+ All Categories
Home > Documents > P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB...

P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB...

Date post: 05-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
62
26.09.2012 1 Smallscale Pyrolysis Technologies for Communities with Little Infrastructure A presentation to the First Biochar Summer School, 9 – 15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) [email protected] & www.drtlud.com Chip Energy Ltd and Biomass Energy Foundation (BEF) Outline Concepts and Practices Products and Process Characteristics Benefits and Risks Potential for Regions with Low Infrastructure
Transcript
Page 1: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

1

Small‐scale PyrolysisTechnologies for Communities 

with Little InfrastructureA presentation to the 

First Biochar Summer School,

9 – 15 September 2012, 

At ATB in Potsdam, Germany

Paul S. Anderson (Dr TLUD)[email protected] & www.drtlud.com

Chip Energy Ltd and 

Biomass Energy Foundation (BEF)

Outline

• Concepts and Practices

• Products and Process Characteristics

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Page 2: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

2

Outline

• Concepts and Practices

• Products and Process Characteristics

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Four Essential Componentsin Any Successful Stove Project

• Fuels: Stored and available energy.

• Combustion Devices: Release of the energy.  This is our focus!

• Applications: Uses of the energy.

• Human Factors: Costs, availability, cooking preferences, sizes, social perceptions, marketing, etc.

Page 3: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

3

• Concepts of Pyrolysis (and “carbonization”):– The ONLY way to make charcoal >>– ENDOthermic – requires heat  – Anoxic (external heat; no flame on biomass)

• Retorts (important but needs separate discussion)

– Oxic (flame present on biomass gives heat)• Regular fires with 1) pyrolysis, 2) char‐gasification and       3) combustion of gases       (plus ash and emissions, if any)

• Gasifiers with separation of 1, 2, & 3 because of controlled entry of air/oxygen and controlled exit of gases

– Downdraft, Updraft, Top‐Lit UpDraft (TLUD)

• Others: Semi‐gasifiers (less control of access to oxygen)

– Hydro Thermal, etc.  (other presentations cover these)

• Sizes of Pyrolysis devices/systems– From Gigantic to Micronot from hydrocarbons

from carbohydrates,not hydrocarbons. 

• Concepts of Pyrolysis (Enlarge  A)

(and “carbonization”):– The ONLY way to make charcoal >>

– ENDOthermic – requires heat  – Anoxic (external heat; no flame on biomass)

• Retorts (important but needs separate discussion)– Oxic (flame present on biomass gives heat)

• Regular fires with 1) pyrolysis, 2) char‐gasification and       3) combustion of gases       (plus ash and emissions, if any)• Gasifiers with separation of 1, 2, & 3 because of controlled entry of air/oxygen and controlled exit of gases

– Downdraft, Updraft, Top‐Lit UpDraft (TLUD)• Others: Semi‐gasifiers (less control of access to oxygen)

– Hydro Thermal, etc.  (see other presentations )

• Sizes of Pyrolysis devices/systems– From Gigantic to Micro

from carbohydrates,  not hydrocarbons. 

Page 4: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

4

(Enlarge  B)• Concepts of Pyrolysis (and “carbonization”):

– The ONLY way to make charcoal >>– ENDOthermic – requires heat  

–Anoxic (external heat; no flame on biomass)• Retorts (important but needs separate discussion)

–Oxic (flame present on biomass gives heat)• Regular fires with   1) pyrolysis,  2) char‐gasification and       3) combustion of gases       (plus ash and emissions, if any)

• Gasifiers with separation of 1, 2, & 3 because of controlled entry of air/oxygen and controlled exit of gases

–Downdraft, Updraft, Top‐Lit UpDraft (TLUD)• Others: Semi‐gasifiers (less control of access to oxygen)

– Hydro Thermal, etc.  (other presentations cover these)• Sizes of Pyrolysis devices/systems

– From Gigantic to Micronot from hydrocarbons

from carbohydrates,  not hydrocarbons. 

Gasifiers• Devices in which dry biomass is transformed into combustible gases in processes distinctly and controllably separate in time and location from the eventual use (combustion) of the gases. 

• There are several types and many designs: – DownDraft

– UpDraft

– Top‐Lit UpDraft TLUD (tee‐lud)

• Their chars can be different!!

Page 5: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

5

Three Basic Designs of GasifiersName &

Draft 

Direction

Fuel

moves

Gases 

move

Position 

of  fire

Char

created

Char 

removal

Char

specs.

DownDraft Down Down Bottom Very hot 

>800 C

Difficult,

In hot 

spot

UpDraft Down Up Bottom Can be

Varied

450  to 

800+ C

Below 

hot spot

Top‐Lit

UpDraft

Static

(batch)

Up Migrates

down

450 to 

650 C

End of 

batch

CrossDraft

and others

Relatively uncommon and  not very important.

Characteristics of Three GasifiersDownDraftFuel enters top

continuously and 

moves downward

UpDraftFuel enters top

continuously and 

moves downward

Top‐Lit UpDraftFuel is batch loaded 

and batch unloaded 

usually at top

Primary air above or at 

hot zone and gases 

move downward

Primary air enters 

below or at hot zone 

and gases move 

upward

Primary air enters at 

bottom and moves 

upward to the pyrolysis

front and continue up

Fire at bottom and 

stays at bottom.  Hot 

char is created and 

consumed unless 

removed with difficulty

Fire at bottom and 

stays at bottom.  Char 

is created and is 

removed quite easily if 

desired

Pyrolysis front starts at 

top and migrates 

downward until 

completion

Gases exit at bottom 

after passing through 

the hot char

Gases exit at the top 

and do NOT pass 

through the char

Gases exit at the top 

and DO pass through 

the char, with some 

possible secondary 

deposition

Page 6: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

6

Gases rise  & charcoal forms from upper fuel when

pyrolysis progresses downward

into the raw fuel.

Secondary air enters

Combustion zone & heat application

* * * * *

“Reactor” or gas generation device or pyrolysis unit, including fuel chamber inside.

ND = Natural Draft

“Champion” TLUD‐ND gasifier (2008) 

Micro‐Gasifiers• Only a few gasifier designs function with stove‐sized fires and can be called “micro‐gasifiers,” including most of the TLUD (tee‐lud) stoves. 

• Even fewer can make biochar!  

• TLUDs do make biochar!!

• And virtually ALL of the biochar is created before any of the char is consumed by char‐gasification.

Page 7: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

7

TLUD Gasifiers Can Make Biochar• Flaming (glowing) pyrolysis with very limited supply of air.   This is NOT a retort.

• Usually 15% to 22% yield of biochar by weight.

• Control of primary air supply impacts the characteristics (quality) and quantity of biochar.   Can make “designer biochar” with forced air.

• More primary air = higher temperatures = different characteristics and lower yield.

• Ref:  “All biochars are not created equal…”http://www.biochar‐international.org/sites/default/files/All‐

Biochars‐‐Version2‐‐Oct2009.pdf and at    www.drtlud.com

Outline

• Concepts and Practices

• Products and Process Characteristics–TLUD stoves and barrels

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Page 8: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

8

Photos of Champion Gasifiers Made and Used in India – 2009 to present

A product of Servals Automation, Chennai, Tamil Nadu, India.

http://servalsgroup.blogspot.com/2009/05/tlud‐gasifier‐stoves‐wood‐stove‐with.html

Variations of TLUD gasifier cookstoves.[ Top row is with fans. ]

Page 9: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

9

Nurhuda’s TLUDs in IndonesiaThe newest model, UB‐03‐1, sells for ~US$12.

Intentionally designed to appear similar to a kerosene (parafin) stove.

Mwoto TLUDUganda

All metal:  Mild steel

$16 retail

Over 2000 units in 2 years

Page 10: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

10

Quad TLUD• Functionally equivalent to the Mwoto TLUD.

• “Tab & slot” assembly.

• Pieces shipped flat to local places of assembly.

• Handles do not get hot.

Dr TLUD conducts training worldwide.

Page 11: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

11

TChar Variations of TLUDs

T‐BaseT‐Top

Lift off the pyrolyzer T‐Top and the hot charcoal falls down into the charcoal stove for COOKING.Originated by Christa Roth and Paul Anderson during the 2011 Gasifier Stove Camp held at CREEC.

Rice Hull TLUD (with Forced Air)Development in Vietnam by Paul Olivier based on concepts by Alexis Belonio

Production in three sizes, all in stainless steel.

No more than about 2 watts is requiredto power the 150 gasifer.

Page 12: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

12

Finca Stove in Costa RicaArt Donnelly and SeaChar

• A stove project cacao growers, with biochar.

• Stove production by a cooperative of women.

• Participation with university social researchers.

• Larger than most TLUDs; uses a 20‐liter (5‐gallon) bucket as its fuel chamber.

The Progress Ahead• Dr TLUD estimates that only about 20% of what can be known about TLUD gasifiers has been discovered.   80% awaits our efforts.

• By 2020 there needs to be 30 million TLUD micro‐gasifier stoves into the developing societies.   Currently there are fewer than one million.

• Welcome to the frontiers of science and humanitarian service!!!

Page 13: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

13

• Continued leadership in low emissions and fuel savings

• Fan Assisted (FA) options

• Experimentation with materials

• Variations in sizes and uses

• Biochar production while using the heat

• TChar variations of TLUDs

• Prospects for mass production

• Applications of the TLUD heat

Each of these can be discussed in more detail.

Some Further Developments of Mwoto TLUD Stoves

Barrel‐sizeMicro‐gasification for Combined Heat and Biochar (CHAB)

in “Mini” Industries

Paul S. Anderson

Page 14: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

14

Alex English Earliest (2000)   &    Largest (~2009)

India conference                     Canada:  42” diameter, 6 ft high; with forced air

John RogersFlorida

Mr. John Rogers made operational a 4‐barrel arrangement to produce biochar at his property in Florida, USA. 

His work is well represented by his YouTube video at:http://www.youtube.com/watch?v=dqkWYM7rYpU

The combustors on top of the barrels do not need to be as elaborate as shown.

Page 15: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

15

JR‐OvenKarl Frogner

UB International

Jolly Roger Oven   J‐RO    2011

Doug Clayton & Hugh McLaughlin

Retort above a TLUD gasifier

Page 16: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

16

RE:Char – Kenya & USA

BottomlessBiocharBarrel

Paul Anderson 

Can be used in fields where the fuel source is close and the biocharis deposited.  

Page 17: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

17

Biochar Barrel (without bottom)

Biochar barrel without bottom. After removal of the combustor top (with chimney), place a standard lid to prevent the upward drafting of sparks.  Right:  Steam when dousing.

Page 18: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

18

Irregular‐Walled TLUD for Biochar Production**   ~ 10 to 12 ft linear metal wall supports 3 x 3

ft combustor top.**    With 2 – 3 ft height of wall.**    No bottom.  Sits on bare earth.**    Lacks stability for the chimney.**    Rain‐spout (left) for primary air into center.**    Very portable and low cost.

Using the Heat (CHAB)

• CHAB = Combined Heat and Biochar

• Uses include:

Page 19: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

19

Paramont Dairy ‐‐ Uganda

**Now fully functional for making cheese and yogurt.**Preferred fuel is papyrus reeds.

Operational prototype. 

Cacao Dryer – Costa Rica

A very appropriate use of barrel‐size TLUD technology, while yielding biochar.Not yet implemented.

Page 20: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

20

Barrel‐size Micro‐gasification for Combined Heat and Biochar (CHAB) 

in “Mini” Industries

A written document by Paul S. Anderson, PhDFor the ETHOS Conference in

Seattle‐Kirkland, WA on 29 January 2012Available at:      www.drtlud.com and also at: 

http://www.vrac.iastate.edu/ethos/files/ethos2012/SunAM/Anderson_Microgasification%20for%20combined%20heat%20and%20biochar%20in%20Mini%20Industries.pdf

Manual by Christa Roth for HERA‐GIZ

Micro-gasification:Cooking with gas from biomass

An introduction to the concept and the applications of wood-gas burning technologies for cooking

100 pages.  

Since February 2011 it has been available on 

the Internet from GIZ ‐ HERA

Page 21: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

21

Outline• Concepts and Practices

• Products and Process Characteristics–DownDraft gasifiers (none described)

–UpDraft gasifiers (AVUD by Chip Energy)

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Chip Energy AVUD Production• Chip Energy has a distinctive 

process of up‐draft gasification, with the DUAL purposes of making thermal energy and biochar, which is CHAB.

• For centuries, furnace innovations have been focused on NOT leaving behind any carbon atoms.

• Chip Energy Technology can control some biochar characteristics.

• Small size favors decentralized applications, widely distributed feedstocks, and local control.

60 kW of power

Flash boiler for hydronic heating.

Fuel hopper

Gasifier

Page 22: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

22

Chip Energy “Dragon” and Furnace

AVUD technology for continuous automated operation producing ~250,000 BTU/hr and 80 lbs of biochar per day.Left: Basic unit $15,000.      Right: With hydronic heating system and large fuel hopper in a container $50,000. 

Chip Energy Biomass Furnace• Per 24 hr 

period, input of 500 lbs of biomass

• will yield nearly 100 lbs of biochar & 

• produce up to 200,000 Btu/Hr of thermal energy. 

This unit with 60 kW power, is built into a 20 ft shipping container, with elevated fuel hopper, to heat a biodigestor 24/7/365.  It can create biochar representing 40 tons of CO2/yr removed from the atmosphere.

Page 23: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

23

Chip Energy AVUD Technology

• Continuous operation, can be fully automated with PLC.

• Do not confuse the heat generating gasifierwith the devices to utilize the heat, such as heat exchangers.  

• The gasifier system will become relatively inexpensive, and the applications can be quite costly (or may already be in place).

Chip Energy Biochar Characteristics

Chip Energy

Biochar Material

Received Optimum

2.6 Water 0

0.0 Volatile (HO) 0

4.8 Volatile (C ) 0

0.1 Volatile (N) 0

36.7 Fixed (HO) 39.7

50.6 Fixed (C ) 54.7

0.3 Fixed (N) 0.3

4.1 Sol. Ash 4.4

0.8 non-Sol Ash 0.9

100.0 SUM 100.0

Page 24: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

24

Background of AVUD Technology“Anderson Variation UpDraft” Gasification

• After previous failed attempts, in 2004 Paul Anderson accomplished continuous operation of updraft micro‐gasification in a 20 liter bucket.

• In 2006 he started working with Paul Wever, a manufacturer of custom construction equipment.  They created Chip Energy for fuels and furnaces.

• With an SBIR grant in 2007 from the US EPA, they built their first automated Biomass Furnace.  Its testing revealed extremely clean combustion.

• The rise of interest in biochar just happened to coincide with the Chip Energy ability to produce it.

Abundant Renewable Dry Biomass(but people only use a highly selective small fraction for energy)

Wood is the main biomass fuel.  Its appeal can lead to the problems of deforestation exactly in the most environmentally sensitive locations. 

Tree‐wastes sawdust (pellets), trimmings, twigs, seedpods, leaves, coconut shells/husks/fronds, etc.,

Agro‐wastes stems, hulls, husks, roots, cobs, by‐products, dung, etc., some into biomass briquettes,

Urban wastes discarded combustibles including paper/cardboard, some D&C, and dried sewage,

Environmental excesses bamboo, dried aquatic invaders, etc.

Page 25: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

25

Assuring Sufficient Fuels:Biomass Conversion Facility

• Adequate raw biomass is abundant.

• Preparation of appropriately sized biomass fuels needs to be facilitated.

• Chip Energy has designed an innovative low-cost “Biomass Conversion Facility” to process 100 tons per day into usable biomass fuel.

• One or more in every USA county to process local (100 km radius) biomass.

Biomass Conversion Facility

Economical biomass recovery and processing is possible in the BCF designed and constructed by Chip Energy.

100 tons of biomass processed per day, or 25,000 t per year

Construction started August 2012 in Illinois

Page 26: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

26

Biomass Conversion Facility Notes• Unique construction using thirty 40‐ft shipping containers vertically to construct a sturdy building with 25 silos in its walls.  80 x 84 ft. 

• Cost is US$500K to $1 million, with equipment.

• Process 100 tons/day of biomass to make appropriate dry biomass fuels, expandable to 500 t/d.

• Supply fuels to any and all customers.  These are the basis for fuels business, many with local ownership. 

• One in each of 3000 USA counties is approximately 100 Mt biomass fuel per year, sufficient for 1/6th of the needed biomass to meet the USA Alpha allocation. 

Outline

• Concepts and Practices

• Products and Process Characteristics

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Page 27: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

27

Smoke in the Kitchen• In the least developed societies, indoor air pollution (IAP) is the fourth worst cause of poor health and avoidable deaths of women and small children.   (WHO study, 2004)

• Carbon monoxide ( CO ) causes pre‐mature and under‐weight babies, plus general weakness in adults.

• Particulate matter ( PM2.5 ) causes Lower Respiratory Diseases that shorten lives, and contributes to climate change.

TLUD pyrolyzer (Burning Char)

Charcoal stoves emit 110-135 g of CO (more than any of the wood-burning stoves) and emit 250 - 590 mg of PM (more than the tested TLUD gasifier stoves).

TLUD Pyrolyzer (Saving Biochar)

CO & PM Emissions From Cook Stoves(Measured by the Standard 5‐liter Water Boiling Test. ) 

Charcoal Stoves

TLUD pyrolytic gasifiers have extremely low emissions.

All results refer to Natural Draft (ND) stoves.

Data from testing at Aprovecho.

Page 28: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

28

Conclusions from Emissions Data• No Natural Draft (ND) stick‐wood stove has emissions as low as the TLUD‐ND gasifier stoves. Do not promote second‐best.  Instead, help the best reach the most people. 

• But if stick‐wood must be used, then consider the Rocket Stove technology.  

• However, recent tests with Mwoto TLUD stoves show excellent usage of stickwood.

• TLUD pyrolytic gasifier stoves should be able to replace charcoal stoves in urban areas, with additional benefits of:– Reducing emissions from traditional charcoal making, 

– Reducing the deforestation caused by charcoal making.

Four World  Most BiomassProblems  Cookstoves

• Poor health of families because of smoky kitchens using solid fuels like wood and coal.

• Deforestation because of fuel‐wood collection.

• Increase in atmospheric CO2 & soot, associated with Global Warming.

• Decline in soil fertility,especially in impoverished countries.

• Emit smoke and carbon monoxide causing serious health problems in 400 million households.

• Consume stick‐wood, causing deforestation.

• Emit particulate matterassociated with Global Warming.

• Do NOT produce Biochar.  At best they are carbon neutral.

Page 29: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

29

A simple TLUD cookstove design can accomplish FOUR purposes:

Improve family health Preserve forests 

Remove CO2 from the airImprove soils

Four allies for one stove type.

The Champion TLUD MakesRespectable Biochar

• Greater than 70% resident (fixed) carbon.

• Less than 10% mobile (volatile) matter.

• Modest cation exchange capacity (CEC).

• Higher pyrolysis temperatures yield 3X higher adsorption capacity but lower the weight yield by one third.

• Weight yields of 16% to 23% are typical.

• While providing useful heat for cooking!

Page 30: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

30

0%

20%

40%

60%

80%

100%

W o od P el let s

W o o d Ch ips

To rre fied F ir

G ra s s P e lle t Ch a r # 1

G ra ss P e lle t Ch a r # 2

S traw C ha r # 1

S tra w C ha r # 2

S tra w C ha r # 3

Ga s i fier Ch a r # 1

G a s ifier Ch a r # 2

W oo d P ellet Cha r

M a c N ut S h ell Cha

B ioch a r B ra nd # 1

Ju nip er Bio c a rb on # 1

A sp en B io c arb o n

C ed a r B ioca rb o n

Ju nip er Bio ca rb on # 2

Ju nip er Bio c a rb on # 3

Fir Bio c arb o n

We

igh

tp

erc

en

to

fd

rys

am

ple

Fixed Carbon Fixed H & O Fixed Nitrogen Volatile Carbon Volatile H & OVolatile Nitrogen Ash (acid soluble) Ash (non-soluble)

0%

20%

40%

60%

80%

100%

TL U D I Sa m p l

TL U D I Sa m p l

TL U D I Sa m p le

TL U D I Sa m p le

TL U D I Sa m p le

TL U D I Sa m p le

TL U D II-FC S am p

TL U D II-FC S am p

TL U D II-FC S am p l

TL U D II-FC S am p l

TL U D II-FC S am p l

TL U D II-FC S am p l

We

igh

tp

erc

en

to

fd

rys

am

ple

Fixed Carbon Fixed H & O Fixed Nitrogen Volatile Carbon Volatile H & OVolatile Nitrogen Ash (acid soluble) Ash (non-soluble)

‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 70% ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Blue = Resident C

Dark Red = Resident H + O

TLUD BiocharOther Biochars

MODIFIED ULIMATE ANALYSES OF CHARSSource: All biochars are not created equal…, McLaughlin, Anderson, Shields and Reed (2009).

‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 90% ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Major Issues & Challenges• Fuel supply.  Most of the available and abundant biomass is not sufficiently dry!!!

• Increased diameter and associated irregular upward air movements often cause uneven downward pyrolysis, resulting in pockets of torrified or raw fuel in the created charcoal.

• Barrels produce relatively small amounts of biochar if seeking farm‐size quantities.

• Labor intensive, time‐consuming, and costly.

Page 31: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

31

Demonstrations of Production of Biochar at this Conference

• Wednesday afternoon.

• Equipment will be on display.

• Actual ignition of biochar makers will depend on logistics (fuel supply, etc) and also on permissions, safety issues and the weather.  

• If highly interested, please speak with Paul Anderson (Dr TLUD) after this presentation.

Outline

• Concepts and Practices

• Products and Process Characteristics

• Benefits and Risks

• Potential for Regions with Low Infrastructure 

Page 32: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

32

TLUD Capacity to Sequester C• Typical biochar yield of 20 wt%.

• Typical resident (fixed) carbon 70%.

• 1 kg fuel yields 140 g resident carbon.

• 5 kg fuel/day yields 700 g C per household/day.

• X 365 days = >250 kg C per household/yr.

• 4 households yield 1 ton C/yr.

• 400 households yield 100 ton C/yr.

• 2.5 billion people use solid fuels for cooking, = 400 million households, so the potential is     100 million ton C/yr by using TLUD stoves.

Notice to Readers / Viewers• The remaining 60 slides in this presentation are collected from various prior presentations by Paul Anderson.  Some might be duplicates.

• They are NOT revised nor updated.  

• Some of them have been shifted in position, so some sequences might be out of order.

• They are provided as .doc files so that others can use parts, with the condition that each user must take responsibility for his or her own presentations.

Page 33: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

33

Paul S. Anderson, Ph.D. Paul O. Taylor, Ph.D.       Paul W. Wever

Vice Pres. for R&D    Consultant                     President

[email protected] [email protected] [email protected]

Chip Energy Inc,   Goodfield, Illinois, USA    www.chipenergy.com

CHAB Micro‐Gasification for1Gt CO2/yr Mitigation‐Sequestration

Rio de Janeiro, Brazil, 12 ‐ 15 September 2010

How to make 100 Mt‐C/yr?• Give fair value for the char, greater than its value as a cooking fuel (or else people will burn it!!)

• TLUD stoves at various prices and features, to have “buy‐in” by the households of all levels.

• Financial participation by governments, NGOs, companies and individuals who what improvements in any of these challenges:– Climate, forests, crops, food security, health, less poverty, stable citizens, and the resultant peace.

• Mobilize fuel supplies, as business, not charity.

• Decide, and get started NOW in each region.  

Page 34: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

34

Where do these stoves go?• For ease of calculations, 2.5 billion people using solid fuel stoves are divided into 5 equal parts, each with 500 million people (80 million households):– India, China, other Asia, Africa, & Other (Latin America plus.).

• China and India have single governments to implement programs of their own choosing.  They are considering TLUDs, but not for their ability to make biochar.  

• A 50% goal of 40 million TLUD cookstoves MAKING BIOCHAR in Africa within ten years would mean 10 Mt CO2/yr sequestered, plus other benefits.

• One key limiting factor to accomplish any significant number of biochar‐making stoves in 10 years is  financial backing by those who believe that CO2reduction is important.

0

1000

2000

3000

4000

5000

6000

7000

8000

Mt Ce Population Kg Per Capita

LDC

non‐Annex

Annex I (38)

SustainablePer CapitaTarget300 Kg

Mt Ce

Millions of population

Kg Per Cap

tia

Least developed countries

Industrial countries

Developing countries

Annual (2005) CO2 emissions, Population and Per Capita Emissions

Climate Analysis Indicators Tool (CAIT) Version 7.0. (Washington, DC:  World Resources Institute, 2010). 

Page 35: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

35

49 Least Developed Countries

Africa 33   •   Asia 15   •   Caribbean 1 •

Cumulative (1850‐2005) Total and Per Capita CO2 Emissions 

t Per CapitaGt Ce

0

50

100

150

200

250

300

350t Per Capita

Gt Ce

Cumulative (1850-2005) Total and Per Capita CO2 Emissions

Climate Analysis Indicators Tool (CAIT) Version 7.0. (Washington, DC:  World Resources Institute, 2010). 

Page 36: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

36

Datenreihen1

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

Accumulated Emissions by Region 1850‐2006 

Cumulative CO2 emissions, 1950‐2000With and without land‐use change & forestry

Page 37: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

37

Biomass Potential and usage for Energy 

Source: Matti Parikka. Global biomass fuel resources. Biomass and Bioenergy 27 (2004) 613‐620Converted from energy to mass using average energy density for global biomass of 17.9 GJ/ton, which normalizes world total to maximum sustainable global biomass of Woolf et al.Totals are rounded.

Biomass in Mt North Amer.

Latin Amer. Asia Africa Europe Former

USSR World

Woody biomass 720 330 450 300 220 300 2320

Energy crops 230 680 60 780 140 200 2090

Straw 125 95 560 50 90 40 960

Other 45 100 155 70 40 20 430

Total potential 1120 1205 1225 1200 490 560 5800

Use 170 145 1300 460 110 30 2215

Use of potential, % 15% 12% 106% 38% 22% 5% 38%

CountryAccumulated Responsibility

1850-2006

Fraction of world

biomassMt CO2 Objective

Allocation

North America 25% 20% 200 20%+7%

Asia 27% 20% 200 20%+7%

Europe 24% 10% 100 10%+15%

Former Soviet Union 11% 10% 100 10%

Latin America (Brazil 5%) 8% 20% 200 8%+12%

Africa 3% 20% 200 3%+17%

Australia and NZ 2% 2% 20 2%

Contribution to climate change and fair share of 1 Gt of CO2 capture

Accumulated Responsibility includes accumulated emissions 1850‐2006 with an adjustment for Land Use Change and Forestry for 1950‐2000

Page 38: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

38

Challenges     and       Solutions• Perhaps only reach  half of the households.

• Where to start?

• How much funding?

– Millions go into other renewable energy.

• Informing the world  of what TLUDs can accomplish.            

• 200 million is still 50 million tons C/yr.

• A few strong pilot sites to showcase.

• Peanuts compared to the cost of not starting.

• That is why we are speaking to you.

Data on CO2 Removal Capabilities of AVUD Micro‐Gasifiers

• Chip Energy has three basic sizes of AVUD Biomass Furnaces:   Small       Standard    and    Multiple

House Small Industry             Elem. School/Municipal 

• Power (max)(kW):       15            60         2X   3X   4X    5X=300  [1 Mbtu/hr]       

• Av kg fuel/day  60             240                not        1200    

• t/yr (seasonal) 1.5 50 available 250

• t/yr (constant) 2 80 400

• t CO2 removed/yr            1 40 200

• tons from 100 units    100  4000 20000

• Units for 1 Mt CO2 1 M            25,000 5000

• for 100 Mt CO2 100 M           2.5 M      500 K

Page 39: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

39

Attaining Numbers of Units ‐‐‐ (1) 300 kW Multi‐reactor AVUD

• In Anglo‐America (USA + Canada), there are 100,000 public schools for K‐12 education, with considerable variation in size and conditions.

• An estimated 50,000 of them could well utilize local biomass fuels and a 300 kW Biomass Furnace, resulting in 10 Mt CO2 sequestration.

• Local fuels to heat the schools creates jobs and revenue, reducing dependence on foreign fuels.

• There are other 100’s of thousands of buildings with similar heating needs in North America. 

• Three or four homes in typical subdivisions could have one such unit that is centrally located.  The users are charged for their heat used (metered hot water entering the home).

• Small industries (such as a dairy in Uganda or cacao drying in Costa Rica) could use a unit.

• Price range from US$22 K to $50 K (depending of features) will drop when production rises.

Attaining Numbers of Units ‐‐‐ (2) 60 kW “Standard” AVUD

Page 40: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

40

• There are many applications for the 15 kW Biomass Furnace, especially for people who currently heat their homes with wood, but make no biochar and do cause air pollution.

• Also, the 15 kW unit can serve as an emergency heater, but if not used, it would not be making biochar.

• Issues to resolve: heat‐applications, costs, marketing, regulations, etc., for different societies.

Attaining Numbers of Units ‐‐‐ (3) 15 kW “Small” AVUD

Can we build all this “stuff?”• In this world every year about 50 MILLION new vehicles are built.  Several countries have productions of 10 million vehicles.

• The industrial capabilities to make these CHAB (Combined Heat And Biochar) devices are sitting idle in many countries.

• With the economy of mass production, the prices would drop and drop to become highly affordable.

• And we can get sufficient appropriate fuel.

Page 41: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

41

Why should you be involved?• TLUD & AVUD pyrolytic gasifiers can create biochar! [You can become a charcoal‐making “geek.”]

• We are literally working at the frontiers of knowledge!!

• The results could make a difference:

–Between starvation and plentiful harvests for some people. 

– For coping with the threat of climate change. 

• Career, employment, income, personal benefits.

Conclusions• TLUD and AVUD technologies are realities.• CO2 sequestration needs to be done proportionately by the regions of the world.  

• North American and Europe should offer 80 million TLUD cookstoves into Africa to help solve 4 critical issues, and accomplish 20 Mt CO2/yr sequestration.   

• In North America, AVUD technology could extract biochar equivalent to at least 200 Mt CO2/yr.

• With similar examples, other regions will show that small decentralized biochar production can indeed accomplish 27% of the Alpha goal.

• And accomplish this in the next 10 years!!!• But it will not be easy until the people decide to act!!

Page 42: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

42

Potential of Combined Heat and Biochar from Micro‐Gasification for

1Gt CO2/yr Mitigation‐Sequestration~~~~~~~

• Maximum Sustainable Technical Potential – NO: land clearance, food‐land, erosion, contaminated feedstock– 5.8 Gt biomass/year  = 2.3 Gt C/yr– Modern slow pyrolysis to make biochar– Net reduction = 1.8 Gt CO2‐Ce/yr = 12% of current emissions– Approach maximum production in 40‐60 years– Soil capacity (top 15 cms) filled in 60 years– Cumulative reduction over 100 years = 130 Gt

• Alpha Scenario  Potential: Current techniques and practices– Net reduction = 1.0 Gt CO2‐Ce/yr 

Woolf, Amonette, Street‐Perrott, Lehmann, Joseph, 2010

“Sustainable biochar to mitigate global climate change”

Page 43: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

43

Potential of Combined Heat and Biochar from Small Installations

[Woolf, et al, 2010]        “We further require that biochar be manufactured using modern technology that eliminates soot, CH4 and N2O emissions while recovering some of the energy released during the pyrolysis process for subsequent use.”

We agree with their “requirement,” with the understanding that modern technology is NOT limited to large sizes, expensive devices, or development of new technologies.

Our purpose in this paper to substantiate how modern     micro‐gasification technology can lead to sequestration of 1 Gt of CO2, which is 27% of the Alpha target of 1 Gt CO2‐Ce /yr, within 10 years.

Goals and Methods• Remove from the atmosphere one gigaton of

carbon dioxide per year (1Gt CO2/yr, equivalent to 273 Mt C/yr). Same goal as the Virgin Earth Challenge.

• To be accomplished by the production and deployment into the soil of 400 megatons of biochar (allowing for 70% as fixed or resident carbon).

• To be accomplished with existing low-cost micro-gasification devices and their resultant biochars.

• To be accomplished within ten years, including sustainable sources of necessary feedstocks.

Page 44: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

44

CH4 Biomass, 17 N2O Biomass, 3 

N2O Soil, 6 

Fossil fuel offset, 39 

C in Biochar, 94

Net Biochar C sequestration= 67 Gt

Biochar decomposition, 17Transportation, 2Soil organic C, 10 

The Unique Potential of Biochar

World emissions:  N20 = 1 Gt/yr, CH4= 1.6 Gt/yr    

Gt from 460 Gt of biomass in 100 years 

Biomass required for 1 Gt CO2 sequestration

CO2Mt

Sequ. CMt

Fixed Cfraction

BiocharMt

Yieldfraction

BiomassMt

Woolf et al 1000 273 0.701 3902 0.203 1900

TLUD-ND 1000 273 0.774 360 0.235 1570

TLUD-FA 1000 273 0.634 433 0.145 3100

ConservativeAverage

1000 273 0.70 400 0.20 2000

ND = Natural Draft. FA = Forced Air.

1 Net percentage of C in char which is sequestered (Woolf et al, 2010)

2 C in Char 3 Yield of C in char from biomass (Woolf et al, 2010)

4 Fixed C in biochar measured in Ultimate Analysis. ( McLaughlin, Anderson et al, 2009)

5 Biochar yield measured for ND and FA TLUDs. ( McLaughlin, Anderson et al, 2009)

This table suggests a simple ratio of 2:1 for biomass weight to CO2

weight when biochar is being produced in  appropriate devices.

Page 45: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

45

The Power of CHAB• Combined Heat And Biochar (CHAB) systems

use diverse renewable biomass fuels to produce thermal energy and biochar.

• Our focus is on the small and micro-size CHAB units for – distinctly cleaner-burning cooking stoves (third world

uses) or – to replace high value, carbon-positive fossil energy

consumed for heating of residences, small businesses, and industrial process heat (affluent world uses).

• Expenditures for the heat-creating units can be justified in economic, health, and/or environmental terms.

• The production of biochar provides additional incentives to make decisions for change.

Why Micro‐CHAB is Feasible:

• 1. Biochar production becomes economically feasible when the value of produced heat covers most of the costs.

• 2. Heat requirements are often in small quantities and at dispersed locations, favoring the use of micro-installations.

• 3. Micro-installations can be relatively inexpensive, widely distributed (with minimal transportation costs), and number in multi-millions.

• 4. 1Gt CO2/yr as biochar can be accomplished by the accumulation of biochar from so many decentralized micro-gasification users.

Page 46: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

46

Where are the Small Biochar Makers?

• For hundreds of years, combustion devices have been made to consume as much of the char as possible.  Therefore, small heating systems that make biochar are uncommon.

• UpDraft gasification was mostly ignored.

• Modern micro‐gasification using UpDraft devices began in 1985 and did not have any commercial products until 2003 (TLUD) and 2007 (AVUD).  They can produce biochar very naturally, easily, and economically. 

Technology for Combined Heat and Biochar from Small Installations

Three size ranges of micro-gasification:

• Top-Lit UpDraft (TLUD) pyrolyzers for cookstoves. 1 – 10 kW. US$0 to $1000.

• Chip Energy’s AVUD gasifiers for small size installations. 10 – 60 kW $5000 to $25,000.

• Chip Energy’s multi-reactor AVUD systems. 60 – 300 kW $25,000 to $150,000. (Power: 300 kW = 1 million Btu/hr)

Page 47: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

47

Importance of Carbon Capture ‐ 1

• Climate change due to human caused greenhouse gases is proportional to their concentration in the atmosphere

• Dangerous climate change occurs if a concentration threshold is exceeded for too long.  

• There is good reason to believe the safe CO2 limit is not higher than 350ppm, the level reached in 1988.

• Target is not ahead of us, it is behind us (even if it isn’t, it will be).

To limit dangerous climate change we must:

1. Reduce future emissions to net zero. 

2. Actively remove excess CO2 from the atmosphere.

– Current excess 85 Gt (= 40 ppm off of current 390 ppm)

Page 48: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

48

Importance of Carbon Capture ‐ 2

• Only reducing emissions close to zero will lead to stable atmospheric concentration.

• To stabilizes at 450 ppm requires a steep reductions from 10 Gt to <1 Gt

• Excess above safe 350 ppm  =        100 ppm = 213 Gt

Anthropogenic C Capture allows:

1. Recapture of the excess.

2.A non‐zero sustained level of emissions, which is needed in the anthropogenic world.  Ex. 4 Gt

Importance of Anthropogenic C Capture ‐ 3

1. Each nation agrees to remove its excess emissions above its fair share of the sustainable benchmark.

2. Contract and converge to sustainable 0.3 t C/person (by 2050).

• No. 1. only requires industrial nations to agree to get started.

• Embarking on 1. relieves the need to pressure the developing  nations into an agreement before any action can be taken.

• With 1. actioned there is increased chance to agree on 2.

• Most available capture strategies harness freely available solar energy and photosynthesis, produce additional resource, and employ people.

= Natural capital and income, security and resilience, for the long term.

Can we recapture enough?

Page 49: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

49

Carbon BiosequestrationNear term strategies can sequester 10 Gt of C per year1. Reverse land use change  1.5 Gt2. Maintain current forests  3 bt3. Reforestation of 5% of globe  2 Gt4. Improve agricultural practices  1 Gt5. Remediation of degraded lands  1Gt6. Management of grasslands and rangelands 0.5‐1 Gt7. Use biomass for long term products, biochar and fuel  1Gt8. Carbon capture technologies: green cement, algae pondsIf we ramp from 0 to 10 Gt/yr in 40 years we could sequester 200 Gt, recapturing the excess CO2concentration

What can Biochar do?

Biochar to Mitigate Climate ChangeMaximum Sustainable Technical Potential 

without endangering food security, habitat or soil conservation

• Biomass Filter 

– no land clearance, no food‐land, no erosion, no contaminated feedstock

– 5.8 Gt biomass/year  = 2.27 Gt C/yr

• Pyrolysis: Biochar + Bioenergy

– Net reduction = 1.8 Gt CO2‐Ce/yr = 12% of current emissions

– Cumulative reduction over 100 years = 130 Gt

• Combustion: Bioenergy

– Net Offset = 10% of current emissions

Woolf, Amonette, Street‐Perrott, Lehmann, Joseph, 2010

Page 50: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

50

CH4 Biomass, 17 N2O Biomass, 3 

N2O Soil, 6 

Fossil fuel offset, 39 

C in Biochar, 94

Net Biochar C sequestration= 67 Gt

Biochar decomposition, 17Transportation, 2Soil organic C, 10 

The Unique Potential of Biochar

World emissions:  N20 = 1 Gt/yr, CH4= 1.6 Gt/yr    

Gt from 460 Gt of biomass in 100 years 

Biochar potential to offset emissions is limited

The 20% advantage of biochar over combustion for offsetting fossil fuel may not exist in practice:

• Coal is the most C intensive fuel

• Coal is fastest growing fossil fuel

• Coal has to be most rapidly reduced

• With increasingly unified grids, coal will be fossil fuel of choice to offset for electricity generation from slow pyrolysis syngas.

There are more elastic sources of fossil fuel replacement, that eclipse a 12% MSTP biochar offset achieved in 40‐60 years.

•  Efficiency  •  Solar  •  Wind  • Geothermal

Biochar ought to be marketed for its unique potential to improve productivity of poor soils, recapture atmospheric C, conserve water, and reduce Soil N20 emissions.

Page 51: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

51

Biomass required for 1 Gt CO2 sequestrationBiomass

MtYield

fractionBiochar

MtFixed Cfraction

Sequ. CMt

CO2Mt

Woolf et al 1900 0.201 3902 0.703 273 1000ND TLUD 1570 0.234 360 0.775 273 1000FA TLUD 3100 0.144 433 0.635 273 1000

Conservative Average

2000 0.2 400 0.68 273 1000

1 Yield of C in char from biomass. 2 C in Char (Woolf et al, 2010)

3 Net percentage of C in char which is sequestered (Woolf et al, 2010)

4 Biochar yield measured for Natural Draft and Forced Air TLUDs. ( McL, Anderson et al)

5 Fixed C in biochar measured in Ultimate Analysis. ( McLaughlin, Anderson et al)

This table suggests a simple ratio of 2:1 for biomass weight to CO2

weight when biochar is being produced in  appropriate devices.

Types of Biochar“All chars are black, but are not created equal.”

• Fuel Biochar: High Energy Clean Burning.

• Environmental Biochar: Sequestration of CO2.  

• Industrial Biochar: Filtration.      

• Ag Biochar: Adsorption capacity and % fixed carbon            

Page 52: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

52

Biochar Production

• Reason for Biochar Production:– Sole Product or Co‐Product

• Different Biochar Making Processes:– Slow Pyrolysis, Fast Pyrolysis, 

– Hydrothermal, Micro‐Wave and Gasification

• Devices for Biochar Production:– Low Cost Simple Home‐Made

– High Cost Complex Precision Engineering 

– Chip Energy Biomass Furnace, Biochar Co‐Product

Micro-gasification that produces biochar is mainly a 21st Century development.

• 1. The TLUD (Top-Lit UpDraft) pyrolytic gasifier cookstoves bring biochar production to residential living and cottage industry in developing countries. Financial and social advantages accrue from clean emissions/health benefits, fuel efficiency with fuel diversity, environmental protection, employment generation, and low production costs ($0 to $1000).

• 2. For affluent nations, fully automated AVUD–technology biomass furnaces of 150 – 300 K Btu/hr (40 – 90 kW) are designed, tested, and ready for pilot projects for medium-sized buildings or agro-industrial processes. Smaller units for residences are possible, including replacement of thousands of manually tended smoky outdoor wood boilers that do not produce biochar. At $5000 to $25,000 per project, 5- to 10-year ROI, job creation and improved energy security, the necessary investments are attractive, with biochar as a natural co-product.

• 3. Units costing from $25 K to $500 K will provide powerful heat in cold climates and potentially electricity (CHP&B) for schools, public buildings and industry, mitigating fossil fuel as well as making biochar. In these, the major costs are for the heat application peripherals (boilers, gensets, etc.), not for the heat-generation/biochar-maker units.

Page 53: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

53

Biochar to Mitigate Climate ChangeMaximum Sustainable Technical Potential 

without endangering food security, habitat or soil conservation

• Biomass Filter 

– NO land clearance, food‐land, erosion, contaminated feedstock

– 5.8 Gt biomass/year  = 2.27 Gt C/yr

• Maximum Sustainable Technical Potential 

– Net reduction = 1.8 Gt CO2‐Ce/yr = 12% of current emissions

– Cumulative reduction over 100 years = 130 Gt

• Alpha Scenario  Potential: Current techniques and practices

– Net reduction = 1.0 Gt CO2‐Ce/yr 

Woolf, Amonette, Street‐Perrott, Lehmann, Joseph, 2010

Page 54: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

54

Chip Energy’s Position

• Our future can be advanced by:

– Systems that need thermal energy

– Economical supplies of biomass fuels

–Delivery of quality biochar

• Chip Energy is active in Illinois (USA), sells biochar to several states, has outreach for international projects, and is attending the International Biochar Initiative (IBI) Conference in Rio de Janeiro, Sept. 2010.

Page 55: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

55

Top‐Lit UpDraft(TLUD) gasification

• Flaming pyrolysis at the top of a column of chunky dry biomass is 

starved of oxygen, creates charcoalplus pyrolytic gases (“smoke”) thatmove upward to where fresh secondary air enters, resulting in clean combustion of the gases for heat for cooking.

Future of TLUD Gasifier StovesTLUD (“Tee-Lud”) refers to “Top-Lit UpDraft” gasification

Paul S. Anderson  PhD“Dr. TLUD”   ( Doc  Tee‐lud )     [email protected]

A Presentation at the BEIA Project Workshop Conducted in Lira, Uganda, by

CREEC, Makerere Univ., Kampala, Uganda(Center for Renewable Energy and Energy Conservation)

22 – 24 August 2012

Page 56: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

56

• Continued leadership in low emissions and fuel savings

• Fan Assisted (FA) options

• Experimentation with materials

• Variations in sizes and uses

• Biochar production while using the heat

• TChar variations of TLUDs

• Prospects for mass production

• Applications of the TLUD heat

These will be discussed in more detail with the Tinsmiths on Thursday.  Now we introduce the topics.   

Some Further Developments of Mwoto TLUD Stoves

Continued Leadership in Low Emissions and Fuel Savings

Page 57: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

57

Four World         Most BiomassProblems            Cookstoves

• Poor health of families because of smoky kitchens using solid fuels like wood and coal.

• Deforestation because of fuel‐wood collection.

• Increase in atmospheric CO2 & soot, associated with Global Warming.

• Decline in soil fertility,especially in impoverished countries.

• Emit smoke and carbon monoxide causing serious health problems in 400 million households.

• Consume stick‐wood, causing deforestation.

• Emit particulate matterassociated with Global Warming.

• Do NOT produce Biochar.  At best they are carbon neutral.

A simple TLUD cookstove design can accomplish FOUR purposes:

Improve family health Preserve forests 

Remove CO2 from the airImprove soils

Four allies for one stove type.

Page 58: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

58

Fan Assisted Options

• Fan Assistance (FA) adds a wonderful dimension to the power and control of the TLUD stoves.  Reed’s Woodgas Camp Stove.

• FA is not for everyone.   But it is clearly appropriate for some significant sub‐populations.  

• TEG (Thermal Electric Generator) for electricity from TLUD heat.  Biolite stove.

Experimentation with Materials

• Stove life‐span is related to durability of individual parts.

• Use of thicker or better or different metal could provide long‐term financial benefits.

• Ceramics.

• Easy replacement of expended parts, so that the life of the stove is multiplied.

Page 59: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

59

Variations in Sizes and Uses

• Institutional size, as for schools.

• Industrial size, as at Paramount Dairies. 

• Special uses, as for bath water.

• Smaller units for more dense fuels.

• Smaller units for small families.

• Units specific for making biochar.

Focus on Fuels

• Types of dry biomass fuels, including

– Stems, stalks, inedible seeds (Jatropha), pest plants, and partially processed biomass

• Sizes of the fuels.

• Drying of fuels (using waste heat)

• TLUD modifications to suit different fuels.

Page 60: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

60

Abundant Renewable Dry Biomass (but 

people only use a highly selective small fraction for energy)

Wood is the main biomass fuel.  Collecting stick‐woodcan lead to deforestation.  If wood is plentiful, wood chips are an excellent fuel for the gasifier stoves we will discuss.

Tree‐wastes sawdust (pellets), trimmings, twigs, seedpods, leaves, coconut shells/husks/fronds, etc.,

Agro‐wastes stems, hulls, husks, roots, cobs, by‐products, dung, etc., some into biomass briquettes,

Urban wastes discarded combustibles including paper/cardboard, some D&C, and dried sewage,

Environmental excesses bamboo, dried aquatic invaders, reeds from wetlands, etc.

Prospects for Mass Production• The success of the Mwoto TLUD stove with the target households has resulted in the happy problem of how to increase production of more units.  

• The 2012 advances with flat pack manufacturing for simplified production, reduced production costs, lower shipping costs, and greater flexibility for enhancements have NOT been utilized in the final months of the BEIA Project.

Page 61: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

61

Quad TLUD• Functionally equivalent to the Mwoto TLUD.

• “Tab & slot” assembly.

• Pieces shipped flat to local places of assembly.

• Handles do not get hot.

Biochar

Page 62: P.Anderson-Small-scale Pyrolysis Tech 2012-09-11 ... Pyrolysis... · 9 –15 September 2012, At ATB in Potsdam, Germany Paul S. Anderson (Dr TLUD) psanders@ilstu.edu & Chip Energy

26.09.2012

62

The Progress Ahead• Dr TLUD estimates that only about 20% of what can be known about TLUD gasifiers has been discovered.   80% awaits our efforts.

• By 2020 there needs to be 30 million TLUD micro‐gasifier stoves into the developing societies.   Currently there are fewer than one million.

• Welcome to the frontiers of science and humanitarian service!!!

Thank you.

• There will be more time later today for discussion about the prospects for future actions.

• Feel free to ask any questions.

Paul “Dr TLUD” Anderson

Email:   [email protected]

Website:    www.drtlud.com 


Recommended