+ All Categories
Home > Documents > Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Date post: 02-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
16
Heat energy gained during melting . . . . . . . . . . 334 J/g Heat energy released during freezing . . . . . . . . 334 J/g Heat energy gained during vaporization . . . . . 2260 J/g Heat energy released during condensation . . . 2260 J/g Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . 1.0 g/mL New York State Fossil 2011 EDITION This edition of the Earth Science Reference Tables should be used in the classroom beginning in the 2011–12 school year. The first examination for which these tables will be used is the January 2012 Regents Examination in Physical Setting/Earth Science. Reference Tables for Physical Setting/EARTH SCIENCE Eccentricity = distance between foci length of major axis Gradient = change in field value distance Density = mass volume Rate of change = change in value time Equations RADIOACTIVE ISOTOPE DISINTEGRATION HALF-LIFE (years) Carbon-14 Potassium-40 Uranium-238 Rubidium-87 C 14 K 40 U 238 Rb 87 N 14 Pb 206 Sr 87 5.7 × 10 3 1.3 × 10 9 4.5 × 10 9 4.9 × 10 10 Ar 40 Ca 40 Specific Heats of Common Materials Radioactive Decay Data Properties of Water Average Chemical Composition of Earth’s Crust, Hydrosphere, and Troposphere MATERIAL SPECIFIC HEAT (Joules/gram • °C) Liquid water 4.18 Solid water (ice) 2.11 Water vapor 2.00 Dry air 1.01 Basalt 0.84 Granite 0.79 Iron 0.45 Copper 0.38 Lead 0.13 ELEMENT (symbol) CRUST HYDROSPHERE TROPOSPHERE Percent by mass Percent by volume Percent by volume Percent by volume Oxygen (O) 46.10 94.04 33.0 21.0 Silicon (Si) 28.20 0.88 Aluminum (Al) 8.23 0.48 Iron (Fe) 5.63 0.49 Calcium (Ca) 4.15 1.18 Sodium (Na) 2.36 1.11 Magnesium (Mg) 2.33 0.33 Potassium (K) 2.09 1.42 Nitrogen (N) 78.0 Hydrogen (H) 66.0 Other 0.91 0.07 1.0 1.0 Eurypterus remipes Page 1
Transcript
Page 1: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Heat energy gained during melting . . . . . . . . . . 334 J/g

Heat energy released during freezing . . . . . . . . 334 J/g

Heat energy gained during vaporization . . . . . 2260 J/g

Heat energy released during condensation . . . 2260 J/g

Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . 1.0 g/mL

New York State Fossil

2011 EDITIONThis edition of the Earth Science Reference Tables should be used in theclassroom beginning in the 2011–12 school year. The first examination forwhich these tables will be used is the January 2012 Regents Examination inPhysical Setting/Earth Science.

Reference Tables forPhysical Setting/EARTH SCIENCE

Eccentricity = distance between focilength of major axis

Gradient =change in field value

distance

Density =mass

volume

Rate of change =change in value

time

Equations

RADIOACTIVEISOTOPE

DISINTEGRATION HALF-LIFE(years)

Carbon-14

Potassium-40

Uranium-238

Rubidium-87

C14

K40

U238

Rb87

N14

Pb206

Sr87

5.7 × 103

1.3 × 109

4.5 × 109

4.9 × 1010

Ar40

Ca40

Specific Heats of Common MaterialsRadioactive Decay Data

Properties of Water

Average Chemical Compositionof Earth’s Crust, Hydrosphere, and Troposphere

MATERIAL SPECIFIC HEAT(Joules/gram • °C)

Liquid water 4.18

Solid water (ice) 2.11

Water vapor 2.00

Dry air 1.01

Basalt 0.84

Granite 0.79

Iron 0.45

Copper 0.38

Lead 0.13

ELEMENT(symbol)

CRUST HYDROSPHERE TROPOSPHEREPercent by mass Percent by volume Percent by volume Percent by volume

Oxygen (O) 46.10 94.04 33.0 21.0

Silicon (Si) 28.20 0.88

Aluminum (Al) 8.23 0.48

Iron (Fe) 5.63 0.49

Calcium (Ca) 4.15 1.18

Sodium (Na) 2.36 1.11

Magnesium (Mg) 2.33 0.33

Potassium (K) 2.09 1.42

Nitrogen (N) 78.0

Hydrogen (H) 66.0

Other 0.91 0.07 1.0 1.0

Eurypterus remipes

Page 1

Page 2: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Solar System Data

CelestialObject

Mean Distance from Sun

(million km)

Period ofRevolution

(d=days) (y=years)

Period ofRotation at Equator

Eccentricityof Orbit

EquatorialDiameter

(km)

Mass(Earth = 1)

Density(g/cm3)

SUN — — 27 d — 1,392,000 333,000.00 1.4

MERCURY 57.9 88 d 59 d 0.206 4,879 0.06 5.4

VENUS 108.2 224.7 d 243 d 0.007 12,104 0.82 5.2

EARTH 149.6 365.26 d 23 h 56 min 4 s 0.017 12,756 1.00 5.5

MARS 227.9 687 d 24 h 37 min 23 s 0.093 6,794 0.11 3.9

JUPITER 778.4 11.9 y 9 h 50 min 30 s 0.048 142,984 317.83 1.3

SATURN 1,426.7 29.5 y 10 h 14 min 0.054 120,536 95.16 0.7

URANUS 2,871.0 84.0 y 17 h 14 min 0.047 51,118 14.54 1.3

NEPTUNE 4,498.3 164.8 y 16 h 0.009 49,528 17.15 1.8

EARTH’SMOON

149.6(0.386 from Earth)

27.3 d 27.3 d 0.055 3,476 0.01 3.3

Characteristics of Stars(Name in italics refers to star represented by a .)

(Stages indicate the general sequence of star development.)

Color

Surface Temperature (K)

0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Lu

min

osi

ty(R

ate

at w

hich

a s

tar

emits

ene

rgy

rela

tive

to th

e S

un)

20,000 10,000 8,000 6,000 4,000 3,000

Blue Blue White White Yellow

2,000

RedOrange

Sirius

Spica

Polaris

Rigel

Deneb Betelgeuse

SUPERGIANTS(Intermediate stage)

(Intermediate stage)GIANTS

Barnard’sStar

ProximaCentauri

Pollux

Alpha Centauri

Aldebaran

Sun

Procyon B SmallStars

MassiveStars

WHITE DWARFS(Late stage)

MAIN SEQUENCE

(Early stage)

40 Eridani B

30,000

Page 2

Page 3: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

1–2�

silver togray

black streak,greasy feel

pencil lead,lubricants C Graphite

2.5 �metallicsilver

gray-black streak, cubic cleavage,density = 7.6 g/cm3

ore of lead,batteries PbS Galena

5.5–6.5 �black to

silverblack streak,

magneticore of iron,

steel Fe3O4 Magnetite

6.5 �brassyyellow

green-black streak,(fool’s gold)

ore ofsulfur FeS2 Pyrite

5.5 – 6.5or 1 �

metallic silver orearthy red red-brown streak ore of iron,

jewelry Fe2O3 Hematite

1 �white togreen greasy feel ceramics,

paper Mg3Si4O10(OH)2 Talc

2 �yellow toamber white-yellow streak sulfuric acid S Sulfur

2 �white to

pink or grayeasily scratched

by fingernailplaster of paris,

drywall CaSO4•2H2O Selenite gypsum

2–2.5 �colorless to

yellowflexible in

thin sheets paint, roofing KAl3Si3O10(OH)2 Muscovite mica

2.5 �colorless to

whitecubic cleavage,

salty tastefood additive,

melts ice NaCl Halite

2.5–3 �black to

dark brownflexible in

thin sheetsconstruction

materialsK(Mg,Fe)3

AlSi3O10(OH)2Biotite mica

3 �colorless

or variablebubbles with acid,

rhombohedral cleavagecement,

lime CaCO3 Calcite

3.5 �colorless

or variablebubbles with acidwhen powdered

buildingstones CaMg(CO3)2 Dolomite

4 �colorless or

variablecleaves in

4 directionshydrofluoric

acid CaF2 Fluorite

5–6 �black to

dark greencleaves in

2 directions at 90°mineral collections,

jewelry(Ca,Na) (Mg,Fe,Al)

(Si,Al)2O6Pyroxene

(commonly augite)

5.5 �black to

dark greencleaves at

56° and 124°mineral collections,

jewelryCaNa(Mg,Fe)4 (Al,Fe,Ti)3

Si6O22(O,OH)2

Amphibole(commonly hornblende)

6 �white to

pinkcleaves in

2 directions at 90°ceramics,

glass KAlSi3O8Potassium feldspar

(commonly orthoclase)

6 �white to

graycleaves in 2 directions,

striations visibleceramics,

glass (Na,Ca)AlSi3O8 Plagioclase feldspar

6.5 �green to

gray or browncommonly light green

and granularfurnace bricks,

jewelry (Fe,Mg)2SiO4 Olivine

7 �colorless or

variableglassy luster, may form

hexagonal crystalsglass, jewelry,

electronics SiO2 Quartz

6.5–7.5 �dark redto green

often seen as red glassy grainsin NYS metamorphic rocks

jewelry (NYS gem),abrasives Fe3Al2Si3O12 Garnet

HARD- COMMON DISTINGUISHINGLUSTER NESS COLORS CHARACTERISTICS USE(S) COMPOSITION* MINERAL NAME

Nonm

etal

lic lu

ster

*Chemical symbols: Al = aluminum Cl = chlorine H = hydrogen Na = sodium S = sulfur C = carbon F = fluorine K = potassium O = oxygen Si = siliconCa = calcium Fe = iron Mg = magnesium Pb = lead Ti = titanium

� = dominant form of breakage

Met

allic

lust

erEi

ther

FRAC

TURE

CLEA

VAG

E

Properties of Common Minerals

Physical Setting/Earth Science Reference Tables — 2011 Edition

Page 3

Page 4: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Myrtle Beach

Charleston

GreenvilleSpartanburg

Columbia

Myrtle Beach

Charleston

Greenville

Spartanburg

Columbia

Myrtle Beach

LaurensFairfield

Anderson

SpartanburgPickens

Oconee

GreenvilleCherokee

Greenwood

Lexington

Richland

ChesterfieldLancaster

York

ChesterUnion

NewberryAbbeville

Saluda

Edgefield

McCormick

Aiken

Horry

Dillon

Marlboro

Darlington

Florence

Marion

WilliamsburgClarendon

Sumter

Lee

Calhoun

Orangeburg

BarnwellBamberg

Allendale

Hampton

Colleton

Jasper

Berkeley

Georgetown

Charleston

Dorchester

Granite

Marble

Limestone

Dimension stone (granite) Shell (coquina)

Crushed Stone

Kaolin

Vermiculite

Beaufort

Cement (lime)River sand (dredging)

Sand

Sand/sand and Gravel

Kershaw

Common clay

Sericite

Myrtle Beach

Charleston

GreenvilleGreenvilleSpartanburg

Spartanburg

Charleston

ColumbiaColumbia

Gold

Weathered slate and kaolin (used for brick)

Weathered slate and common clay (used for brick)

Various Clays

Sand and Gravel Gold and Industrial Minerals

Industrial sandPeat

Horry

Marion

Dillon

Marlboro

In 1999, South Carolina ranked 24th among the 50 States in the total nonfuel mineral production. The estimated value of 1999 was $574 million, according to the U.S. Geological Survey (USGS). This was a 2% increase from 1998. The State accounted for nearly 1.5% of the U.S. total of nonfuel mineral production.

On the basis of USGS estimates (of the quantities produced in the 50 states) for 1999, South Carolina remained first of two states that produced vermiculite, second in kaolin, fourth in masonry cement and mica (sericite), sixth in common clays, and tenth in Portland cement and gold (only gold-producing state east of the Mississippi River).

Modified from: South Carolina Principal Nonfuel Mineral Producing Counties, by Clark A. Niewendorp, SCGS Open File Report #112, 1998

Sources: South Carolina Geological Survey, Mineral Resource Map of South Carolina, 1997 U.S. Geological Survey, 1999 Mineral Production Data

SOUTH CAROLINA PRINCIPAL NONFUEL MINERAL PRODUCING COUNTIES

Laurens

Oconee

Pickens

Greenville

Spartanburg

Anderson

Abbeville

Greenwood

McCormick

Edgefield

Aiken

Saluda

Newberry

Union

Fairfield

Chester

Cherokee

York

Lancaster

Kershaw

Richland

Lee

Sumter

Chesterfield

Darlington

Lexington

Calhoun

Orangeburg

Allendale

BarnwellBamberg

Colleton

Hampton

Jasper

Beaufort

Charleston

Dorchester

Berkeley

Clarendon Williamsburg

Florence

Georgetown

Laurens

Oconee

Pickens

Greenville

Spartanburg

Anderson

Abbeville

Greenwood

McCormick

Edgefield

Aiken

Saluda

Newberry

Union

Fairfield

Chester

Cherokee

York

Lancaster

Kershaw

Richland

Lee

Sumter

Chesterfield

Darlington

Lexington

Calhoun

Orangeburg

Allendale

BarnwellBamberg

Colleton

Hampton

Jasper

Beaufort

Charleston

Dorchester

Berkeley

Clarendon Williamsburg

Florence

Georgetown

Horry

Marion

Dillon

Marlboro

Laurens

Oconee

Pickens

Greenville

Spartanburg

Anderson

Abbeville

Greenwood

McCormick

Edgefield

Aiken

Saluda

Newberry

Union

Fairfield

Chester

Cherokee

York

Lancaster

Kershaw

Richland

Lee

Sumter

Chesterfield

Darlington

Lexington

Calhoun

Orangeburg

Allendale

BarnwellBamberg

Colleton

Hampton

Jasper

Beaufort

Charleston

Dorchester

Berkeley

Clarendon Williamsburg

Florence

Georgetown

Horry

Marion

Dillon

Marlboro

South Carolina Geological SurveyEducational Series #6

Page 4

Page 5: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Ero

s ion

Wea

ther

ing

&E

rosi

on(U

plift

)

Metam

orphism

MeltingSolid

ificat

ionMeltingWeathering & Erosion

(Uplift)

Metamorphism

Weathering & Erosion

(Uplift)

Heat and/or Pressure

Heatand /or

Pressure

Melting

Cementation and Burial

Compactio

n and/or Deposition

IGNEOUSROCK

SEDIMENTS

MAGMA

METAMORPHICROCK

SEDIMENTARYROCK

0.0001

0.001

0.01

0.1

1.0

10.0

100.0

PAR

TIC

LE

DIA

ME

TE

R (

cm)

Boulders

Cobbles

Pebbles

Sand

Silt

Clay

1000500

50100

10510.5

0.10.05

0.01

STREAM VELOCITY (cm/s)

This generalized graph shows the water velocityneeded to maintain, but not start, movement. Variationsoccur due to differences in particle density and shape.

25.6

6.4

0.2

0.006

0.0004

Rock Cycle in Earth’s Crust

Scheme for Igneous Rock Identification

Relationship of TransportedParticle Size to Water Velocity

Pyroxene(green)

Amphibole(black)

Biotite(black)

Potassiumfeldspar

(pink to white)

(rel

ativ

e by

vol

ume)

MIN

ER

AL

CO

MP

OS

ITIO

N

Quartz(clear towhite)

CH

AR

AC

TE

RIS

TIC

S

MAFIC(rich in Fe, Mg)

HIGHER

DARKER

FELSIC(rich in Si, Al)

LOWER

LIGHTER

CRYSTALSIZE

TEXTURE

Pumice

INT

RU

SIV

E(P

luto

nic)

EX

TR

US

IVE

(Vol

cani

c)

EN

VIR

ON

ME

NT

OF

FO

RM

AT

ION

Plagioclase feldspar(white to gray)

Olivine(green)

COMPOSITION

DENSITY

COLOR

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

IGN

EO

US

RO

CK

S

non-

crys

talli

ne

GlassyBasaltic glassObsidian

(usually appears black)

less

than

1 m

m FineBasaltAndesiteRhyolite

1 m

mto

10

mm

CoarsePeri-dotiteGabbro

DioriteGranite

Pegmatite

10 m

mor

larg

er Verycoarse

Scoria Vesicular(gas

pockets)

Du

nit

e

Non-vesicular

Non-vesicular

Vesicular basaltVesicular rhyolite Vesicularandesite

Diabase

Page 5

Page 6: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

INORGANIC LAND-DERIVED SEDIMENTARY ROCKS

COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Rounded fragments

Angular fragmentsMostlyquartz,feldspar, andclay minerals;may containfragments ofother rocksand minerals

Pebbles, cobbles,and/or bouldersembedded in sand,silt, and/or clay

Clastic(fragmental)

Very fine grain

Compact; may spliteasily

Conglomerate

Breccia

CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS

Crystalline

Halite

Gypsum

Dolomite

Calcite

Carbon

Crystals fromchemicalprecipitatesand evaporites

Rock salt

Rock gypsum

Dolostone

Limestone

Bituminous coal

. . . . .. . . .

Sand(0.006 to 0.2 cm)

Silt(0.0004 to 0.006 cm)

Clay(less than 0.0004 cm)

Sandstone

Siltstone

Shale

Fine to coarse

COMPOSITIONTEXTURE GRAIN SIZE COMMENTS ROCK NAME MAP SYMBOL

Fineto

coarsecrystals

Microscopic tovery coarse

Precipitates of biologicorigin or cemented shellfragments

Compactedplant remains

. . . . .. . . .

Bioclastic

Crystalline orbioclastic

FO

LIA

TE

D

Fine

Fineto

medium

Mediumto

coarse

Regional

Low-grademetamorphism of shale

Platy mica crystals visiblefrom metamorphism of clayor feldspars

High-grade metamorphism;mineral types segregatedinto bands

Slate

Schist

Gneiss

COMPOSITIONTEXTUREGRAINSIZE COMMENTS ROCK NAME

TYPE OFMETAMORPHISM

(Heat andpressureincreases)

MIN

ER

AL

ALI

GN

ME

NT

BA

ND

-IN

G

MAP SYMBOL

Foliation surfaces shinyfrom microscopic micacrystals

Phyllite

GA

RN

ET

PY

RO

XE

NE

FE

LD

SPA

R

AM

PH

IBO

LE

MIC

AQ

UA

RT

Z

Hornfels

NO

NF

OLI

AT

ED

Metamorphism ofquartz sandstone

Metamorphism oflimestone or dolostone

Pebbles may be distortedor stretched

Metaconglomerate

Quartzite

Marble

Coarse

Fineto

coarse

Quartz

Calcite and/ordolomite

Variousminerals

Contact(heat)

Various rocks changed byheat from nearbymagma/lava

VariousmineralsFine

Anthracite coalRegional Metamorphism ofbituminous coalCarbonFine

Regional

or

contact

Scheme for Metamorphic Rock Identification

Scheme for Sedimentary Rock IdentificationPage 6

Page 7: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Inferred Properties of Earth’s InteriorPage 7

Page 8: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Peru-Chile Trench

Haw

aii

Hot

Spo

t

San

And

reas

Fau

lt

Juan

de

Fuc

a P

late

Phi

lippi

neP

late

Ale

utia

nT

renc

hY

ello

wst

one

Hot

Spo

t

Nor

th A

mer

ican

Pla

te

Afr

ican

Pla

teC

ocos

Pla

teC

arib

bean

Plat

e

Mid-Atla

nticRidge C

anar

yIs

land

sH

ot S

pot

Sout

hA

mer

ican

Pla

te

Gal

apag

osH

ot S

pot

Naz

caP

late

Ant

arct

icP

late

Indi

an-A

ustr

alia

nP

late

Pac

ific

Pla

teF

iji P

late

Eas

tPacific

Ridge

Ant

arct

icP

late

Arabian

Plate

Eur

asia

nP

late

Eur

asia

nP

late

Icel

and

Hot

Spo

t

EastAfricanRiftM

id

-Indian Ridge

South

east

Indi

anR

idge

South

west I

ndia

n

Ridge

Scot

iaP

late

Sand

wic

hP

late

Mid-AtlanticRidge

Eas

ter

Isla

ndH

ot S

pot

St.

Hel

ena

Hot

Spo

t

Bou

vet

Hot

Spo

t

Key

NO

TE

:N

ot a

ll m

antle

hot

spo

ts, p

late

s, a

ndbo

unda

ries

are

show

n.

Com

plex

or

unce

rtai

npl

ate

boun

dary

Rel

ativ

e m

otio

n at

plat

e bo

unda

ryM

antle

hot s

pot

Div

erge

nt p

late

bou

ndar

y(u

sual

ly b

roke

n by

tran

sfor

mfa

ults

alo

ng m

id-o

cean

rid

ges)

Con

verg

ent p

late

bou

ndar

y(s

ubdu

ctio

n zo

ne)

subd

uctin

gpl

ate

over

ridin

gpl

ate

Tran

sfor

m p

late

bou

ndar

y(t

rans

form

faul

t)

Tec

ton

ic P

late

s

Tas

man

Hot

Spo

t

M

ariana Trench

TongaTrench

page 8

Page 9: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

EPICENTER DISTANCE (× 103 km)

P

9 10

S

TR

AV

EL

TIM

E (

min

)

00

Physical Setting/Earth Science Reference Tables — 2011 Edition

Earthquake P-Wave and S-Wave Travel Time

page 9

Page 10: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

page 10

Page 11: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Geologic Time Scale for South Carolina(not scaled for geologic time or thickness of deposits)

EON ERA PERIOD EPOCH Geologic Events in South Carolina MYA*

Renewed sea floor spreading; intrusion of N-S and NW-SE trendingdiabase (basaltic) dikes. Great North American intrusive event.

Breakup of the supercontinent Pangea. Triassic rift-basinsdevelop and fault activity.

Alleghanian Orogeny - closing of the Iapetus Ocean accompaniedby continental collision and formation of the supercontinent Pangea.Rocks related to South Carolina are folded and thrusted; some rocks may have been metamorphosed.

Time of uplift and erosion.

Arcadian Orogeny - rocks related to South Carolina may have beenfolded, faulted, and metamorphosed.

Laurentia and western South America/Africa shear apart as theGondwanian supercontinent breakup begins.

Taconic Orogeny - collision of Laurentia with western SouthAmerica/Africa; Gondwanian supercontinent forms. Rocks relatedto South Carolina are folded, sheared/faulted, and metamorphosed.

Deposition of volcanic and sedimentary rocks found in the Slatebelt.

Opening of the Iapetus Ocean (750 to 700 million years ago) andcontinental rifting of Laurentia's (North America) eastern margin.

Grenville Orogeny (1,100 million years ago) metamorphosedbasement rocks and rocks related to the Blue Ridge. Oldest rockdated in South Carolina is 1,200 million years old.

Oldest known rock in U.S. - 3,600 million years old. Oldest known rock inworld - 3,850 million years old. Formation of the Earth - 4,600 million years old.

Uplift and erosion of Piedmont and mountains. Fluvial sedimentsspread over the Coastal Plain. Sandhill dunes deposited.

Coastal Plain sediments reflect large-scale regressive cycles. Off-lap of the ocean and scouring responsible for the Orangeburg scarp.

Surficial deposits cover the underlying Coastal Plain formations. Carolina Bays develop; scarps form due to sea level rise and fall.

Barrier Islands formed; flood plains of major rivers established.HOLOCENE

PLEISTOCENE

PLIOCENE

MIOCENE

OLIGOCENE

EOCENE

PALEOCENE

QUATERNARY

TERTIARY

CRETACEOUS

JURASSIC

TRIASSIC

PERMIAN

PENNSYLVANIAN

MISSISSIPPIAN

DEVONIAN

SILURIAN

ORDOVICIAN

CAMBRIAN

PROTEROZOIC EONARCHEAN EONPRE

CAMBRIA

NP

HA

NE

RO

ZO

IC

PALE

OG

EN

EN

EO

GE

NE

* Estimated age in millions of years.

4,600

3,800

2,500

570

510

438

408

355

320

290

250

205

135

65

53

36.6

23

5.3

1.6

0.01

Time of uplift and erosion.

Empla

ceme

nt of

igneo

us in

trusio

ns

Based on the 1989 Global Stratigraphic Chart, International Union of Geological Sciences.

Development of the Cape Fear Arch and South Georgia Embaymentinfluences deposition of Coastal Plain formations. Fault activity.

Sand deposited in upper Coastal Plain; limestone deposited inmiddle and lower Coastal Plain. Fault activity.

Deposition of carbonates predominate. Arches and embaymentscontinue to influence deposition of Coastal Plain formations.

Fluvial, marginal marine and marine Coastal Plain sedimentsdeposited.

MYA = million years ago

MES

OZOI

CPA

LE

OZ

OIC

CE

NO

ZO

IC

page 11

Page 12: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

AZ

MZ

GH/SH

KMSZ

S

BR

SZ

CA

LSZ

RRBZ

BTSZ

SS

SS

OSSIGNIFICANT STRUCTRALFEATURES

SIGNIFICANT WAVE-CUT SCARPS

AZ Augusta zone

BZ Brevard zone

BRSZ Buzzards Roost shear zone

CA Cross Anchor fault

RR Reedy River fault zone

GH/SH Gold Hill / Silver Hill shear zone

KMSZ Kings Mountain shear zone

LSZ Lowndesville shear zone

S

OS

SS

Seneca thrustAugusta terrane

Blue Ridge

Charlotte terrane

Carolina terrane (slate belt)

Chauga belt

Laurens thrust stack

Sixmile thrust sheet

Walhalla thrust sheet

Kings Mountain terrane

Savannah River terrane

BLUE RIDGE AND PIEDMONT

COASTAL PLAINQUATERNARY

TERTIARY

CRETACEOUS

TRIASSIC

IGNEOUS ROCKS

Holocene

Pleistocene

Pliocene

Paleocene, Eocene,and Miocene

Upper Cretaceous

Triassic basins

Gabbro

Granite

DESCRIPTION OF MAP UNITS

Generalized Geologic Map of South Carolina2005

N

South CarolinaDepartment of Natural Resources

Geological SurveySouth Carol inaDepartment of

Natural Resources

Geological Survey1825

0 40 kilometers10 302010

0 40 miles10 302010

BTSZ Boogertown shear zone

Orangeburg Scarp

Surry Scarp

Revised by Willoughby, Howard, and Nystrom, 2005

Original compilation by Maybin and Nystrom, 1997

MZ Modoc shear zone

page 12

Page 13: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Su

rfac

e O

cean

Cu

rren

tspage 13

Page 14: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Physical Setting/Earth Science Reference Tables — 2011 Edition

Gamma rays

X rays

Ultraviolet Infrared

Microwaves

Radio waves

Visible light

Violet Blue Green Yellow Orange Red

Decreasing wavelength Increasing wavelength

(Not drawn to scale)

Electromagnetic Spectrum

Planetary Wind and MoistureBelts in the Troposphere

The drawing on the right shows the locations of the belts near the time of anequinox. The locations shift somewhatwith the changing latitude of the Sun’s vertical ray. In the Northern Hemisphere,the belts shift northward in the summerand southward in the winter.

(Not drawn to scale)

Selected Properties of

Earth’sAtmosphere

page 14

Page 15: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

Temperature

Freezingrain

Haze

Rain

FogSnow

Hail Rainshowers

Thunder-storms

Drizzle

Sleet

Smog

Snowshowers

Air Masses

cA

cP

cT

mT

mP

continental arctic

continental polar

continental tropical

maritime tropical

maritime polar

Cold

Warm

Stationary

Occluded

Present Weather Fronts Hurricane

Tornado

Pressure

196

+19/

.25

28

27

12

Station Model Station Model Explanation

Water boils220

200

180

160

140

120

100

80

60

40

20

0

–20

–40

–60

Room temperature

Water freezes

110

100

90

80

70

60

50

40

30

20

10

0

–10

–20

–30

–40

–50

380

370

360

350

340

330

320

310

300

290

280

270

260

250

240

230

220

One atmosphere

30.701040.0

1036.0

1032.0

1028.0

1024.0

1020.0

1016.0

1012.0

1008.0

1004.0

1000.0

996.0

992.0

988.0

984.0

980.0

976.0

972.0

968.0

30.60

30.50

30.40

30.30

30.20

30.10

30.00

29.90

29.80

29.70

29.60

29.50

29.40

29.30

29.20

29.10

29.00

28.90

28.80

28.70

28.60

28.50

Key to Weather Map Symbols

Physical Setting/Earth Science Reference Tables — 2011 Edition

page 15

Page 16: Page 1 Reference Tables for Physical Setting/EARTH SCIENCE

1– 33– 28– 24– 21–18–14–12–10– 7– 5– 3–11468

10121416192123252729

2

– 36– 28– 22–18–14–12– 8– 6– 3–11368

111315171921232527

0– 20–18–16–14–12–10– 8– 6– 4– 2

02468

1012141618202224262830

– 20–18–16–14–12–10– 8– 6– 4– 2

02468

1012141618202224262830

3

– 29– 22–17–13– 9– 6– 4–11469

1113151720222426

4

– 29– 20–15–11– 7– 4– 2

1469

11141618202224

5

– 24–17–11– 7– 5– 2

1479

121416182123

6

–19–13– 9– 5– 2

147

101214171921

7

– 21–14– 9– 5– 2

147

1012151719

8

–14– 9– 5–1248

10131618

9

– 28–16–10– 6– 2

258

111416

10

–17–10– 5–2369

1114

11

–17–10– 5–1269

12

12

–19–10– 5–137

10

13

–19–10– 5

048

14

–19–10– 4

15

15

–18– 9– 3

1

12840485561667173777981838586878888899091919292929393

2

1123334148545863677072747678798081828384858686

0100100100100100100100100100100100100100100100100100100100100100100100100100100

– 20–18–16–14–12–10– 8– 6– 4– 2

02468

1012141618202224262830

3

1320323745515659626567697172747576777879

4

112028364246515457606264666869707172

5

111202735394348505456586062646566

6

61422283338414548515355575961

7

10172428333740444649515355

8

61319252933364042454749

9

410162126303336394244

10

28

1419232730343639

11

17

12172125283134

12

16

111520232629

13

51014182125

14

49

131720

15

49

1216

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)Dry-BulbTempera -ture (°C)

Dry-BulbTempera -ture (°C)

Dewpoint (°C)

Relative Humidity (%)

Physical Setting/Earth Science Reference Tables — 2011 Edition

page 16


Recommended