+ All Categories
Home > Documents > P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Date post: 10-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
61
Proof ofI n (! k )= P jhj< n ^(h)e ih! k : First of all, if k 6 = 0, n P t ;s=1 e i(s t)! k = n P t =1 e it ! k n P s=1 e is! k 21 ottobre 2013 1 / 16
Transcript
Page 1: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 2: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 3: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 4: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk

(exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 5: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 6: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 7: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof of In(ωk) =∑|h|<n γ(h)e−ihωk .

First of all, if k 6= 0,n∑

t,s=1e−i(s−t)ωk =

n∑t=1

e itωk

n∑s=1

e−isωk

=n∑

t=1e i(t−1)ωk

1− e−inωk

1− e−iωk=

n∑t=1

e i(t−1)ωk1− e−i2πk

1− e−iωk= 0.

Then

In(ωk) =1

n

n∑t,s=1

xsxte−i(s−t)ωk =

1

n

n∑t,s=1

(xs − x)(xt − x)e−i(s−t)ωk

(h = s − t) =1

n

n∑t=1

(xt − x)n−t∑

h=1−t(xt+h − x)e−ihωk (exchange integrals)

=−1∑

h=−(n−1)e−ihωk

1

n

n∑t=1−h

(xt − x)(xt+h − x) +n−1∑h=0

e−ihωk1

n

n−h∑t=1

(xt − x)(xt+h − x)

=−1∑

h=−(n−1)e−ihωk γ(h) +

n−1∑h=0

e−ihωk γ(h) =∑|h|<n

e−ihωk γ(h).

21 ottobre 2013 1 / 16

Page 8: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Estimation of the spectral density

As f (λ) =1

∞∑h=−∞

γ(h)e−ihλ while In(ωk) =∑|h|<n

γ(h)e−ihωk ,

In(ωk) appears a natural estimator of 2πf (λ).

Extend In to

Definition

For 0 < λ ≤ π, In(λ) = In(g(n, λ)) where g(n, λ) is the multiple of 2π/nclosest to λ

(i.e. g(n, λ) = 2πkn if

(k − 1

2

)< λn

2π ≤(k + 1

2

)).

Proposition

Let {Xt} be a stationary process with mean µ and absolutely summableACVF γ(·). Then

1 E(In(0))− nµ2 → 2πf (0) for n→∞;

2 E(In(λ))→ 2πf (λ) for n→∞ if λ 6= 0.

Proof by the dominated convergence theorem.

21 ottobre 2013 2 / 16

Page 9: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Estimation of the spectral density

As f (λ) =1

∞∑h=−∞

γ(h)e−ihλ while In(ωk) =∑|h|<n

γ(h)e−ihωk ,

In(ωk) appears a natural estimator of 2πf (λ). Extend In to

Definition

For 0 < λ ≤ π, In(λ) = In(g(n, λ)) where g(n, λ) is the multiple of 2π/nclosest to λ

(i.e. g(n, λ) = 2πkn if

(k − 1

2

)< λn

2π ≤(k + 1

2

)).

Proposition

Let {Xt} be a stationary process with mean µ and absolutely summableACVF γ(·). Then

1 E(In(0))− nµ2 → 2πf (0) for n→∞;

2 E(In(λ))→ 2πf (λ) for n→∞ if λ 6= 0.

Proof by the dominated convergence theorem.

21 ottobre 2013 2 / 16

Page 10: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Estimation of the spectral density

As f (λ) =1

∞∑h=−∞

γ(h)e−ihλ while In(ωk) =∑|h|<n

γ(h)e−ihωk ,

In(ωk) appears a natural estimator of 2πf (λ). Extend In to

Definition

For 0 < λ ≤ π, In(λ) = In(g(n, λ)) where g(n, λ) is the multiple of 2π/nclosest to λ (i.e. g(n, λ) = 2πk

n if(k − 1

2

)< λn

2π ≤(k + 1

2

)).

Proposition

Let {Xt} be a stationary process with mean µ and absolutely summableACVF γ(·). Then

1 E(In(0))− nµ2 → 2πf (0) for n→∞;

2 E(In(λ))→ 2πf (λ) for n→∞ if λ 6= 0.

Proof by the dominated convergence theorem.

21 ottobre 2013 2 / 16

Page 11: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Estimation of the spectral density

As f (λ) =1

∞∑h=−∞

γ(h)e−ihλ while In(ωk) =∑|h|<n

γ(h)e−ihωk ,

In(ωk) appears a natural estimator of 2πf (λ). Extend In to

Definition

For 0 < λ ≤ π, In(λ) = In(g(n, λ)) where g(n, λ) is the multiple of 2π/nclosest to λ (i.e. g(n, λ) = 2πk

n if(k − 1

2

)< λn

2π ≤(k + 1

2

)).

Proposition

Let {Xt} be a stationary process with mean µ and absolutely summableACVF γ(·). Then

1 E(In(0))− nµ2 → 2πf (0) for n→∞;

2 E(In(λ))→ 2πf (λ) for n→∞ if λ 6= 0.

Proof by the dominated convergence theorem.

21 ottobre 2013 2 / 16

Page 12: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Estimation of the spectral density

As f (λ) =1

∞∑h=−∞

γ(h)e−ihλ while In(ωk) =∑|h|<n

γ(h)e−ihωk ,

In(ωk) appears a natural estimator of 2πf (λ). Extend In to

Definition

For 0 < λ ≤ π, In(λ) = In(g(n, λ)) where g(n, λ) is the multiple of 2π/nclosest to λ (i.e. g(n, λ) = 2πk

n if(k − 1

2

)< λn

2π ≤(k + 1

2

)).

Proposition

Let {Xt} be a stationary process with mean µ and absolutely summableACVF γ(·). Then

1 E(In(0))− nµ2 → 2πf (0) for n→∞;

2 E(In(λ))→ 2πf (λ) for n→∞ if λ 6= 0.

Proof by the dominated convergence theorem.

21 ottobre 2013 2 / 16

Page 13: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Asymptotic distribution of In

Previous result: In(λ) are unbiased estimators of 2πf (λ). Otherproperties?

Theorem

Let {Xt} be a stationary process s.t. Xt =+∞∑

j=−∞ψjZt−j

where {Zt} ∼ IID(0, σ2) and+∞∑

j=−∞|ψj | <∞. Assume fX (λ) > 0 for

λ ∈ [−π, π], and let In(λ) the periodogram of (X1, . . . ,Xn).

Then, given 0 < λ1 < λ2 < · · · < λm < π, (In(λ1), . . . , In(λm)) convergein distribution to a vector of independent exponentially distributed r.v.with mean (2πfX (λ1), . . . , 2πfX (λm)).

21 ottobre 2013 3 / 16

Page 14: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Asymptotic distribution of In

Previous result: In(λ) are unbiased estimators of 2πf (λ). Otherproperties?

Theorem

Let {Xt} be a stationary process s.t. Xt =+∞∑

j=−∞ψjZt−j

where {Zt} ∼ IID(0, σ2) and+∞∑

j=−∞|ψj | <∞. Assume fX (λ) > 0 for

λ ∈ [−π, π], and let In(λ) the periodogram of (X1, . . . ,Xn).

Then, given 0 < λ1 < λ2 < · · · < λm < π, (In(λ1), . . . , In(λm)) convergein distribution to a vector of independent exponentially distributed r.v.with mean (2πfX (λ1), . . . , 2πfX (λm)).

21 ottobre 2013 3 / 16

Page 15: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Asymptotic distribution of In

Previous result: In(λ) are unbiased estimators of 2πf (λ). Otherproperties?

Theorem

Let {Xt} be a stationary process s.t. Xt =+∞∑

j=−∞ψjZt−j

where {Zt} ∼ IID(0, σ2) and+∞∑

j=−∞|ψj | <∞. Assume fX (λ) > 0 for

λ ∈ [−π, π], and let In(λ) the periodogram of (X1, . . . ,Xn).

Then, given 0 < λ1 < λ2 < · · · < λm < π, (In(λ1), . . . , In(λm)) convergein distribution to a vector of independent exponentially distributed r.v.with mean (2πfX (λ1), . . . , 2πfX (λm)).

21 ottobre 2013 3 / 16

Page 16: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated. In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 17: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).

Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated. In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 18: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated.

In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 19: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated. In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 20: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated. In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 21: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Proof in a special case: {Xt} ∼ IID N(0, σ2)

First, note that, if n large enough, In(λj) = α2n(ωk) + β2n(ωk) for some

k > 0 where αn(ωk) = 〈Xn,Ck〉 and βn(ωk) = 〈Xn, Sk〉

with Xn =

X1...Xn

, Ck =

√2

n

cos(ωk)...

cos(nωk)

, Sk =

√2

n

sin(ωk)...

sin(nωk)

.

Ck and Sk are orthonormal vectors (use trigonometric identities).Further, if v , w ∈ Rn with 〈v ,w〉 = 0 and {Xt} ∼WN(0, σ2)V =

∑nt=1 vtXt and W =

∑nt=1 wtXt are uncorrelated. In fact

E(VW ) =n∑

t,s=1

vtwsE(XtXs) =n∑

t=1

vtwtE(X 2t ) = σ2

n∑t=1

vtwt = 0.

Hence αn(ωk) and βn(ωk), hence normal and independent if Xt are alsonormal. In(λj) is then a χ2(2), i.e. exponential.

Analogously, In(λj) and In(λl) are independent for n large enough.

21 ottobre 2013 4 / 16

Page 22: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

idea of how to extend the proof

If {Xt} ∼ IID(0, σ2) (not necessarily normal), central limit theorem shows

that αn =n∑

t=1cos(ωkt)Xt and βn =

n∑t=1

sin(ωkt)Xt are asymptotically

normal. Then the computations of the covariance matrix yield the result.

If Xt =+∞∑

j=−∞ψjZt−j , first one shows (recall formula for spectral density)

In,X (λ) =∣∣∣Ψ(e−ig(n,λ))

∣∣∣2 In,Z (λ) + Rn(g(n, λ)) with supλ

E|Rn(·)| n→∞−−−→ 0.

(maxE(R2n) = O(n−1) if E(Z 4

t ) <∞ and∞∑

j=−∞|j |1/2|ψj | <∞.).

The result then follows relatively easily from the previous one.

21 ottobre 2013 5 / 16

Page 23: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

idea of how to extend the proof

If {Xt} ∼ IID(0, σ2) (not necessarily normal), central limit theorem shows

that αn =n∑

t=1cos(ωkt)Xt and βn =

n∑t=1

sin(ωkt)Xt are asymptotically

normal. Then the computations of the covariance matrix yield the result.

If Xt =+∞∑

j=−∞ψjZt−j , first one shows (recall formula for spectral density)

In,X (λ) =∣∣∣Ψ(e−ig(n,λ))

∣∣∣2 In,Z (λ) + Rn(g(n, λ)) with supλ

E|Rn(·)| n→∞−−−→ 0.

(maxE(R2n) = O(n−1) if E(Z 4

t ) <∞ and∞∑

j=−∞|j |1/2|ψj | <∞.).

The result then follows relatively easily from the previous one.

21 ottobre 2013 5 / 16

Page 24: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

idea of how to extend the proof

If {Xt} ∼ IID(0, σ2) (not necessarily normal), central limit theorem shows

that αn =n∑

t=1cos(ωkt)Xt and βn =

n∑t=1

sin(ωkt)Xt are asymptotically

normal. Then the computations of the covariance matrix yield the result.

If Xt =+∞∑

j=−∞ψjZt−j , first one shows (recall formula for spectral density)

In,X (λ) =∣∣∣Ψ(e−ig(n,λ))

∣∣∣2 In,Z (λ) + Rn(g(n, λ)) with supλ

E|Rn(·)| n→∞−−−→ 0.

(maxE(R2n) = O(n−1) if E(Z 4

t ) <∞ and∞∑

j=−∞|j |1/2|ψj | <∞.).

The result then follows relatively easily from the previous one.

21 ottobre 2013 5 / 16

Page 25: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Variance of the estimator

Remember that, if U ∼ Exp(λ), then V(U) = (E(U))2. We can thensuspect that V(In(λ))→ 4π2f 2(λ).

Indeed one can prove

Cov(In(λi ), In(λj)) =

8π2f 2(0) + O(n−1/2) if λi = λj = 0 or π

4π2f 2(λ) + O(n−1/2) if λi = λj = λ 6= 0

O(n−1) if λi 6= λj

In(λ) is not a consistent estimator.P(|In(λ)− 2πf (λ)| > c) does not converge to 0 as n→∞.

21 ottobre 2013 6 / 16

Page 26: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Variance of the estimator

Remember that, if U ∼ Exp(λ), then V(U) = (E(U))2. We can thensuspect that V(In(λ))→ 4π2f 2(λ). Indeed one can prove

Cov(In(λi ), In(λj)) =

8π2f 2(0) + O(n−1/2) if λi = λj = 0 or π

4π2f 2(λ) + O(n−1/2) if λi = λj = λ 6= 0

O(n−1) if λi 6= λj

In(λ) is not a consistent estimator.P(|In(λ)− 2πf (λ)| > c) does not converge to 0 as n→∞.

21 ottobre 2013 6 / 16

Page 27: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Variance of the estimator

Remember that, if U ∼ Exp(λ), then V(U) = (E(U))2. We can thensuspect that V(In(λ))→ 4π2f 2(λ). Indeed one can prove

Cov(In(λi ), In(λj)) =

8π2f 2(0) + O(n−1/2) if λi = λj = 0 or π

4π2f 2(λ) + O(n−1/2) if λi = λj = λ 6= 0

O(n−1) if λi 6= λj

In(λ) is not a consistent estimator.P(|In(λ)− 2πf (λ)| > c) does not converge to 0 as n→∞.

21 ottobre 2013 6 / 16

Page 28: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Discrete spectral average estimators

To remedy to the lack of consistency of the periodogram, idea is to exploitthe fact that In(λi ) and In(λj) are approximately independent for λi 6= λj .By averaging a large number of In(λj), all λj close to λ, one may get abetter estimator.

Definition

A discrete spectral average estimator has the form

f (λ) =1

mn∑k=−mn

Wn(k)In

(g(n, λ) + 2π

k

n

).

where limn→∞

mn = +∞ while limn→∞

mnn = 0 (e.g. mn =

√n)

and the weights satisfy Wn(k) ≥ 0, Wn(k) = Wn(−k),mn∑

k=−mn

Wn(k) = 1mn∑

k=−mn

W 2n (k)

n→∞−−−→ 0.

Example: Wn(k) = (2m + 1)−1 for |k| ≤ mn, Wn(k) = 0 otherwise.

21 ottobre 2013 7 / 16

Page 29: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Discrete spectral average estimators

To remedy to the lack of consistency of the periodogram, idea is to exploitthe fact that In(λi ) and In(λj) are approximately independent for λi 6= λj .By averaging a large number of In(λj), all λj close to λ, one may get abetter estimator.

Definition

A discrete spectral average estimator has the form

f (λ) =1

mn∑k=−mn

Wn(k)In

(g(n, λ) + 2π

k

n

).

where limn→∞

mn = +∞ while limn→∞

mnn = 0 (e.g. mn =

√n)

and the weights satisfy Wn(k) ≥ 0, Wn(k) = Wn(−k),mn∑

k=−mn

Wn(k) = 1mn∑

k=−mn

W 2n (k)

n→∞−−−→ 0.

Example: Wn(k) = (2m + 1)−1 for |k| ≤ mn, Wn(k) = 0 otherwise.

21 ottobre 2013 7 / 16

Page 30: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Discrete spectral average estimators

To remedy to the lack of consistency of the periodogram, idea is to exploitthe fact that In(λi ) and In(λj) are approximately independent for λi 6= λj .By averaging a large number of In(λj), all λj close to λ, one may get abetter estimator.

Definition

A discrete spectral average estimator has the form

f (λ) =1

mn∑k=−mn

Wn(k)In

(g(n, λ) + 2π

k

n

).

where limn→∞

mn = +∞ while limn→∞

mnn = 0 (e.g. mn =

√n)

and the weights satisfy Wn(k) ≥ 0, Wn(k) = Wn(−k),mn∑

k=−mn

Wn(k) = 1mn∑

k=−mn

W 2n (k)

n→∞−−−→ 0.

Example: Wn(k) = (2m + 1)−1 for |k| ≤ mn, Wn(k) = 0 otherwise.

21 ottobre 2013 7 / 16

Page 31: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Discrete spectral average estimators

To remedy to the lack of consistency of the periodogram, idea is to exploitthe fact that In(λi ) and In(λj) are approximately independent for λi 6= λj .By averaging a large number of In(λj), all λj close to λ, one may get abetter estimator.

Definition

A discrete spectral average estimator has the form

f (λ) =1

mn∑k=−mn

Wn(k)In

(g(n, λ) + 2π

k

n

).

where limn→∞

mn = +∞ while limn→∞

mnn = 0 (e.g. mn =

√n)

and the weights satisfy Wn(k) ≥ 0, Wn(k) = Wn(−k),mn∑

k=−mn

Wn(k) = 1mn∑

k=−mn

W 2n (k)

n→∞−−−→ 0.

Example: Wn(k) = (2m + 1)−1 for |k| ≤ mn, Wn(k) = 0 otherwise.

21 ottobre 2013 7 / 16

Page 32: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Consistency of discrete spectral average estimators

Theorem

Let {Xt} be a stationary process s.t. Xt =+∞∑

j=−∞ψjZt−j

where {Zt} ∼ IID(0, σ2), E(Z 4t ) <∞ and

+∞∑j=−∞

|j |1/2|ψj | <∞.

Let f (·) be a discrete spectral average estimator. Then, for λ, ω ∈ [0, π],

1 limn→∞

E(f (λ)) = f (λ);

2 limn→∞

(mn∑

k=−mn

W 2n (k)

)−1Cov(f (λ), f (ω)) =

2f 2(0) if λ = ω = 0

f 2(λ) if λ = ω

0 if λ 6= ω.

Because of the assumption onmn∑

k=−mn

W 2n (k), f is a consistent estimator.

21 ottobre 2013 8 / 16

Page 33: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Consistency of discrete spectral average estimators

Theorem

Let {Xt} be a stationary process s.t. Xt =+∞∑

j=−∞ψjZt−j

where {Zt} ∼ IID(0, σ2), E(Z 4t ) <∞ and

+∞∑j=−∞

|j |1/2|ψj | <∞.

Let f (·) be a discrete spectral average estimator. Then, for λ, ω ∈ [0, π],

1 limn→∞

E(f (λ)) = f (λ);

2 limn→∞

(mn∑

k=−mn

W 2n (k)

)−1Cov(f (λ), f (ω)) =

2f 2(0) if λ = ω = 0

f 2(λ) if λ = ω

0 if λ 6= ω.

Because of the assumption onmn∑

k=−mn

W 2n (k), f is a consistent estimator.

21 ottobre 2013 8 / 16

Page 34: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Remarks on spectral estimators

In practice, one has a finite n, and has to choose a finite m andappropriate weights W for the spectral average estimator.

Using m relatively large and roughly equal weights will produce asmooth estimate with low variance but possibly with a large bias, asthe estimate of f (λ) will depend on values far away from λ.On the other hand, a narrow band around λ will produce an estimatorwith a large variance. It is advisable experimenting with differentweights.

The previous theorem concerns processes Xt with 0 mean. Generally,one will apply estimates to Yt = Xt − x . The only difference betweenfX and fY occurs at frequency 0. it is then usual to estimate f (0)through

f (0) =1

(In(ω1) + 2

m∑k=1

Wn(k)In(ωk+1)

).

21 ottobre 2013 9 / 16

Page 35: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Remarks on spectral estimators

In practice, one has a finite n, and has to choose a finite m andappropriate weights W for the spectral average estimator.

Using m relatively large and roughly equal weights will produce asmooth estimate with low variance but possibly with a large bias, asthe estimate of f (λ) will depend on values far away from λ.On the other hand, a narrow band around λ will produce an estimatorwith a large variance. It is advisable experimenting with differentweights.

The previous theorem concerns processes Xt with 0 mean. Generally,one will apply estimates to Yt = Xt − x . The only difference betweenfX and fY occurs at frequency 0. it is then usual to estimate f (0)through

f (0) =1

(In(ω1) + 2

m∑k=1

Wn(k)In(ωk+1)

).

21 ottobre 2013 9 / 16

Page 36: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Remarks on spectral estimators

In practice, one has a finite n, and has to choose a finite m andappropriate weights W for the spectral average estimator.

Using m relatively large and roughly equal weights will produce asmooth estimate with low variance but possibly with a large bias, asthe estimate of f (λ) will depend on values far away from λ.On the other hand, a narrow band around λ will produce an estimatorwith a large variance. It is advisable experimenting with differentweights.

The previous theorem concerns processes Xt with 0 mean. Generally,one will apply estimates to Yt = Xt − x . The only difference betweenfX and fY occurs at frequency 0. it is then usual to estimate f (0)through

f (0) =1

(In(ω1) + 2

m∑k=1

Wn(k)In(ωk+1)

).

21 ottobre 2013 9 / 16

Page 37: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Application on sunspots data

sunspots data

Year

Mon

thly

sun

spot

num

bers

1750 1800 1850 1900 1950

050

100

150

200

250

21 ottobre 2013 10 / 16

Page 38: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density estimates of sunspot data

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

2000

Spectral density of yearly sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

Smoothed (span=3) spectral density of sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0200

400

600

800

1000

1200

1400

Smoothed (span=5) spectral density of sunspot 1770-1869

freq

f

0 10 20 30 40 50

02000

4000

6000

8000

Period

f

21 ottobre 2013 11 / 16

Page 39: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density estimates of sunspot data

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

2000

Spectral density of yearly sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

Smoothed (span=3) spectral density of sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0200

400

600

800

1000

1200

1400

Smoothed (span=5) spectral density of sunspot 1770-1869

freq

f

0 10 20 30 40 50

02000

4000

6000

8000

Period

f

21 ottobre 2013 11 / 16

Page 40: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density estimates of sunspot data

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

2000

Spectral density of yearly sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

Smoothed (span=3) spectral density of sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0200

400

600

800

1000

1200

1400

Smoothed (span=5) spectral density of sunspot 1770-1869

freq

f

0 10 20 30 40 50

02000

4000

6000

8000

Period

f

21 ottobre 2013 11 / 16

Page 41: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density estimates of sunspot data

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

2000

Spectral density of yearly sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0500

1000

1500

Smoothed (span=3) spectral density of sunspot 1770-1869

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0200

400

600

800

1000

1200

1400

Smoothed (span=5) spectral density of sunspot 1770-1869

freq

f

0 10 20 30 40 50

02000

4000

6000

8000

Period

f

21 ottobre 2013 11 / 16

Page 42: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = 0.7)

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

ACF of simulated AR(1), theta=0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

Spectrum of simulated AR(1) phi=0.7

freq

f

theoretical density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

Smoothed (span=3) spectrum of simulated AR(1) phi=0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Smoothed (span=5) spectrum of simulated AR(1) phi=0.7

freq

f

21 ottobre 2013 12 / 16

Page 43: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = 0.7)

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

ACF of simulated AR(1), theta=0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

Spectrum of simulated AR(1) phi=0.7

freq

f

theoretical density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

Smoothed (span=3) spectrum of simulated AR(1) phi=0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Smoothed (span=5) spectrum of simulated AR(1) phi=0.7

freq

f

21 ottobre 2013 12 / 16

Page 44: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = 0.7)

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

ACF of simulated AR(1), theta=0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

Spectrum of simulated AR(1) phi=0.7

freq

f

theoretical density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

Smoothed (span=3) spectrum of simulated AR(1) phi=0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Smoothed (span=5) spectrum of simulated AR(1) phi=0.7

freq

f

21 ottobre 2013 12 / 16

Page 45: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = 0.7)

0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

ACF of simulated AR(1), theta=0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

Spectrum of simulated AR(1) phi=0.7

freq

f

theoretical density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

Smoothed (span=3) spectrum of simulated AR(1) phi=0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Smoothed (span=5) spectrum of simulated AR(1) phi=0.7

freq

f

21 ottobre 2013 12 / 16

Page 46: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = −0.7)

0 5 10 15 20

-0.5

0.0

0.5

1.0

Lag

ACF

Series arsim

0.0 0.5 1.0 1.5 2.0 2.5 3.0

02

46

810

Spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

45

67

Smoothed (span=3) spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

4

Smoothed (span=5) spectrum of simulated AR(1) phi=-0.7

freq

f

21 ottobre 2013 13 / 16

Page 47: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = −0.7)

0 5 10 15 20

-0.5

0.0

0.5

1.0

Lag

ACF

Series arsim

0.0 0.5 1.0 1.5 2.0 2.5 3.0

02

46

810

Spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

45

67

Smoothed (span=3) spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

4

Smoothed (span=5) spectrum of simulated AR(1) phi=-0.7

freq

f

21 ottobre 2013 13 / 16

Page 48: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = −0.7)

0 5 10 15 20

-0.5

0.0

0.5

1.0

Lag

ACF

Series arsim

0.0 0.5 1.0 1.5 2.0 2.5 3.0

02

46

810

Spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

45

67

Smoothed (span=3) spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

4

Smoothed (span=5) spectrum of simulated AR(1) phi=-0.7

freq

f

21 ottobre 2013 13 / 16

Page 49: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Spectral density of simulated AR(1) process (ϕ = −0.7)

0 5 10 15 20

-0.5

0.0

0.5

1.0

Lag

ACF

Series arsim

0.0 0.5 1.0 1.5 2.0 2.5 3.0

02

46

810

Spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

45

67

Smoothed (span=3) spectrum of simulated AR(1) phi=-0.7

freq

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0

01

23

4

Smoothed (span=5) spectrum of simulated AR(1) phi=-0.7

freq

f

21 ottobre 2013 13 / 16

Page 50: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Lag window estimators of spectral density:

fL(λ) =1

∑|h|≤r

w

(h

r

)γ(h)e−ihλ

where w(0) = 1, |w(x)| ≤ 1, w(x) ≡ 0 ∀ |x | > 1. (several choices ofw(·) are used: Bartlett, Daniell,. . . )

. Remember

In(ωk) =∑|h|<n

γ(h)e−ihωk .

It is possible to show that

fL(λ) =1

π∫−π

W (x)In(λ+ x) dx ≈ 1

∑|k|≤[n/2]

W (ωk)In(g(n, λ) +ωk)2π

n

where W (x) = 12π

∑|h|≤r

w(h/r)e−ihx , In(·) extends the periodogram.

Lag windows estimators are thus not very different from discretespectral average estimators.

21 ottobre 2013 14 / 16

Page 51: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Lag window estimators of spectral density:

fL(λ) =1

∑|h|≤r

w

(h

r

)γ(h)e−ihλ

where w(0) = 1, |w(x)| ≤ 1, w(x) ≡ 0 ∀ |x | > 1. (several choices ofw(·) are used: Bartlett, Daniell,. . . ) . Remember

In(ωk) =∑|h|<n

γ(h)e−ihωk .

It is possible to show that

fL(λ) =1

π∫−π

W (x)In(λ+ x) dx ≈ 1

∑|k|≤[n/2]

W (ωk)In(g(n, λ) +ωk)2π

n

where W (x) = 12π

∑|h|≤r

w(h/r)e−ihx , In(·) extends the periodogram.

Lag windows estimators are thus not very different from discretespectral average estimators.

21 ottobre 2013 14 / 16

Page 52: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Lag window estimators of spectral density:

fL(λ) =1

∑|h|≤r

w

(h

r

)γ(h)e−ihλ

where w(0) = 1, |w(x)| ≤ 1, w(x) ≡ 0 ∀ |x | > 1. (several choices ofw(·) are used: Bartlett, Daniell,. . . ) . Remember

In(ωk) =∑|h|<n

γ(h)e−ihωk .

It is possible to show that

fL(λ) =1

π∫−π

W (x)In(λ+ x) dx ≈ 1

∑|k|≤[n/2]

W (ωk)In(g(n, λ) +ωk)2π

n

where W (x) = 12π

∑|h|≤r

w(h/r)e−ihx , In(·) extends the periodogram.

Lag windows estimators are thus not very different from discretespectral average estimators.

21 ottobre 2013 14 / 16

Page 53: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Lag window estimators of spectral density:

fL(λ) =1

∑|h|≤r

w

(h

r

)γ(h)e−ihλ

where w(0) = 1, |w(x)| ≤ 1, w(x) ≡ 0 ∀ |x | > 1. (several choices ofw(·) are used: Bartlett, Daniell,. . . ) . Remember

In(ωk) =∑|h|<n

γ(h)e−ihωk .

It is possible to show that

fL(λ) =1

π∫−π

W (x)In(λ+ x) dx ≈ 1

∑|k|≤[n/2]

W (ωk)In(g(n, λ) +ωk)2π

n

where W (x) = 12π

∑|h|≤r

w(h/r)e−ihx , In(·) extends the periodogram.

Lag windows estimators are thus not very different from discretespectral average estimators.

21 ottobre 2013 14 / 16

Page 54: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Confidence intervals for f (λ):

a method is based on theapproximation:

ν f (ωk)

f (ωk)∼ χ2(ν) with ν =

2m∑

k=−mW 2

n (k)

.

Testing for periodicities in a time series. For instance

H0: Xt = µ+ Zt with {Zt} ∼ IID N(0, σ2);

H1: Xt = µ+ A cos(ωt) + B sin(ωt) + Zt with{Zt} ∼ IID N(0, σ2), (A,B) 6= (0, 0).

21 ottobre 2013 15 / 16

Page 55: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Confidence intervals for f (λ): a method is based on theapproximation:

ν f (ωk)

f (ωk)∼ χ2(ν) with ν =

2m∑

k=−mW 2

n (k)

.

Testing for periodicities in a time series. For instance

H0: Xt = µ+ Zt with {Zt} ∼ IID N(0, σ2);

H1: Xt = µ+ A cos(ωt) + B sin(ωt) + Zt with{Zt} ∼ IID N(0, σ2), (A,B) 6= (0, 0).

21 ottobre 2013 15 / 16

Page 56: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Confidence intervals for f (λ): a method is based on theapproximation:

ν f (ωk)

f (ωk)∼ χ2(ν) with ν =

2m∑

k=−mW 2

n (k)

.

Testing for periodicities in a time series.

For instance

H0: Xt = µ+ Zt with {Zt} ∼ IID N(0, σ2);

H1: Xt = µ+ A cos(ωt) + B sin(ωt) + Zt with{Zt} ∼ IID N(0, σ2), (A,B) 6= (0, 0).

21 ottobre 2013 15 / 16

Page 57: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Other related topics

Confidence intervals for f (λ): a method is based on theapproximation:

ν f (ωk)

f (ωk)∼ χ2(ν) with ν =

2m∑

k=−mW 2

n (k)

.

Testing for periodicities in a time series. For instance

H0: Xt = µ+ Zt with {Zt} ∼ IID N(0, σ2);

H1: Xt = µ+ A cos(ωt) + B sin(ωt) + Zt with{Zt} ∼ IID N(0, σ2), (A,B) 6= (0, 0).

21 ottobre 2013 15 / 16

Page 58: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Testing for periodicities, 2

Under H0 (Xt = µ+ Zt) with ω = ωk , In(ωk) = 12‖PL(Ck ,Sk )Xn‖2.

Hence 2In(ωk) ∼ σ2χ2(2) and is independent of

‖Xn − PL(Ck ,Sk )Xn‖2 =n∑

t=1

X 2t − In(0)− 2In(ωk) ∼ σ2χ2(n − 3).

An F-test on(n − 3)In(ωk)∑n

t=1 X2t − In(0)− 2In(ωk)

can then test for H0 against H1.

The idea can be extended to more complex situations. Fisher’s test (seeTSTM) tests H0 against

H1 : Xt = µ+ Zt + f (t) with f a periodic function.

21 ottobre 2013 16 / 16

Page 59: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Testing for periodicities, 2

Under H0 (Xt = µ+ Zt) with ω = ωk , In(ωk) = 12‖PL(Ck ,Sk )Xn‖2.

Hence 2In(ωk) ∼ σ2χ2(2) and is independent of

‖Xn − PL(Ck ,Sk )Xn‖2 =n∑

t=1

X 2t − In(0)− 2In(ωk) ∼ σ2χ2(n − 3).

An F-test on(n − 3)In(ωk)∑n

t=1 X2t − In(0)− 2In(ωk)

can then test for H0 against H1.

The idea can be extended to more complex situations. Fisher’s test (seeTSTM) tests H0 against

H1 : Xt = µ+ Zt + f (t) with f a periodic function.

21 ottobre 2013 16 / 16

Page 60: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Testing for periodicities, 2

Under H0 (Xt = µ+ Zt) with ω = ωk , In(ωk) = 12‖PL(Ck ,Sk )Xn‖2.

Hence 2In(ωk) ∼ σ2χ2(2) and is independent of

‖Xn − PL(Ck ,Sk )Xn‖2 =n∑

t=1

X 2t − In(0)− 2In(ωk) ∼ σ2χ2(n − 3).

An F-test on(n − 3)In(ωk)∑n

t=1 X2t − In(0)− 2In(ωk)

can then test for H0 against H1.

The idea can be extended to more complex situations. Fisher’s test (seeTSTM) tests H0 against

H1 : Xt = µ+ Zt + f (t) with f a periodic function.

21 ottobre 2013 16 / 16

Page 61: P Proof of In k - UniTrento · Proof of I n(! k) = P jhj

Testing for periodicities, 2

Under H0 (Xt = µ+ Zt) with ω = ωk , In(ωk) = 12‖PL(Ck ,Sk )Xn‖2.

Hence 2In(ωk) ∼ σ2χ2(2) and is independent of

‖Xn − PL(Ck ,Sk )Xn‖2 =n∑

t=1

X 2t − In(0)− 2In(ωk) ∼ σ2χ2(n − 3).

An F-test on(n − 3)In(ωk)∑n

t=1 X2t − In(0)− 2In(ωk)

can then test for H0 against H1.

The idea can be extended to more complex situations. Fisher’s test (seeTSTM) tests H0 against

H1 : Xt = µ+ Zt + f (t) with f a periodic function.

21 ottobre 2013 16 / 16


Recommended