+ All Categories
Home > Documents > Oxygen Transport Membrane Modules for Oxyfuel … · 2-lean gas, p O2, sweep) retentate ... •...

Oxygen Transport Membrane Modules for Oxyfuel … · 2-lean gas, p O2, sweep) retentate ... •...

Date post: 17-Sep-2018
Category:
Upload: vandieu
View: 215 times
Download: 0 times
Share this document with a friend
20
Mitglied der Helmholtz-Gemeinschaft Forschungszentrum Jülich Institute of Energy and Climate Research IEK-1 52425 Jülich, Germany Stefan Baumann AMPEA Workshop Materials for membranes in energy applications: gas separation membranes, electrolysers and fuel cells SINTEF, Oslo, NO, Feb 7-8 th 2017 Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC
Transcript

Mitg

lied

der H

elm

holtz

-Gem

eins

chaf

t

Forschungszentrum JülichInstitute of Energy and Climate Research IEK-1

52425 Jülich, Germany

Stefan Baumann

AMPEA WorkshopMaterials for membranes in energy applications: gas separation

membranes, electrolysers and fuel cellsSINTEF, Oslo, NO, Feb 7-8th 2017

Oxygen Transport Membrane Modules forOxyfuel Applications developed in GREEN-CC

2

Coordinator: Dr. Wilhelm A. Meulenberg Forschungszentrum Jülich

Graded Membranes for Energy Efficient New generation Carbon Capture Process

Total Budget: 8.200.000 €Funding: 5.400.000 €Duration: 01.09.2013 - 31.08.2017FP7 project no. 608524

Project facts and figures

www.GREEN-CC.eu

WP1: Membrane

- Materials- Support- Assembly- Modeling

WP2: Catalyst

- Materials- Modeling- Application

WP3: Application oriented testing

- Stability - Slip stream in real PP- Permeation

WP4: Proof-of-concept

- Module design - Membrane assembling- Test facilities design- Module testing

WP5: Process Engineering

- Process Simulations- Scale up rules- Cost estimations

3

Coordinator: Dr. Wilhelm A. Meulenberg Forschungszentrum Jülich

Graded Membranes for Energy Efficient New generation Carbon Capture Process

Total Budget: 8.200.000 €Funding: 5.400.000 €Duration: 01.09.2013 - 31.08.2017FP7 project no. 608524

Outline

www.GREEN-CC.eu

WP5: Process Engineering

- Process Simulations- Scale up rules- Cost estimations

4

4-end membranes for oxyfuel combustion in industrial applications

O2-

e-

feed(Air, pO2, feed)

sweep(O2-lean gas,

pO2, sweep)

retentate(depleted AirpO2, retentate)

permeate(O2-rich gas, pO2, permeate)

j(O2)

Main target: Identifying the energetic and economic benefit of an OTM in all 3 process routes under consideration of realistic boundary conditions

Oxyfuel Power PlantIGCC Oxyfuel Cement

5

Fuel/Coal

Water

Steam

CO 2

H 2O

O 2/H 2O/CO 2

H 2O/CO 2

O 2

Hot flue gas cleaning

Depleted air

Feed-air

850 °C

Process conditionsOxyfuel process - 4-end integration

Flue gas component

concentration

CO2 balance

H2O 25 %

O2 3-5%

SO2

2000 ppm (no gas cleaning)

500 ppm (state-of-the-art HT-cleaning)

50 ppm (state-of-the-art LT-cleaning)

NOx 140 ppm

HCl 30 ppm

CO 10 ppm

Others

(incl. Ash)???

6

Coordinator: Dr. Wilhelm A. Meulenberg Forschungszentrum Jülich

Graded Membranes for Energy Efficient New generation Carbon Capture Process

Total Budget: 8.200.000 €Funding: 5.400.000 €Duration: 01.09.2013 - 31.08.2017FP7 project no. 608524

Project facts and figures

www.GREEN-CC.eu

WP4: Proof-of-concept

- Module design - Membrane assembling- Test facilities design- Module testing

WP5: Process Engineering

- Process Simulations- Scale up rules- Cost estimations

7

Module design and operation

Design and build of a pilot loop for module testingProof of performance (TRL 4)

• Operating temperature 750 – 900 °C• Leakage lower than 2%• Long term tests (1000 h) in a synthetic flue gas stream

Design and build of a proof- of-concept membrane module

• Planar stack with asymmetric membranes • Effective area at least 300 cm2

• 4-end operation

Key issues/activities• Mechanical stress analysis • CFD simulation• Joining techniques for ceramic-ceramic

and ceramic-metal joints

8

Outline

WP1: Membrane

- Materials- Support- Assembly- Modeling WP4: Proof-of-concept

- Module design - Membrane assembling- Test facilities design- Module testing

WP5: Process Engineering

- Process Simulations- Scale up rules- Cost estimations

9

Oxygen Transport in Mixed Conductors

1. Schulze-Küppers, Dissertation Ruhr-Universität Bochum (2010)

(1)

2. Bouwmeester et al. Fundamentals of Inorganic Membrane Science and Technology(1996)

Zone III Bulk diffusion

Zone II & IV Surface exchange kinetics

Zone V Gas transport in supportI & VI GastransportII & IV Surface ExchangeIII Bulk DiffusionV Gastransport in Support

''

'

2

22 ln

²161

O

O

ei

eiOpp

FRT

Lj ⋅

+⋅

⋅⋅−=

σσσσ

''

'

2

22 ln

²1621

O

O

ei

ei

c

Opp

FRT

LLj ⋅

+⋅

⋅⋅

+−=

σσσσ

kDLc

*= Characteristic Thickness

driving force

∇𝑇𝑇,𝑃𝑃𝑥𝑥𝑖𝑖 +𝑥𝑥𝑖𝑖𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔

∇𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑅𝑅𝑇𝑇��𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗��⃗ − 𝑥𝑥𝑗𝑗 𝑗𝑗𝑖𝑖��⃗ �𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝐷𝐷𝑖𝑖𝑗𝑗

𝑛𝑛

𝑗𝑗=1

− 𝑓𝑓𝑖𝑖𝑖𝑖 𝑅𝑅𝑇𝑇𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔

𝑗𝑗𝑖𝑖��⃗

molecular diffusion

Knudsen-Diff. +viscos flow

(2)

10

Selected materials

Single phaseperovskites Dual phase composites

La0.6Sr0.4Co0.2Fe0.8O3-δ(reference)

High performance Asymmetric

membranes developed Good stability in CO2

Limited stability in SO2

Ionic conductor: Doped ceria stabilized zirconia

Electronic conductor: Spinels doped ZnO perovskites

FeCo2O4

Ce0.8Gd0.2O2

11

Ce0.8Gd0.2O2-δ - FeCo2O4 TEM Analysis

3 phases identified:

Ce-Gd-O

Gd-Ce-Fe-Co-O

Fe-Co-O is wrapped in porous O deficient

Fe/Co-O phase (with preferential porosity)

FeOy CoOyRamasamy et al. J Amer Ceram Soc 99 (2016) 349-355

After optimized sintering cycle

12

TF

RL

jpermeance i

pp

O

O

Oσ⋅

⋅⋅==

²161

ln2

2

2

'''

0.8 0.9 1.0 1.1-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

Ea (LSCF58) =138 kJ/mol

Ea (CGO-FCO)= 97 kJ/mol

Ea (CGO-FCO+LSCF-AB)= 66 kJ/mol

log

perm

eanc

e mol

/(cm

2 s)

1000/T (K-1)

CGO-FCO CGO-FCO-LSCF-AB LSCF58

1050 1000 950 900 850 800 750 700 650

Temperature °C

Ramasamy et al. J. Am. Ceram. Soc., 99 [1] 349–355 (2016)

approximate composition of the perovskite phase is 15% Ce on A-site, 25% Co on B-site, i.e. Gd0.85Ce0.15Fe0.75Co0.25O3 (GCFCO)

Ramasamy et al. Ceram Sci Eng Proc, ICACC 2016, accepted manuscript

Ionic conductivity of CGO is rate limiting if surfaces are activated

60 wt% Ce0.8Gd0.2O2-δ - 40 wt% FeCo2O4

13

GCFCO is a pure electronic conductor contributing to ambipolar conductivity

Electronic conductivity still dominant for 20 wt% spinel content

Percolating network present in as low as 10 wt% of spinel content

Electrical conductivity

Ramasamy et al. Ceram Sci Eng Proc, ICACC 2016, accepted manuscript

14

Ramasamy et al. to be submitted

Oxygen permeation rate

CGO-FCO

in wt %

CGO-FCO

in vol %

60:40 54:46

65:35 59:41

70:30 64.5:35.5

75:25 70:30

80:20 76:24

85:15 81.5:18.5

90:10 87.5:12.5

Maximum permeation rate achieved using 15 wt% spinel

15

Performance of selected OTM materialsLSCF vs 85CGO-15FCO

• La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as reference material and ready for scale up• Dual phase composites more stable, but less mature. Selection for scale up

made for 85 wt% Ce0.8Gd0.2O2-δ – 15 wt% FeCo2O4 (CGO-FCO)

16

Requirements for membranes according to transport Model: Thin, defect free membrane layer on a porous support

Tape casting support

(slurry obtaining pore former)

Pre-sintering Support

Screen printingon support

Composite sintering

Tape casting + screen printingPolymer carrier

porous support

Membrane layer

Sequential tape casting

Tape castingMembrane

layer(slurry withoutpore former)

Tape castingSupport

(slurry containingpore former)

Co-firingMembrane layer +

support

Sequential Tape Casing

17

Membrane Development Ce0.8Gd0.2O2-δ - FeCo2O4

Activation layer: 5 µmMembrane layer: 14 µmSupport porosity: 41 %Thickness ~ 700 µm

Activation layer: 6 µmThickness ~ 1000 µm Surface exchange limited!!!

18

Tape casting

Tape casting/lamination/ milling

Tape casting

Scale up of LSCF membranes

19

Component 7 x 10 cm2

Masks for milling process tape casting in larger scale Closing of porous edges

Scale upLSCF


Recommended