+ All Categories
Home > Documents > Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing :...

Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing :...

Date post: 16-Aug-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
24
| | Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna Adrian Leathers, Benjamin Jacot & Nicolò D’Anna Paper presentation 18.03.17 1
Transcript
Page 1: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna

Adrian Leathers, Benjamin Jacot & Nicolò D’Anna

Paper presentation

18.03.17 1

Page 2: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 2

Overview

• Introduction • Theory

• Setup • Results

• Summary

Page 3: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 3

Introduction

• Motivation :

• Improve coupling between qubits and make possible longer interaction • Perform quantum gates • High selectivity • Reduce losses in the circuit and enhancement of coherent interaction time

• Achivements (at the time of publication Sep. 2007) :

• Single quantum bit (qubit) operation • Coupling mechanism are restricted to local interations and couple only nearest-neighbour qubits

Page 4: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 4

Page 5: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 5

Page 6: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 6

Cavity QED with one Superconducting Circuit

Transmon

Page 7: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 7

Cavity QED with two Superconducting Circuits

• Use Cavity as a Quantum bus to couple 2 distant qubits

Page 8: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 8

Experimental conditions

• Strong coupling (cavity-qubits) : state decay : cavity decay :

• Strong coupling between qubits

• Dispersive limit, high detuning (cavity-qubit) :

Page 9: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 9

Effective Hamiltonian in the dispersive limit :

• Transition frequency of the qubits :

• Resonance frequency of the cavity :

• Qubit-state-dependent shift of the cavity frequency :

• Transverse exchange interaction qubit-qubit :

• Detuning cavity-qubit :

• Coupling strength cavity-qubit

Second-order perturbation theory gives the effective Hamiltonian :

Page 10: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 10

Experimental Setup

CapacitorTransmon

Resonator ( - Cavity)

Page 11: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 11

Calibration Measurements, Vacuum Rabi splitting

Vacuum Rabi Splitting

• Zero detuning, resonance cavity-qubit

• Width of Splitting = 2g

Page 12: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 12

Calibration Measurements, Strong coupling

• Qubit-qubit strong coupling: 2J

• Width of avoided crossing = 2J

Page 13: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 3/20/17 13

Calibration Measurements, Dark State

Cavity

Page 14: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation 14

Single qubit control

Page 15: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 15

Multiplex state readoutSelectivity:

= exited population of addressed qubit

= exited population of unaddressed qubit

= 87%

= 94%

Page 16: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 16

Coherent state transfer

Page 17: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 17

Coherent state transfer

Page 18: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 18

State oscillations

and are not eigenstates of the coupled system; oscillations occur.

Reminder; for a time-independent Hamiltonian:

eigenstates

arbitrary state

Page 19: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation 19

Time evolution

Page 20: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 20

Quantum gate :

The SWAP gate is the permutation of the two qubits :

Source:Basic Concepts of Quantum Information Processing,David DiVincenzo September 11, 2011

Use of the

Page 21: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 21

Frequency splitting

Page 22: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 22

Frequency splitting

Page 23: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna 18.03.17 23

Summary

• Strong coupling limit

• Individual and coherent control of two qubits over a long-range via cavity bus

• Multiplexed control and read out of uncoupled qubits

• Full reconstruction of the density matrix (state tomography)

• Good selectivity ~90%

• Quantum gate :

Page 24: Paper presentation - ETH Z...Paper presentation 18.03.17 1 Quantum Information Processing : Implementation Adrian Leathers, Benjamin Jacot & Nicolo D’anna | 18.03.17 | 2 Overview

||Quantum Information Processing : Implementation

Current achievements :

• 2016 :

• Google has built a nine-qubit machine and hopes to scale up to 49 within a year.

• D-Wave announced a quantum computer with more than 2000 qubits. But this machine do not entangle all the qubits, but only with near neighbors and interact to produce not a set of parallel computations, but a single overall quantum state.

( ref: sciencemag.com, Gabriel Popkin, 1 December 2016)


Recommended