nal a

rtic

le;

a.l.h

.: af

ter

last

har

vest

;

* nu

mbe

r of

dea

d be

es f

rom

gra

phic

al p

rese

ntat

ion

(4–5

wee

ks a

fter

trea

tmen

t);

cap.

: oxa

lic

acid

cap

sule

s;

** 2

0 be

es p

er c

age/

1box

with

cag

es;

cr.:

oxal

ic a

cid

cris

tals

;

***

1 ta

blet

con

sist

s of

1g

Oxa

lic

acid

dih

ydra

te;

App

l.: a

ppli

cati

on;

****

eff

icac

y ta

ken

from

fig

ure;

col.:

col

onie

s;

n.s.

: not

sig

nifi

cant

;

sp: s

prin

g;D

B: D

adan

t-B

latt

;

su: s

umm

er;

OA

dih

.: ox

alic

aci

d di

hydr

ate;

au: a

utum

n.2-

Z.-

Flac

hz.:

2-Z

ande

r-F

lach

zarg

en(=

nar

row

sup

ers)

.

Page 12: Oxalic Acid

Oxalic acid for the control of varroosis 109

applying the high dosage of 2.8 g (Radetzki andBärmann, 2001).

Another electric evaporator (Varrex), con-structed in a similar way to the Varrox device,was described by Imdorf et al. (2004). When2 g oxalic acid dihydrate was sublimated, anefficiency of 90.6% was reached in broodlesscolonies (Imdorf et al., 2002) and 45% in col-onies with brood (Liebig and Hampel, 2002).

In testing three different gas evaporators(Varrogaz, Isenring, Krüso described byImdorf et al., 2004), which heat with gas burn-ers, only Varrogaz reached mite mortality com-parable to the Varrox electrical evaporator.Isenring and Krüso evaporators showed lowerefficiencies, although high oxalic acid dihy-drate dosages were sublimated (2.4 resp. 3 g);Krüso (2.4 g) was least effective with 29% mitefall (Imdorf et al., 2004).

2.2.2. Tolerability

Most authors reported that the evaporationof oxalic acid dihydrate (0.5 to 5 g crystals)with the Varrox evaporator had no impact onbee mortality and colony overwintering; nolosses of queens were observed (Baggio andMutinelli, 2003a; Ferrero et al., 2004; Radetzki,2001; Radetzki et al., 2000; Radetzki andBärmann, 2001). Charrière et al. (2004) foundthat after a single treatment with 2 g oxalic aciddihydrate higher bee mortality was observedduring the winter compared to the controlgroup (15 and 30% compared to 12 and 16%),but the differences between the groups were notsignificant (ANOVA). Observations concern-ing repeated treatments using the Varrox evap-orator did not result in colony damage(Radetzki, 2002).

Moosbeckhofer et al. (2002) tested the tol-erability of oxalic acid dihydrate (1 g) on cagedbees, placed in a one-story hive, using the Var-rox evaporator. Mortality among treated beeswas significantly higher than in control groups,irrespective of the season when the beesemerged.

2.3. Spraying

Solutions of oxalic acid dihydrate weresprayed onto the bees on both sides of eachcomb and the bees resting on the hive walls;

spraying was normally carried out during thebroodless period. The application took approx-imately 4–5 minutes per hive. Most trials wereconducted in Central Europe at outside temper-atures ranging from 5 to 12.3 °C. The investi-gations are listed in Table III grouped byclimatic area, season and dose.

2.3.1. Efficacy

The investigations in Central Europe weremostly conducted on broodless colonies. Aconcentration of 3% oxalic acid dihydrate anddoses of 2.5–4 mL or 3–4 mL per comb sidereached efficacies of 97.3 to 98.8% (Charrièreet al., 1998; Charrière et al., 2004; Imdorf et al.,1995; Radetzki, 1994). In colonies with brood,only 61% of the mites were killed (Charrièreet al., 1998). In the warm climate of SouthernEurope, the broodless period is very shortand mite reproduction high, therefore severaltreatments may be necessary. Two treatments(7.3 and 6.4 g per comb side; one gram corre-sponds here to approximately to one millilitre)conducted by Nanetti et al. (1995) showed highefficacy of 99.5% in broodless colonies. Trialswith repeated treatments (every seven days forfour weeks) were carried out when brood waspresent in the colonies and led to a reduced mitemortality to 73% in spring and 94% in autumn,respectively (Higes et al., 1999).

2.3.2. Tolerability

Single treatments with 3% oxalic acid dihy-drate solution in a dosage of 2.5–4 mL or 3–4 mL per comb side were well tolerated(Charrière et al., 1998; Radetzki, 1994, 2001).None of the colonies lost their queen; bee mor-tality was not increased. Charrière et al. (2004)described losses during winter (11 to 26% ofthe bees per hive) that were slightly, but not sig-nificantly, higher compared to the controls (12to 16%, ANOVA). Even the highest concentra-tion evaluated (5% oxalic acid dihydrate)caused no further problems; mortality did notincrease during the five days after treatment(Radetzki, 1994).

Colonies treated twice with 3% oxalic aciddihydrate solution (7.3 and 6.4 g per comb side;one gram corresponds here approximately toone millilitre) resulted in high bee mortality aver-aging 170 dead bees after each administration

Page 13: Oxalic Acid

110 E. Rademacher, M. HarzTa

ble

III.

Tri

als

on s

pray

ing

of o

xali

c ac

id d

ihyd

rate

.

Aut

hor

Yea

rN

o.C

onc.

C

onc.

D

osag

eE

ffic

acy

(%)

Bee

Ove

rwin

teri

ngN

o.C

olon

y or

sw

arm

Bro

od

ofO

A d

ih.

OA

anh

. (m

L)

Mea

n sd

, m

orta

lity

of(s

ize

(cel

ls)

appl

.(%

, w/v

)(%

, w/v

)m

in–m

axco

l.if

men

tion

ed)

Cen

tral

Eur

ope

– T

reat

men

t in

aut

umn

Rad

etzk

i19

941

32.

12.

5–4

p.c.

s.97

.3, 9

2.7–

99.3

low

-

9co

lony

no

Rad

etzk

i20

01.

13

2.1

--

246

b/co

l.w

eake

ning

19(6

200)

no

over

5 w

eeks

Imdo

rf e

t al.

1995

13

2.1

3–4

p.c.

s.97

.3–9

8.8

not i

ncre

ased

-40

colo

nyno

Cha

rriè

re e

t al.

1998

13

2.1

3–4

p.c.

s.97

.6, 8

9.5–

99.8

not i

ncre

ased

good

ove

rwin

teri

ng11

2co

lony

no

Cha

rriè

re e

t al.

1998

13

2.1

3–4

p.c.

s.61

, 42–

87no

t inc

reas

edgo

od o

verw

inte

ring

10co

lony

c.c.

Cha

rriè

re e

t al.

2004

13

2.1

3–4

p.c.

s.>

95*

11–2

6% r

educ

ed c

ol.

18co

lony

no

stre

ngth

(n.

s.)

(10–

1300

0, D

B)

Rad

etzk

i19

941

53.

520

/com

b-

29–8

3 b/

col.

-5

colo

ny

no

over

5 d

Sout

hern

Eur

ope

– T

reat

men

t in

aut

umn

Nan

etti

et a

l.19

952

32.

17.

3 an

d 6.

4g99

.517

0 b.

aft

er e

ach

1 qu

eenl

ess

10co

lony

no

p.c.

s.**

adm

inis

trat

ion

Hig

es e

t al.

1999

43

2.1

4 p.

c.s.

94, 8

3.3–

99.6

1 co

l. de

ad, 1

que

enle

ss,

5co

lony

(1

557

+/–

657

)

less

bro

od in

sp.

Sout

hern

Eur

ope

– T

reat

men

t in

spr

ing

Hig

es e

t al.

1999

43

2.1

4 p.

c.s.

73, 6

5–79

.81

col.

dead

5co

lony

(5

144

+/–

169

0)

less

bro

od p

rodu

ctio

n (s

.)

Con

cent

rati

ons

refe

r to

oxa

lic

acid

dih

ydra

te: M

ol. w

eigh

t: 12

6.04

g;

c.c.

: cap

ped

cell

s;sp

.: sp

ring

;s.

: sig

nifi

cant

;O

A d

ih.:

oxal

ic a

cid

dihy

drat

e;D

B: D

adan

t-B

latt

;

col.:

col

onie

s;b:

bee

s;n.

s.: n

ot s

igni

fica

nt.

App

l.: a

ppli

cati

on;

* ef

fica

cy ta

ken

from

fig

ure;

p.c.

s.: p

er c

omb

side

.d:

day

.C

onc.

: con

cent

rati

on.

** d

osag

e in

gra

mm

.

Page 14: Oxalic Acid

Oxalic acid for the control of varroosis 111

and queen loss in one colony (Nanetti et al.,1995). When oxalic acid dihydrate solution(3%, 4 mL per comb side) was applied multipletimes during autumn or spring (every sevendays for four consecutive weeks) queen andcolony losses occurred. Significantly fewercells containing sealed brood were reported intreated colonies compared to the control groups(Wilcoxon–Mann-Whitney-test, P < 0.05; Higeset al., 1999).

The effect of oxalic acid on bee larvae wasinvestigated by Gregorc et al. (2004). A solu-tion of 6.5 g oxalic acid dihydrate / 50 g sugar/100 mL water sprayed on honey bee larvae(0.121 mg / larvae) affected the columnar cellsof the midgut, leading to necrosis.

3. HEALTH AND SAFETY

Gumpp (2002) studied health and safetyissues of the beekeeper with two differentapplication methods: evaporation (Varrox, 1–2 g oxalic acid dihydrate per hive) and spraying(3% oxalic acid dihydrate solution, 2.5 mL percomb side). Air samples were gathered fromthe beekeeper’s working area. Membrane fil-ters were inserted into a standard air samplerconnected to an air-collection pump. Two par-ticle fractions were taken: fraction E (breatha-ble intake of particles) and fraction A (alveolicintake of particles). Ten beekeepers used theevaporation method; ten used the sprayingtechnique. The beekeepers were mostly work-ing with free-standing beehives, but occasion-ally in bee-houses. When the spraying methodwas used, air samplers were positioned close tothe beekeeper’s working area within one meterof the colony. For oxalic acid evaporation thesamplers were placed within one meter of thehive entrance. To gain personalized samples afilter was placed on the beekeeper’s clothes(fraction A only). After air sampling, oxalicacid-carrying membrane filters were extractedwith distilled water and analyzed using HPLC.

Fraction E: The mean value (n = 10) for thespraying method was 0.22 mg/m3 and 0.23 mg/m3 for evaporation. There was no significantdifference between the two methods (Shapiro-Wilk-test, P = 0.05). Both results stayed sig-nificantly under the maximum exposure limitof 1 mg/m3 (MAK-value for Germany, BMA,2000; TLV-TWA for USA, Department of

Health and Human Services, 2005; MEL forUK, University of Bristol, 2005). A significantdifference was found comparing treatments infree-standing bee hives (n = 15) and in bee-houses (n = 5) (Shapiro-Wilk-test, P = 0.05).The oxalic acid concentration surrounding thefree-standing bee hives was lower than in bee-houses: the average was 0.15 mg/m3 and0.30 mg/m3, respectively. Both results wereunder the maximum exposure limit of 1 mg /m3.

Fraction A: The mean value (n = 10) for thespraying method was 0.15 mg/m3 and 0.07 mg/m3 for evaporation. There was no significantdifference between the two methods (Shapiro-Wilk-test, P = 0.05). No significant differencewas found when comparing treatments in free-standing bee hives (n = 15) and in bee-houses(n = 5) (Shapiro-Wilk-test, P = 0.05). The aver-age was 0.06 mg/m3 and 0.18 mg/m3, respec-tively. The data from personalized samplers(n = 9) showed a lower concentration than fromthe samplers in the beekeepers’ working area(n = 11): 0.06 mg/m3 resp. 0.18 mg/m3 (Shapiro-Wilk-test, P = 0.05). The results were under themaximum exposure limit of 1 mg/m3.

Gumpp’s study provides evidence thatoxalic acid dihydrate, when applied correctly,poses no inhalation risk to the beekeepers’health. The existing exposure limit for oxalicacid was not exceeded in any test case. Thereis no known risk in terms of systemic effects ofthe compound.

This information is based on the applicationof oxalic acid with one evaporator. When usingmultiple systems, as described by Gotti (2004),the oxalic acid concentration in the air sur-rounding the apiary may increase beyond thevalues mentioned above. Furthermore, the bee-keeper risks contamination when handlingoxalic acid crystals. Apart from that, the colo-nies should not be inspected directly after treat-ment, because no data is available about oxalicacid concentration in the air of the hive over aperiod of time. However, to avoid local effectsthe beekeeper should wear the recommendedsafety equipment. A FFP2 SL-type face masksufficiently protects the user (European Regu-lation EN 149). The apiarist should also wearprotective glasses, acid-proof protective glovesand long sleeves to avoid direct contact withoxalic acid dihydrate solution and crystals. Abasin for washing hands and an eyewash shouldbe placed in the apiarist’s working area. When

Page 15: Oxalic Acid

112 E. Rademacher, M. Harz

working with oxalic acid dihydrate, bee-housesshould be adequately ventilated.

On the basis of the investigation into usersafety during the application of oxalic aciddihydrate by either evaporation or sprayingtechniques, we suggest that the risks from usingthe trickling method are even lower, becauseinhalation of oxalic acid is not likely.

4. RESIDUES AFTER TREATMENT WITH OXALIC ACID

It is not expected that oxalic acid will accu-mulate in beeswax and propolis due to itshydrophilic properties. Oxalic acid is a naturalcomponent of honey. Concentrations in honeyvary between 3.3–761.4 mg/kg (Nanetti et al.,2003c) depending on the botanical origin of thenectar. Natural values for oxalic acid in honeyare, for example: honeydew 38–119 mg/kg;wildflower honey 8–51 mg/kg (Bogdanovet al., 2002); heather 48–151 mg/kg and 85.5–168 mg/kg (Nozal et al., 2000, 2003); honey-dew 59–158 mg/kg, oilseed rape honey 13–53 mg/kg (Pechhacker et al., 2004). Most hon-eys contain < 200 mg oxalic acid/kg honey(Wibbertmann, 2003). A review of residuesafter oxalic acid dihydrate treatment of bee col-onies are listed in Table IV, grouped by appli-cation method, number of treatments and timeof year.

4.1. Trickling

Single autumn treatments using oxalic aciddihydrate (3.1 to 6%, 5 mL/bee space) wereconducted in several studies. Nanetti and Stradi(1997) reported that the content of oxalic acidin the remaining winter food was not increased.Another investigation by Nanetti et al. (2002)compared the oxalic acid content of springhoney after autumn treatment: higher concen-trations up to 76.3 mg/kg (+/– 18.3) werefound, but were still within the natural contentlevels of honey from various botanical origins.Application of 4.7% and 10–15 mL per hive(Moosbeckhofer et al., 2003) did not increasethe oxalic acid content of spring honey.

Repeated treatments with oxalic acid dihy-drate solutions from 3.5 and 6% and 50–55 mLper hive slightly increased the oxalic acid con-tent in honey after treatment by 22 mg/kg

(Floris et al., 1998) and in spring honey by 0.3 mgand 7 mg/kg, respectively (Moosbeckhofer et al.,2003; Bogdanov et al., 2002). In one case, eventhe highest concentration (7% oxalic acid dihy-drate, 25–30 mL per hive) did not raise theoxalic acid content of the honey directly aftertreatment (Mutinelli et al., 1997).

Treatments in spring or summer with vary-ing dosages led to somewhat higher oxalic acidcontents in the honey after application (Liebig,1999; Brødsgaard et al., 1999), but the differ-ence was not significant compared to controls(Kruskal-Wallis-test, P < 0.05; Brødsgaardet al., 1999).

4.2. Evaporation

After treating colonies during autumn withthe Varrox evaporator (1–5 g oxalic acid dihy-drate crystals/tablets) the oxalic acid content ofspring honey was within control limits (Radetzkiand Bärmann, 2001; Moosbeckhofer andBaumgartner, 2002).

4.3. Spraying

Oxalic acid treatments in autumn using 3%oxalic acid dihydrate solution (3–4 mL percomb side) did not influence the oxalic acidcontent in spring honey (Bogdanov et al.,2002); however the oxalic acid content ofhoney after the treatment did increase slightly(Aumeier, 1998).

Repeated application (4 times) in autumn orwinter (3% oxalic acid dihydrate, 50–80 mLdepending on colony size) increased the oxalicacid content in honey after the treatment by 13and 18 mg/kg, respectively (Floris et al., 1998;Nozal et al., 2000).

In spring (March), a single oxalic acid treat-ment (3%, 3–4 mL per comb side) caused a sig-nificant increase in the oxalic acid content inhoney up to 62.8 mg/kg eight days after thetreatment (Kruskal-Wallis-test, P < 0.05). ByJune, the levels in honey were back within con-trol limits (Brødsgaard et al., 1999).

5. CONSUMER SAFETY

Oxalic acid is an ubiquitous substance inplants and can be found in high concentrations

Page 16: Oxalic Acid

Oxalic acid for the control of varroosis 113Ta

ble

IV. T

rial

s on

the

resi

dues

of

oxal

ic a

cid

in h

oney

.

Aut

hor

Yea

rSe

ason

No.

Con

c.C

onc.

Con

c.D

osag

eO

A c

onte

nt

OA

con

tent

O

A c

onte

nt

Val

idat

ion

No.

ofO

A

dih.

OA

suga

r(m

L)

(con

trol

s)*

afte

r in

spr

ing*

**m

etho

dof

appl

.(%

)# (

%)#

(%)#

trea

tmen

t*co

l.

Tri

cklin

g

Nan

etti

and

Str

adi

1997

autu

mn

13.

12.

260

5 p.

b.w

.-

no in

crea

se-

-30

Nan

etti

et a

l.20

02au

tum

n1

3.1

2.2

605

p.b.

w.

45.9

+/–

10.

5 m

g/kg

-76

.3 +

/– 1

8.3

mg/

kg-

-

Moo

sbec

khof

er e

t al.

2003

autu

mn

14.

73.

350

10–1

5 p.

h.18

.1m

g/kg

-16

.4 m

g/kg

GC

-MS

-

Nan

etti

et a

l.20

02.

autu

mn

16

4.2

605

p.b.

w.

45.9

+/–

10.

5 m

g/kg

-56

.1 +

/– 2

3.5

mg/

kg-

-

Nan

etti

& S

trad

i19

97au

tum

n1

64.

260

5 p

.b.w

.-

no in

crea

se-

-30

Moo

sbec

khof

er e

t al.

2003

autu

mn

33.

52.

550

55 p

.h.

25.9

mg/

kg-

26.2

mg/

kgG

C-M

S-

Flor

is e

t al.

1998

win

ter

46

4.2

2050

p.h

.67

.4 +

/– 1

2 m

g/kg

89.4

+/–

26.

2 m

g/kg

-SI

GM

A D

iagn

. kit

-

Enz

ymat

ic a

ssay

Mut

inel

li e

t al.

1997

autu

mn

37

520

25–3

0 p.

h.23

9.79

mg/

kgno

incr

ease

-S

IGM

A D

iagn

. kit

10

Enz

ymat

ic a

ssay

Bog

dano

v et

al.

2002

autu

mn

26

4.2

5050

p.h

.19

mg/

kg-

26 m

g/kg

Boe

hrin

ger

OA

kit

12

Enz

ymat

ic a

ssay

Nan

etti

et a

l.20

03b

sum

mer

16

4.2

6050

p.h

.-

max

. 54.

2 m

g/kg

--

-

Brø

dsga

ard

et a

l.19

99sp

ring

16

4.2

603

p.b.

w.

19.5

–35.

8 m

g/kg

-41

.56

mg/

kg-

15

June

(n.

s.)

Lie

big

1999

sum

mer

43

2.1

n.m

.20

p.h

.13

.4 m

g/kg

21.3

mg/

kg-

-5

Lie

big

1999

spri

ng4

3.5*

*2.

5-

20 p

.h.

13.4

mg/

kg20

.9 m

g/kg

5

Lie

big

1999

sum

mer

48

5.7

-20

p.h

.18

.4 m

g/kg

27.8

mg/

kg-

-4

Page 17: Oxalic Acid

114 E. Rademacher, M. HarzTa

ble

IV. C

onti

nued

.

Aut

hor

Yea

rSe

ason

No.

Con

c.C

onc.

Con

c.D

osag

eO

A c

onte

nt

OA

con

tent

O

A c

onte

nt

Val

idat

ion

No.

ofO

A

dih.

OA

suga

r(m

L)

(con

trol

s)*

afte

r in

spr

ing*

**m

etho

dof

appl

.(%

)# (

%)#

(%)#

trea

tmen

t*co

l.

Eva

pora

tion

Rad

etzk

i & B

ärm

ann

2001

autu

mn

12–

5 g

(cap

.)26

–34

mg/

kg-

22.8

–37.

7 m

g/kg

-20

8

Moo

sbec

khof

er

2002

autu

mn

11

g -

no in

crea

se-

-6

and

Bau

mga

rtne

r(t

able

t)

Spra

ying

Rad

etzk

i19

94au

tum

n1

32.

1-

2.5–

4 p.

c.s.

-<

25 m

g/kg

-H

PLC

12

Aum

eier

19

98au

tum

n1

32.

1-

-22

.2–3

3.4

mg/

kg18

.8–4

1.5

mg/

kg-

--

Bog

dano

v et

al.

2002

autu

mn

13

2.1

-3–

4 p.

c.s.

19 m

g/kg

-19

mg/

kgB

oehr

inge

r O

A k

it12

Enz

ymat

ic a

ssay

Noz

al e

t al.

2000

autu

mn

43

2.1

-m

ax 8

0 p.

h.36

.62

µg/g

55.0

7 µg

/g(1

4d a

fter

4th

tr.)

-C

olum

n li

quid

Chr

omat

ogra

phy

5

Flor

is e

t al.

1998

win

ter

43

2.1

-50

p.h

.67

.4 +

/– 1

2 m

g/kg

80 +

/– 2

3.4

mg/

kg-

SIG

MA

Dia

gn. k

it-

Enz

ymat

ic a

ssay

Brø

dsga

ard

et a

l.19

99sp

ring

13

2.1

-3–

4 p.

c.s.

19.5

–35.

8 m

g/kg

incr

ease

37

.78

ppm

-

15

62.8

mg/

kgJu

ne (

n.s.

)

(s.)

Con

cent

rati

ons

refe

r to

oxa

lic a

cid

dihy

drat

e: M

ol. w

eigh

t: 1

26.0

4 g;

p.h.

: per

hiv

e;d:

day

;O

A d

ih.:

oxal

ic a

cid

dihy

drat

e;D

iagn

.: di

agno

stic

;

p.b.

w.:

per

bee

way

;tr.

: tre

atm

ent;

OA

: oxa

lic

acid

;#:

con

cent

ratio

ns a

re g

iven

as

w/v

.

p.c.

s.: p

er c

omb

side

;co

l.: c

olon

y;A

ppl.:

app

lica

tion;

* ho

ney

or w

inte

r fo

od;

s.: s

igni

fica

nt;

Con

c.: c

once

ntra

tion

;

** “

Bie

nenw

ohl”

(o

xali

c ac

id, c

itri

c ac

id, a

lcoh

ol, e

ther

eal

oils

and

pro

poli

s);

n.s.

: not

sig

nifi

cant

;ca

p.: o

xali

c ac

id c

apsu

les.

***

hone

y or

rem

aini

ng f

ood.

n.m

.: no

t men

tion

ed.

Page 18: Oxalic Acid

Oxalic acid for the control of varroosis 115

in many vegetables; e.g. spinach, rhubarb, beet-root, tea and cocoa (Holmes and Kennedy,2000). The oxalic acid content in plants is muchhigher than in honey. According to Holmes andKennedy (2000) the oxalic acid content ofhoney from treated colonies is not or onlyslightly increased. Even the highest levelsfound after spring treatment did not exceed thenaturally occurring oxalic acid content ofhoney from various botanical origins. The dailyamount of oxalic acid ingested in a Europeandiet is 70–80 mg and can reach up to 400–600 mg/day in a vegetarian diet (Gay et al.,1984). Poul (2003) estimated the mean dailydietary intake of oxalic acid to be 80 mg/day.An ADI (acceptable daily intake) of 0.89 mg/kgwas suggested; this corresponds to a safe dailyintake of 53.4 mg/day for a 60 kg human. TheUS Environment Protection Agency concludedthat 0.14 mg oxalic acid or oxalate/kg/day overa 24-hour-period represents the allowablehuman exposure from all sources (US EPA,1992).

Assuming a daily intake of 20 g honey witha high content of 200 mg oxalic acid/kg honey,the additional consumption of oxalic acid willbe about 0.067 mg/kg b.w. for a 60 kg person(Wibbertman, 2003). The author concludedthat this would not cause a risk to human health.

The theoretical oxalic acid intake in honeyfrom either treated or non-treated bee hives isnegligible when compared to the daily intakefrom other sources (Committee for VeterinaryMedicinal Products, 2003).

6. SUMMARYAND RECOMMENDATIONS

Oxalic acid dihydrate is a suitable com-pound for the control of V. destructor in brood-free colonies during the autumn and winterperiod within the Concept of Integrated VarroaControl. Oxalic acid achieved very good effi-cacy against the parasite and tolerability in thetarget species A. mellifera. Considering thereviewed studies, all three application methodsfor oxalic acid can be recommended; however,the beekeeper will most likely choose the trick-ling method since it is the easiest to apply, hasthe lowest cost and offers the least contact withthe acid.

6.1. Application methods

6.1.1. Trickling

Trickling oxalic acid dihydrate seems to bethe most suitable application method, espe-cially for large apiaries. The beekeeper needsonly a syringe or a similar applicator, glovesand protective glasses to apply the substance.The application is quick, about 1 min per hive,cost-effective and easy to conduct.

The method can be used as a standard treat-ment due to its effectiveness, tolerability andsimplicity of application. The recommendedoxalic acid dihydrate concentration, which var-ies across the different European climaticregions, was determined by comparing efficacyand tolerability for Central-, Southern- andNorthern Europe. For Central Europe a concen-tration of 3.5% oxalic acid dihydrate in sugar-water solution (1:1) is recommended (= 35 goxalic acid dihydrate/litre). The dose of approx.5 mL solution should be used per bee space; i.e.,30 mL on a small colony, 40 mL on a medium-size and 50 mL on a large colony. Recommen-dations for Southern and Northern Europe aregiven as follows: for Southern Europe 6%oxalic acid dihydrate in sugar-water solution(1:1) (= 60 g oxalic acid dihydrate/litre) and thedose of 5 mL per occupied comb, for NorthernEurope 4.5% oxalic acid dihydrate in sugar-water solution (1:1) (= 45 g oxalic acid dihy-drate/litre) and the dose of 20–25 mL on a smallcolony, 25–30 mL on a medium-size and 30–35 mL on a large colony (European Group forIntegrated Varroa Control, 2000).

A single treatment should be conductedduring the broodless period at an outside tem-perature of > 3 °C. Repeated and summer treat-ments are not recommended as they result in ahigh level of bee mortality and low efficacy,respectively, due to large numbers of cappedbrood cells.

6.1.2. Evaporation

Beekeepers using the evaporation methodwill have additional expenses; e.g., safetyequipment and an evaporator. They need towear gloves, a face mask and protectiveglasses. The Varrox evaporator used in mosttrials (Central Europe) showed good efficacyand tolerability when 1–2 g oxalic acid dihydrate

Page 19: Oxalic Acid

116 E. Rademacher, M. Harz

was vaporized depending on colony size andbeehive type. One g is sufficient for treatingsingle-story hives, larger hives (e.g. Dadant ortwo-story hives) should be treated with 2 g. Agreater level of user protection can be achievedby using oxalic acid tablets (1 g oxalic aciddihydrate/tablet) in the Varrox evaporator, asthere is no direct contact with the crystals. Thesingle application should be conducted duringthe broodless period at an outside temperatureof > 2 °C, and takes about 4 min per hive.

6.1.3. Spraying

Spraying oxalic acid is more time-consum-ing than trickling, as every comb must beremoved from the hive; therefore it is mostlikely to be used in small apiaries. The recom-mended dose is based on trials conducted inCentral Europe: a water solution of 3% oxalicacid dihydrate (= 30 g oxalic acid dihydrate/litre water) is sprayed onto the bees on eitherside of the combs and onto bees resting on thehive walls. A dose of 3–4 mL solution shouldbe used per occupied comb side; i.e., approxi-mately 50 mL on a small colony, 65 mL on amedium-size colony, 80 mL on a large colony.The single treatment should be conducted dur-ing the broodless period at an outside temper-ature of > 5 °C, and takes approximately 4–5 minutes per hive.

6.2. Health and safety, residuesand consumer safety

Assuming that the beekeeper uses oxalicacid according to the recommended health andsafety instructions and wears protective cloth-ing, the treatment poses no risk to the apiarist’shealth. Autumn treatment with oxalic aciddihydrate, according to the methods and dos-ages described, causes no evident increase ofnatural oxalic acid content in honey, and thereis therefore no risk to human health from con-suming the honey.

6.3. Legalisation of the use of oxalic acid as a drug in bees

Research on oxalic acid has been conductedfor beekeepers, but its use as a drug in honeybee colonies is strongly regulated by legisla-

tion. Without formal approval the treatmentremains illegal.

In all EU countries, government approval isonly given to a new veterinary drug after theEuropean Union’s Agency for EvaluatingMedical Products (EMEA) has determined themaximum residue limit (MRL) of the activeingredient allowed in the final food productaccording to Council Regulation (EEC) 2377/90 (Mutinelli and Rademacher, 2002). Thisprocedure is intended to protect consumersfrom dangerous residues in food resulting frommedicines used on animals. Conducted as acommon European project by scientific insti-tutes and beekeeper organisations from mostEuropean countries, oxalic acid was listed inAnnex II of Council Regulation (EEC) 2377/90in December 2003 (Rademacher and Imdorf,2004). This means that the substance isdeclared not dangerous and that no residuelimit is needed to protect the consumer. On thisbasis every European country can apply forlegal approval of oxalic acid as a drug in beecolonies.

ACKNOWLEDGEMENT

Special acknowledgement is given to the Baye-risches Staatsministerium für Umwelt, Gesundheitund Verbraucherschutz for their financial support.

Résumé – L’acide oxalique comme moyen delutte contre la varroose dans les coloniesd’abeilles – une synthèse. Depuis l’arrivée de l’aca-rien ectoparasite Varroa destructor Anderson andTrueman dans les colonies d’abeilles domestiques(Apis mellifera L.), les apiculteurs doivent réguliè-rement traiter à l’acaricide pour maintenir le parasitesous le seuil de dégâts économiques. Au cours des10 dernières années les acariens ont développé unnombre croissant de résistances aux acaricides desynthèse si bien que de nouveaux produits vétérinai-res sont nécessaires pour combattre la varroose.Cet article donne une vue d’ensemble sur l’acideoxalique utilisé comme acaricide contre V. destruc-tor en goutte à goutte, par évaporation etpulvérisation. L’acide oxalique est un acide large-ment répandu dans le règne végétal ; il est présentdans de nombreux légumes, comme l’épinard, la bet-terave rouge ou la rhubarbe, et aussi dans le miel.Contre la varroose le dihydrate d’acide oxalique estappliqué (a) par dégouttement dans une solutionsucrée directement sur les abeilles dans les passagesentre les cadres, (b) sous forme de cristaux qui sesubliment dans la ruche ou (c) par pulvérisationd’une solution aqueuse sur les abeilles qui se tien-nent sur les rayons.

Page 20: Oxalic Acid

Oxalic acid for the control of varroosis 117

Pour évaluer l’acide oxalique comme acaricide on aprit en compte l’efficacité, la tolérance par lesabeilles, la protection de l’utilisateur, la teneur enrésidus et la sécurité pour le consommateur. Lestableaux I à III regroupent les données disponiblesconcernant l’efficacité et la tolérance par les abeillesdes divers modes d’application en fonction de ladose appliquée, de la concentration en sucre de lasolution utilisée, de la période et de la fréquence detraitement et de la zone climatique. Sous ses troismodes d’application l’acide oxalique est efficace à90 % et bien toléré par les abeilles. Par sa facilitéd’application le dégouttement paraît particulière-ment bien convenir à la pratique apicole.L’application d’acide oxalique n’occasionne aucunennui de santé chez l’utilisateur s’il l’utilise de façonappropriée et porte des vêtements de protectionadaptés. En ce qui concerne la protection du con-sommateur et les résidus éventuels, on part duprincipe que l’acide oxalique, par des propriétéshydrophiles, ne se concentre pas dans la cire ni dansla propolis. La teneur naturelle du miel en acide oxa-lique est très variable (3,3–761,4 mg/kg) et dépendde l’origine botanique du nectar. Après applicationde dihydrate d’acide oxalique sa concentration aug-mente dans le miel ou dans les réserves d’hiver, puisles valeurs redescendent aux niveaux naturels auprintemps suivant (Tab. IV). L’acide oxalique a étéinscrit en décembre 2003 à l’Annexe II du Règle-ment 2377/90 du Conseil de l’U.E. par l’EMEA(Agence Européenne pour l’Évaluation des Médica-ments) ; cela signifie que la substance est nondangereuse pour le consommateur et que toute limitesupérieure de résidu est inutile.L’acide oxalique convient pour traiter les colonies àl’automne et en hiver dans le cadre d’une lutte inté-grée. Il se caractérise par une efficacité élevée, unebonne tolérance par les abeilles, une facilité d’appli-cation pour l’apiculteur et par une situation desrésidus dans le miel favorable.

varroose / acide oxalique / résidu / efficacité /sécurité des consommateurs / Varroa destructor

Zusammenfassung – Oxalsäure zur Bekämpfungder Varroose an Bienenvölkern. Seit Auftreten desParasiten Varroa destructor in Bienenvölkern vonApis mellifera müssen Imker regelmäßig Akarizideeinsetzen, um den Ektoparasiten unterhalb der Scha-densschwelle zu halten. In den letzten 10 Jahrenentwickelten sich zunehmend Resistenzen der Mil-ben gegenüber den synthetischen Akariziden, sodass weitere Tierarzneimittel zur Bekämpfung derVarroose nötig wurden.Der vorliegende Artikel gibt einen Überblick überOxalsäure als Akarizid zur Bekämpfung der Var-roose in den Applikationsformen Träufeln,Verdampfen und Sprühen. Oxalsäure ist eine weitverbreitete Pflanzensäure, die in vielen Gemüsenwie z.B. Spinat, Rharbarber oder Rote Beete und auchim Honig vorkommt. Zur Behandlung der Varroose

wird Oxalsäuredihydrat (a) in Zuckerwasserlösungauf die Bienen in den Wabengassen geträufelt, (b)als Kristalle im Volk sublimiert oder (c) als wässrigeLösung auf die bienenbesetzten Waben gesprüht.Bei der Bewertung der Oxalsäure als Akarizid wurdenWirksamkeit und Bienenverträglichkeit, Anwender-schutz sowie Rückstandsbelastung und Verbraucher-sicherheit berücksichtigt. Die verfügbaren Daten zuWirksamkeit und Bienenverträglichkeit der ver-schiedenen Behandlungsmethoden bezüglich appli-zierter Dosis, Zuckerkonzentration der verwendetenLösung, Behandlungszeitpunkt und -häufigkeitsowie der Klimazone sind in Tabelle I–III zusam-mengestellt. Bei allen drei Applikationsformen sindWirksamkeiten von über 90 % bei guter Bienenver-träglichkeit zu erzielen. Träufeln erscheint wegeneinfacher Anwendung in der imkerlichen Praxis alsbesonders geeignet.Die Applikation von Oxalsäure verursacht beisachgemäßer Handhabung und Tragen geeigneterSchutzkleidung kein Gesundheitsrisiko für denAnwender. Hinsichtlich des Verbraucherschutzesund der Rückstandssituation ist davon auszugehen,dass sich Oxalsäure aufgrund der hydrophilenEigenschaften nicht in Wachs und Kittharz anrei-chert. Der natürliche Gehalt an Oxalsäure im Honigist sehr unterschiedlich (3,3–761,4 mg/kg) undabhängig von der botanischen Herkunft des Nektars.Nach der Applikation von Oxalsäuredihydrat erhöhtsich die Konzentration im Honig oder Winterfutter.Bis zur nächsten Trachtperiode im Frühjahr sinkendie Werte wieder auf die natürlichen Gehalte ab(Tab. IV). Oxalsäure wurde im Dezember 2003 vonder EMEA (European Union’s Agency for Evalua-ting Medical Products) in Annex II der CouncilRegulation (EEC) 2377/90 aufgenommen, wasbedeutet, dass kein nomineller Wert für die Rück-standshöchstmenge zum Schutz des Verbrauchersfestgelegt werden muß.Oxalsäure ist eine geeignete Substanz für die Herbst– Winterbehandlung, um im Rahmen des integrier-ten Bekämpfungskonzeptes Varroa destructor unterder Schadensschwelle zu halten. Oxalsäure zeichnetsich durch hohe Wirksamkeit gegen den Parasiten,gute Verträglichkeit am Zieltier Biene, einfacheAnwendung für den Imker sowie eine günstig zubewertende Rückstandssituation im Honig aus.

Oxalsaüre / Varrose / Honigbiene / Rückstände

REFERENCES

Arbeitgemeinschaft der Institute für Bienenforschunge. V. (2001) Varroa unter Kontrolle, Wie wird’sgemacht? Dtsch. Bienenj. 5 (Beilage).

Aumeier P. (1998) Alternativ hat Zukunft, Der„Hohenheimer Tag“ 1998, Allg. Dtsch. Imkerztg.8, 17–20.

Baggio A., Mutinelli F. (2003a) Varroosis control inbroodless time: oxalic acid and Varrox, Meetingof the European Group for Integrated Varroa

Page 21: Oxalic Acid

118 E. Rademacher, M. Harz

Control, Rauischholzhausen, [online] http://www.apis.admin.ch/host/varroa/rauisch.htm(accessed on 27 July 2005).

Baggio A., Mutinelli F. (2003b) Integrated Varroacontrol: Oxavar and oxalic acid, Meeting of theEuropean Group for Integrated Varroa Control,Rauischholzhausen, [online] http://www.apis.admin.ch/host/varroa/rauisch.htm (accessed on27 July 2005).

BMA, Bundesministerium für Arbeit und Sozialord-nung (2000) TRGS 900: Grenzwerte in der Luftam Arbeitsplatz, BArbBl. (10), 34–63, zuletztgeändert BArbBl. 3/2002, p. 110, [online] http://www.umwelt-online.de/recht/t_regeln/trgs/trgs-900/mak_ges.htm (accessed on 20 October2005).

Bogdanov S., Imdorf A., Charrière J.D., Fluri P.,Kilchenmann V. (2002) Determination of residuesin honey after treatments with formic and oxalicacid under field conditions, Apidologie 33, 399–409.

Brødsgaard C.J., Jensen S.E., Hansen C.W., Hansen H.(1999) Spring treatment with oxalic acid in hon-eybee colonies as varroa control, DIAS report,Horticulture 6, 16 [online] http://www.danish-bee.com/cjb/oxal-djf.htm (accessed on 26 July2005).

Büchler R. (1998) Überprüfung der Bienenverträg-lichkeit von Oxalsäure an Kunstschwärmen, Allg.Dtsch. Imkerztg. 11, 21–23.

Büchler R. (1999) Versuchsergebnisse zur Varro-atosebekämpfung durch Aufräufeln von Oxal-säurelösung auf die Wintertraube, Allg. Dtsch.Imkerztg. 10, 5–8.

Büchler R. (2000) Oxalsäure – Erfolg mit Neben-wirkungen. Aufträufelmethode beeinträchtigt dieAuswinterungsstärke, Allg. Dtsch. Imkerztg. 11,6–8.

Büchler R. (2002) Winterbehandlungsmethoden imTest. Auswirkungen auf die Volksentwicklung,Allg. Dtsch. Imkerztg. 11, 10–13.

Charrière J.D. (2001) Optimisation of the oxalic acidtrickling method and bee tolerability of differentwinter treatments: trials in Liebefeld during thelast 3 years, Meeting of the European Group forIntegrated Varroa Control, York, [online] http://www.apis.admin.ch/host/varroa/york.htm(accessed on 27 July 2005).

Charrière J.D., Imdorf A. (2002) Oxalic acidtreatment by trickling against Varroa destructor:recommendations for use in Central Europe andunder temperate climate conditions, Bee World83, 51–60.

Charrière J.D., Imdorf A., Fluri P. (1998) Was kannvon der Oxalsäure gegen Varroa erwartetwerden? Schweiz. Bienen-Ztg. 8, 503–506.

Charrière J.D., Imdorf A., Kuhn R. (2004)Bienenverträglichkeit von Varroabehandlungenim Winter, Schweiz. Bienen-Ztg. 4, 19–23.

Committee For Veterinary Medicinal Products (2003)Oxalic Acid–Summary Report, EMEA, EMEA/

MRL/891/03, [online] http://www.emea.eu.int/pdfs/vet/mrls/089103en.pdf (accessed on 27 July2005).

Department of Health and Human Services, Centerfor Disease Control and Prevention (2005) OxalicAcid, [online] http://www.cdc.gov/niosh/pel88/144-62.html (accessed on 27 July 2005).

Elzen P.J., Eischen F.A., Baxter J.B., Pettis J., ElzenG.W., Wilson W.T. (1998) Fluvalinate resistancein Varroa jacobsoni from several geographiclocations, Am. Bee J. 9, 674–676.

European Group for Integrated Varroa Control (1999)Coordination in Europe of research on integratedcontrol of Varroa mites in honey bee colonies,Meeting November 13–14, 1999, Merelbeke, Bel-gium, [online] http://www.apis.admin.ch/host/doc/pdfvarroa/Merelbeke.pdf (accessed on 20October 2005).

European Group for Integrated Varroa Control (2000)Minutes from the 5th Meeting, Bern 16–17 June2000, [online] http://www.apis.admin.ch/english/host/pdf/alternativ/bern.pdf (accessed on 27 July2005).

Ferrero R., Ferrazzi P., Nanetti A. (2004) Lotta controVarroa destructor (Anderson and Trueman) conacido ossalico somministrato mediante sublimazi-one o per gocciolamento di soluzioni zuccherine,Apoidea 1, 66–71.

Floris I., Satta A., Mutinelli F., Prandin L. (1998)Efficiency of winter applications of oxalic acidagainst Varroa jacobsoni Oud. in beehives in aMediterranean area, Redia 81, 143–150.

Fries I. (2001) Is the total amount or the concentrationof oxalic acid critical for efficacy in varroa mitecontrol? European Group for Integrated VarroaControl, York, [online] http://www.apis.admin.ch/host/varroa/york.htm (accessed on 27July 2005).

Gay V., Guardiola P., Vallon J.J. (1984) L’acideoxalique : métabolisme, physiopathologie etméthodes de dosage, Lyon Pharm. 35, 69–78.

Gotti M. (2004) Studio sulle possibilita di utilizzonella lotta alla varroasi di evaporatori Varrox inmultiplo, Lapis 12, 5–9.

Gregorc A., Planinc I. (2001) Acaricidal effect ofoxalic acid in honey bee (Apis mellifera) colonies,Apidologie 32, 333–340.

Gregorc A., Pogacnik A., Bowen I.D. (2004) Celldeath in honey bee (Apis mellifera) larvae treatedwith oxalic or formic acid, Apidologie 35, 453–460.

Gumpp T.J. (2002) Untersuchungen zur Arbei-tssicherheit des Imkers bei der Anwendung vonOxalsäure zur Bekämpfung der Varroatose, Dok-torarbeit am Institut für Arbeits- und Sozial-medizin, Universitätsklinikum Tübingen, [online]http://w210.ub.uni-tuebingen.de/dbt/volltexte/2004/1181/pdf/Arbeitssicherheit_Oxalsaeure_Varroatose.pdf (accessed on 20 October 2005).

Higes M., Meana A., Suarez M., Llorente J. (1999)Negative long-tem effects on bee colonies treated

Page 22: Oxalic Acid

Oxalic acid for the control of varroosis 119

with oxalic acid against Varroa jacobsoni Oud.,Apidologie 30, 289–292.

Holmes R.P., Kennedy M. (2000) Estimation of theoxalate content of foods and daily oxalate intake,Kidney Int. 57, 1662–1667.

Imdorf A., Charrière J.D., Bachofen B. (1995) Wannist die Oxalsäure als Varroazid geeignet?Schweiz. Bienen-Ztg. 7, 389–391.

Imdorf A., Bogdanov S., Ibanez Ochoa R., CalderoneN.W. (1999) Use of essential oils for the controlof Varroa jacobsoni Oud. in honey bee colonies,Apidologie 30, 209–228.

Imdorf A., Charrière J.D., Feuz A., Kuhn R. (2002)Oxalsäureverdampfung-Vergleich verschiedenerVerdampfungsgeräte, unpublished data (availableon request to the author at Swiss Bee ResearchCentre, FAM Liebefeld, Bern, Switzerland,http://www.apis.admin.ch).

Imdorf A., Kuhn R., Feuz A. (2004) UnterschiedlicheWirksamkeit von Oxalsäure-Verdampfungs-geräten, Schweiz. Bienen-Ztg. 4, 19–23.

Kraus B., Berg S., Schulz A., Otten C. (1993) Unter-suchungen zur Bekämpfung der Varroatose mitMilchsäure, unpublished data (available onrequest to the author at Staatliche Lehr- und Ver-suchsanstalt für Landwirtschaft, Wein- und Gar-tenbau, Fachbereich Bienenkunde, Ahrweiler/Mayen, Germany, http://www.bienenkunde.rlp.de).

Liebig G. (1997) Neue Methoden der Varroatose-bekämpfung. Aufträufeln von Oxalsäure undZitronensäure, Dtsch. Bienenj. 3, 7.

Liebig G. (1998) Zur Eignung des Aufräufelns vonOxalsäure für die Varroabehandlung, Dtsch.Bienenj. 6, 4–6.

Liebig G. (1999) Zur Behandlung von Bienenvölkernmit Oxalsäure und “Bienenwohl”, Dtsch. Bienenj.10, 4–5.

Liebig G., Hampel K. (2002) Zur Anwendung vonOxalsäure durch Verdampfen? Dtsch. Bienenj. 2,17–18.

Lodesani M., Colombo M., Spreafico M. (1995)Ineffectiveness of Apistan® treatment against themite Varroa jacobsoni Oud. in several districts ofLombardy (Italy), Apidologie 26, 67–72.

Milani N. (1995) The resistance of Varroa jacobsoniOud. to pyrethroids: a laboratory assay, Apidolo-gie 26, 415–429.

Moosbeckhofer R., Trouiller J. (1996) Apistanresis-tente Varroamilben in Österreich entdeckt,Bienenvater 10, 372–373.

Moosbeckhofer R. (2001) Varroabekämpfung mitOxalsäure im Träufelverfahren, Bienenvater 12,7–12.

Moosbeckhofer R., Baumgartner M. (2002) ErsteErgebnisse zur Varroabekämpfung in Österreich,Bienenvater 11, 9–12.

Moosbeckhofer R., Baumgartner M., Licek E.,Pechhacker H. (2002) Effects of oxalic acid evap-oration on bee mortality in cage tests, unpublished

data (available on request to the author at Institutefor Apiculture (AGES), Vienna, Austria, http://www.ages.at).

Moosbeckhofer R., Pechhacker H., Unterweger H.,Bandion F., Heinrich-Lenz A. (2003) Investiga-tions on the oxalic acid content of honey fromoxalic acid treated and untreated bee colonies, Eur.Food Res. Technol. 217, 49–52.

Mutinelli F., Baggio A. (2002) Ipereat and oxalic acidin the control of varroosis. Two years of trials,European Group for Integrated Varroa Control,Bologna, [online] http://www.apis.admin.ch/host/varroa/bolognia.htm (accessed on 27 July2005).

Mutinelli F., Rademacher E. (2002) Europeanlegislation governing the use of drugs in beecolonies to control varroosis: A Case Study, TheRegulatory Affairs J. 13, 401–406.

Mutinelli F., Baggio A., Capolongo F., Piro R.,Prandin L., Biasion L. (1997) A scientific note onoxalic acid by topical application for the controlof varroosis, Apidologie 28, 461–462.

Nanetti A., Stradi G. (1997) Oxalsäure–Zuckerlösungzur Varroabekämpfung, Allg. Dtsch. Imkerztg.11, 9–11.

Nanetti A., Massi S., Mutinelli F., Cremasco S.(1995) L’acido ossalico nel controllo dellavarroasi: note preliminari, Apitalia 3, 29–32.

Nanetti A., Marcazzan G.L., Massi S., Piro R. (2002)Residui di acido ossalico nel miele alveari trattaticontro la varroa, unpublished data (available onrequest to the author at Instituto Nazionale di Api-coltura, Bologna, Italy, http://www.inapicol-tura.org).

Nanetti A., Büchler R., Charrière J.D., Fries I.,Helland S., Imdorf A., Korpela S., Kristiansen P.(2003a) Oxalic acid treatments for Varroa control(Review), Apiacta 38, 81–87.

Nanetti A., Bartolomei P., Bellato S., de Salvio M.,Gattavecchia E., Ghini S. (2003b) Pharmacody-namics of oxalic acid in the honey bee colony,unpublished data (available on request to theauthor at Instituto Nazionale di Apicoltura, Bolo-gna, Italy, http://www.inapicoltura.org).

Nanetti A., Ghini S., Gattavecchia E., Bartolomei P.,Marcazzan G.L., Massi S. (2003c) Pharmacody-namics of oxalic acid and treatment residues inhoney, European Group for Integrated VarroaControl, Rauischholzhausen, [online] http://www.apis.admin.ch/host/varroa/rauisch.htm(accessed on 27 July 2005).

Nasr M.E., Servos D., Bannister R., Wilson G. (2001)Efficacy of three miticides (Oxalic acid, Formicacid, Apilife Var) on Varroa destructor andAcarapis woodi in honey bee colonies in Canada,European Group for Integrated Varroa Control,York, [online] http://www.apis.admin.ch/host/varroa/york.htm (accessed on 27 July 2005).

Nozal M.J., Bernal J.L., Diego J.C., Gomez L.A., RuizJ.M., Higes M. (2000) Determination of oxalate,

Page 23: Oxalic Acid

120 E. Rademacher, M. Harz

sulfate and nitrate in honey and honeydew by ion-chromatography, J. Chromatogr. A 881, 629–638.

Nozal M.J., Bernal J.L., Gomez L.A., Higes M.,Meana A. (2003) Determination of oxalic acidand other organic acids in honey and in someanatomic structures of bees, Apidologie 34, 181–188.

Pechhacker H., Pechhacker M., Heigl H.,Moosbeckhofer R., Bandion F., Heinrich-Lenz A.,Unterweger H. (2004) Der natürliche Oxal-säuregehalt österreichischer Honige, Bienenvater125, 12–16.

Popov E.T., Melnik V.N., Matchinev A.N. (1989)Application of oxalic acid in varroatosis, Proc.XXXII Int. Congr. Apimondia, Rio de Janeiro,Apimondia Publ. House, Bucharest, p. 149.

Poul J.M. (2003) Oxalic acid dihydrate. Safety file ofthe MRL Dossier, unpublished data (available onrequest to the author at Agence Française deSécurité Sanitaire des Aliments (AFSSA),Laboratoire d’Études et de Recherches sur lesMédicaments Vétérinaires et les Désinfectants,Fougères, France, http://www.fougeres.afssa.fr).

Rademacher E. (1995) Eine neue Applikationsformder Ameisensäure (Teil I), Allg. Dtsch. Imkerztg.7, 6–9.

Rademacher E. (1996) Eine neue Applikationsformder Ameisensäure (Teil II), Allg. Dtsch.Imkerztg. 1, 24–26.

Rademacher E., Imdorf A. (2004) Legalisation of theuse of oxalic acid in Varroa control, Bee World85, 70–72.

Rademacher E., Brückner D., Otten Ch., Radtke J.(1999) Varroatosebekämpfung mit Ameisensäureim Applikator bei unterschiedlichen Betriebs-weisen und Standortbedingungen, Dtsch. Bienenj.9, 4–7.

Radetzki T. (1994) Oxalsäure, eine weitereorganische Säure zur Varroabehandlung, Allg.Dtsch. Imkerztg. 12, 11–14.

Radetzki T. (2000) Varroa control with oxalic acid –a new application. Field experiments winter1999/2000, Meeting of the European Group forIntegrated Varroa Control, Bern, unpublisheddata (available on request to the author at Swiss

Bee Research Centre, FAM Liebefeld, Bern,Switzerland, http://www.apis.admin.ch).

Radetzki T. (2001) Varroa control with oxalic acidevaporation. Assessment of the impact for thebees, Meeting of the European Group forIntegrated Varroa Control, York, unpublisheddata (available on request to the author at SwissBee Research Centre, FAM Liebefeld, Bern,Switzerland, http://www.apis.admin.ch).

Radetzki T. (2002) Bessere Bienenverträglichkeit derOxalsäure–Verdampfung, Bienenwelt 11, 15.

Radetzki T., Bärmann M. (2001) Verdampfungsver-fahren mit Oxalsäure. Feldversuch mit 1509 Völk-ern im Jahr 2000, Allg. Dtsch. Imkerztg. 9, 20–23.

Radetzki T., Bärmann M., Sicurella G. (2000) NeueAnwendungstechnik in Testphase – Oxalsäure–Verdampfungsmethode ohne Einfluß aufBienentotenfall, Allg. Dtsch. Imkerztg. 11, 9–11.

Rommel W. (1999) Varroabekämpfung: Erfahrungenaus Russland und Kasachstan, Allg. Dtsch.Imkerztg. 2, 24–25.

Schuster H., Schürzinger F. (2003) Oxalsäure zurSommerbehandlung? Allg. Dtsch. Imkerztg. 1,27–28.

Spinks R. (2002) Effects of oxalic acid onoverwintering colonies in England, EuropeanGroup for Integrated Varroa Control, Bologna,[online] http://www.apis.admin.ch/host/varroa/bolognia.htm. (accessed on 27 July 2005).

United States Environmental Protection Agency,R.E.D. (1992) Facts Oxalic Acid, Office ofPrevention, Pesticides and Toxic Substances(7508W), EPA 738–F-92-014, [online] www.epa.gov/oppsrrd1/REDs/factsheets/4070fact.pdf(accessed on 27 July 2005).

University of Bristol (2005) School of Chemistry,Exposure Limits, [online] http://www.chm.bris.ac.uk/safety/Explimits.htm (accessed on 27 July2005).

Wibbertmann A. (2003) Oxalic acid dihydrate.Residue file of the MRL Dossier, unpublisheddata (available on request to the author atFraunhofer Institute of Toxicology andExperimental Medicine, Hannover, Germany,http://www.item.fraunhofer.de).


Recommended