+ All Categories
Home > Documents > PART 2_IISC_Instructors Manual (1).pdf

PART 2_IISC_Instructors Manual (1).pdf

Date post: 17-Feb-2018
Category:
Upload: neha1685
View: 229 times
Download: 0 times
Share this document with a friend

of 114

Transcript
  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    1/114

    159

    PART II

    ADDITIONAL NOTES

    FOR THE

    INSTRUCTORS

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    2/114

    160

    Experiment 1

    Dynamics of a three storied building frame subjected to harmonic

    base motion.

    The performance of the experiment, as per suggested procedure, on the setupdeveloped at IISc, resulted in observations and subsequent deductions as provided in

    tables 11.1-11.7 and figures11.1-11.6. The calculations related to the analysis of the

    mathematical model is briefly summarized below:

    Mass matrix (kg)

    M = [1.8965 0 0

    0 1.8965 0

    0 0 1.7338]

    Stiffness matrix (N/m)

    K = 1.0e+003 *[5.8475 -2.9237 0.0000

    -2.9237 5.8475 -2.9237

    0.0000 -2.9237 2.9237]

    Natural frequencies (rad/s)

    {n} = [17.8939

    49.7476

    71.1199]

    Mass normalized modal matrix

    = [-0.2464 0.5401 -0.4181

    -0.4416 0.2132 0.5356

    -0.5451 -0.4560 -0.2679]

    Damping ratios

    {} = [0.024300

    0.0092567

    0.0067477]

    Damping matrix determination

    1][

    t=[-0.4672 1.0244 -0.7930

    -0.8374 0.4043 1.0157

    -0.9450 -0.7906 -0.4644]

    ]2[ = [0.8696 0 0

    0.0000 0.9210 0

    0 0 0.9597]

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    3/114

    161

    1][ = [-0.4672 -0.8374 -0.9450

    1.0244 0.4043 -0.7906

    -0.7930 1.0157 -0.4644]

    Damping matrix (Ns/m)

    C = [ ][ ] 11 2][ t = [1.7598 -0.0513 -0.0084-0.0513 1.7506 -0.0589

    -0.0084 -0.0589 1.5593]

    Orthogonality checks:

    Mt

    =[1.0000 0.0000 0.0000

    0.0000 1.0000 0.0000

    0.0000 0.0000 1.0000]

    Kt = 1.0e+003 [0.3202 -0.0000 -0.0000-0.0000 2.4748 -0.0000

    -0.0000 -0.0000 5.0580];

    =

    \

    \2

    n

    Ct = [0.8696 -0.0000 0.0000-0.0000 0.9210 0.0000

    -0.0000 -0.0000 0.9597];

    =

    \

    2

    \

    nn

    Refined methods of experimental and mathematical modeling can be brought to bear

    on the structure under study. Thus the three-story shear-building frame was analyzed

    mathematically using finite element (FE) analysis and experimentally by using

    experimental modal analysis (EMA) procedures. The FE analysis was carried out

    using NISA software and the EMA was carried out using MEscope software. The FEmodeling involved descretization of the structure using 3-D beam, 4-node shell and

    concentrated mass elements resulting in a system with 1482 degrees of freedom.

    Figure 11.4 shows the setup used for measurement of frequency response functions

    using impulse hammer test. Tables 11.6 and 11.7 summarize the natural frequencies

    of the frame using refined and approximate methods. As may be observed from this

    table, these estimates show good mutual agreement. Figures 11.5 and 11.6,

    respectively, show the first three mode shapes as predicted by the detailed FE analysis

    and EMA.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    4/114

    162

    Figure 11.1 Plot ofX1versusf

    Figure 11.2 Plot ofX2versusf

    Figure11.3 Plot ofX3 versusf

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    5/114

    163

    Figure 11.4 Block diagram of Shear Building Model test using impulse hammer

    excitations F: Impulse hammer; A1-A3: Accelerometers.

    (a)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    6/114

    164

    (b)

    (c)

    Figure 11.5 Mode shapes of the three-story shear building frame obtained from detailed FE model; (a)

    I-mode; (b) II-mode; (c) III-mode

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    7/114

    165

    (a)

    (b)

    (b)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    8/114

    166

    (c)

    Figure 11.6 Mode shapes of the three-story shear building frame obtained from experimental modal

    analysis; (a) I-mode; (b) II-mode; (c) III-mode

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    9/114

    167

    Table 11.1 Physical properties of parts of the structure

    Material Properties

    Sl.

    No.Part Material

    Mass

    kgYoungs

    Modulus (E)

    N/m2

    Mass density ()

    kg/m3

    1 Column Aluminum Mc=0.0814 69.0E+009 2700

    2 Slab Aluminum Ms=1.5430 69.0E+009 2700

    3Allen screw,

    M8Steel Msc=0.0035 - -

    Table 11.2 Geometric data of the structure

    Dimensions in mmSl. No. Part

    Depth (D) Width (B) Length (L)

    1 Column DA=3.00 BA=25.11 LA=400.00

    2 Slab DB=12.70 BB=150.00 LB=300.00

    Table 11.3 Details of the sensors used; CF: conversion factor

    Sensitivity, SSl. No. Sensor

    pC/ms-2

    pC/gCF

    Mass

    kg

    1 Accelerometer type 4375, B & K 0.320 3.14 0.1

    mm/V

    0.004

    2 Accelerometer type 4371, B & K 0.980 9.61 0.1

    mm/V

    0.011

    3 Accelerometer type 4371, B & K 1.011 9.92 0.1

    mm/V

    0.011

    Table 11.4 Free vibration test data on three-story shear building frame

    S.No. Quantity Notation Observations

    1 Amplitude of 0th

    peak A0 32.8V

    2 Amplitude of nth

    peak An 30.4V

    3 Number of cycles n 11

    4 Logarithmic decrement 0.00695 Damping ratio 0.0011

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    10/114

    168

    Table 11.5.1 Base motion test data on three-story shear building frame; measurement made at first floor

    S.No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    1rms (mV)

    Displacement Amplitude

    X1= 2 (CF) 1

    (mm)

    1 2.2400 14.0743 0.0846 0.1196

    2 2.2900 14.3885 0.0995 0.1407

    3 2.3000 14.4513 0.1010 0.1428

    4 2.3200 14.5770 0.1020 0.1442

    5 2.4100 15.1425 0.1340 0.1895

    6 2.4200 15.2053 0.1350 0.1909

    7 2.5600 16.0850 0.2150 0.3041

    8 2.6300 16.5248 0.3060 0.4327

    9 2.7100 17.0274 0.7330 1.0366

    10 2.7200 17.0903 0.7900 1.1172

    11 2.7500 17.2788 1.1600 1.6405

    12 2.7700 17.4044 4.1100 5.8124

    13 2.7800 17.4673 0.8310 1.1752

    14 2.8200 17.7186 0.3790 0.536015 2.9000 18.2212 0.2560 0.3620

    16 2.9300 18.4097 0.2300 0.3253

    17 3.0500 19.1637 0.1130 0.1598

    18 3.3200 20.8602 0.0430 0.0608

    19 3.3900 21.3000 0.0400 0.0566

    20 3.5000 21.9911 0.0251 0.0355

    21 4.5500 28.5885 0.0257 0.0363

    22 4.9800 31.2903 0.0404 0.0571

    23 5.2100 32.7354 0.0507 0.0717

    24 5.4900 34.4947 0.0595 0.0841

    25 6.0400 37.9504 0.0920 0.130126 6.5500 41.1549 0.1460 0.2065

    27 7.1000 44.6106 0.3560 0.5035

    28 7.1600 44.9876 0.4210 0.5954

    29 7.3500 46.1814 1.0100 1.4284

    30 7.4300 46.6841 2.9200 4.1295

    31 7.4900 47.0611 5.9100 8.3580

    32 7.5400 47.3752 2.0700 2.9274

    33 7.6000 47.7522 1.1900 1.6829

    34 7.7000 48.3805 0.6280 0.8881

    35 7.7200 48.5062 0.5630 0.7962

    36 7.9000 49.6372 0.3080 0.4356

    37 8.0600 50.6425 0.2110 0.2984

    38 8.4000 52.7788 0.1200 0.1697

    39 8.7000 54.6637 0.0818 0.1157

    40 9.0900 57.1142 0.0474 0.0670

    41 9.2200 57.9310 0.0331 0.0468

    42 9.6500 60.6327 0.0114 0.0161

    43 10.2500 64.4026 0.0428 0.0605

    44 10.5000 65.9734 0.0720 0.1018

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    11/114

    169

    45 10.7100 67.2929 0.1300 0.1838

    46 10.9400 68.7380 0.2510 0.3550

    47 11.1000 69.7434 0.5280 0.7467

    48 11.2600 70.7487 2.1400 3.0264

    49 11.3000 71.0000 1.6700 2.3617

    50 11.4700 72.0681 0.4750 0.6718

    51 11.7100 73.5761 0.2460 0.347952 12.0200 75.5239 0.1580 0.2234

    53 12.3800 77.7858 0.1160 0.1640

    54 12.5000 78.5398 0.1070 0.1513

    55 12.8000 80.4248 0.0871 0.1232

    56 13.1800 82.8124 0.0742 0.1049

    57 13.4800 84.6973 0.0645 0.0912

    58 13.9100 87.3991 0.0570 0.0806

    59 14.2500 89.5354 0.0516 0.0730

    Table 11.5.2 Base motion test data on three-story shear building frame; measurement made at second

    floor

    S.No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    2rms (mV)

    Displacement Amplitude

    X2= 2 (CF) 2

    (mm)

    1 2.1200 13.3204 0.0965 0.1365

    2 2.2400 14.0743 0.1320 0.1867

    3 2.3000 14.4513 0.1480 0.2093

    4 2.3200 14.5770 0.1520 0.2150

    5 2.3600 14.8283 0.1660 0.2348

    6 2.4200 15.2053 0.1910 0.27017 2.5700 16.1478 0.3760 0.5317

    8 2.6500 16.6504 0.6590 0.9320

    9 2.7300 17.1531 1.6700 2.3617

    10 2.7700 17.4044 5.0200 7.0994

    11 2.9200 18.3469 0.4820 0.6817

    12 2.9400 18.4726 0.4460 0.6307

    13 3.0700 19.2894 0.2470 0.3493

    14 3.1500 19.7920 0.1960 0.2772

    15 3.3600 21.1115 0.1280 0.1810

    16 3.5200 22.1168 0.1050 0.1485

    17 3.5600 22.3681 0.1000 0.1414

    18 3.7900 23.8133 0.0790 0.1117

    19 4.0100 25.1956 0.0606 0.0857

    20 4.1500 26.0752 0.0540 0.0764

    21 4.3600 27.3947 0.0435 0.0615

    22 4.6200 29.0283 0.0363 0.0513

    23 4.8000 30.1593 0.0319 0.0451

    24 5.0200 31.5416 0.0246 0.0348

    25 5.3500 33.6150 0.0180 0.0255

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    12/114

    170

    26 5.5500 34.8717 0.0160 0.0226

    27 6.3000 39.5841 0.0072 0.0102

    28 6.4000 40.2124 0.0180 0.0255

    29 6.5800 41.3434 0.0347 0.0491

    30 6.8300 42.9142 0.0605 0.0856

    31 7.1300 44.7991 0.1600 0.2263

    32 7.1500 44.9248 0.1660 0.234833 7.2000 45.2389 0.2140 0.3026

    34 7.3800 46.3699 0.7600 1.0748

    35 7.4200 46.6212 1.2800 1.8102

    36 7.4600 46.8726 2.3900 3.3800

    37 7.4700 46.9354 2.6200 3.7052

    38 7.5100 47.1867 1.6000 2.2627

    39 7.5200 47.2496 1.5000 2.1213

    40 7.7400 48.6319 0.3110 0.4398

    41 7.9200 49.7628 0.2080 0.2942

    42 7.9900 50.2027 0.1900 0.2687

    43 8.1300 51.0823 0.1570 0.222044 8.3500 52.4646 0.1340 0.1895

    45 8.4600 53.1557 0.1220 0.1725

    46 8.7000 54.6637 0.1130 0.1598

    47 8.7600 55.0407 0.1120 0.1584

    48 9.1700 57.6168 0.1050 0.1485

    49 9.4500 59.3761 0.1090 0.1541

    50 9.6500 60.6327 0.1110 0.1570

    51 9.8200 61.7009 0.1150 0.1626

    52 10.0600 63.2088 0.1280 0.1810

    53 10.3100 64.7796 0.1490 0.2107

    54 10.4800 65.8478 0.1670 0.2362

    55 10.7400 67.4814 0.2330 0.3295

    56 10.8000 67.8584 0.2600 0.3677

    57 10.9600 68.8637 0.3920 0.5544

    58 11.0600 69.4920 0.5850 0.8273

    59 11.2600 70.7487 2.6000 3.6770

    60 11.2700 70.8115 2.1600 3.0547

    61 11.2900 70.9372 1.9500 2.7577

    62 11.4400 71.8796 0.5850 0.8273

    63 11.5700 72.6965 0.3040 0.4299

    64 11.6600 73.2619 0.2280 0.3224

    65 11.7100 73.5761 0.2020 0.2857

    66 11.8500 74.4557 0.1570 0.222067 11.9800 75.2726 0.1260 0.1782

    68 12.0500 75.7124 0.1150 0.1626

    69 12.3500 77.5973 0.0771 0.1090

    70 12.4400 78.1628 0.0714 0.1010

    71 12.7700 80.2363 0.0514 0.0727

    72 12.8700 80.8646 0.0482 0.0682

    73 13.2300 83.1265 0.0376 0.0532

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    13/114

    171

    74 13.3700 84.0062 0.0330 0.0467

    75 13.6200 85.5770 0.0272 0.0385

    76 14.0100 88.0274 0.0216 0.0305

    77 14.2900 89.7867 0.0190 0.0269

    Table 11.5.3 Base motion test data on three-story shear building frame; measurement made at third

    floor

    S.No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    3rms (mV)

    Displacement Amplitude

    X3= 2 (CF) 3

    (mm)

    1 2.1800 13.6973 0.1390 0.1966

    2 2.2700 14.2628 0.1640 0.2319

    3 2.3300 14.6398 0.1870 0.2645

    4 2.5500 16.0221 0.3950 0.5586

    5 2.6300 16.5248 0.6320 0.8938

    6 2.6700 16.7761 0.9610 1.3591

    7 2.7100 17.0274 1.5300 2.1637

    8 2.7600 17.3416 13.7000 19.3747

    9 2.7800 17.4673 7.6200 10.7763

    10 2.9200 18.3469 0.6230 0.8811

    11 3.0300 19.0381 0.3760 0.5317

    12 3.3400 20.9858 0.1990 0.2814

    13 3.4500 21.6770 0.1720 0.2432

    14 3.5200 22.1168 0.1590 0.2249

    15 3.6600 22.9965 0.1380 0.1952

    16 3.8800 24.3788 0.1180 0.1669

    17 4.1100 25.8239 0.1050 0.1485

    18 4.3400 27.2690 0.0970 0.137219 4.5400 28.5257 0.0921 0.1302

    20 4.6400 29.1540 0.0905 0.1280

    21 4.7700 29.9708 0.0895 0.1266

    22 4.9400 31.0389 0.0885 0.1252

    23 5.1500 32.3584 0.0881 0.1246

    24 5.3600 33.6779 0.0890 0.1259

    25 5.5400 34.8088 0.0940 0.1329

    26 5.6700 35.6257 0.0965 0.1365

    27 5.8500 36.7566 0.1060 0.1499

    28 6.0600 38.0761 0.1100 0.1556

    29 6.2800 39.4584 0.1230 0.173930 6.5500 41.1549 0.1500 0.2121

    31 6.7000 42.0973 0.1740 0.2461

    32 6.8500 43.0398 0.2120 0.2998

    33 7.1000 44.6106 0.3420 0.4837

    34 7.3500 46.1814 1.0300 1.4566

    35 7.3900 46.4327 1.8900 2.6729

    36 7.4500 46.8097 3.9200 5.5437

    37 7.5500 47.4380 1.4500 2.0506

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    14/114

    172

    38 7.6700 48.1920 0.6070 0.8584

    39 7.8400 49.2602 0.3300 0.4667

    40 7.9100 49.7000 0.2810 0.3974

    41 8.0300 50.4540 0.2170 0.3069

    42 8.1800 51.3965 0.1680 0.2376

    43 8.5300 53.5956 0.1150 0.1626

    44 8.7400 54.9150 0.0989 0.139945 9.0400 56.8000 0.0838 0.1185

    46 9.2600 58.1823 0.0766 0.1083

    47 9.4500 59.3761 0.0726 0.1027

    48 9.6900 60.8841 0.0684 0.0967

    49 9.8400 61.8265 0.0692 0.0979

    50 10.1000 63.4602 0.0726 0.1027

    51 10.3500 65.0310 0.0792 0.1120

    52 10.6400 66.8531 0.0984 0.1392

    53 10.7800 67.7327 0.1200 0.1697

    54 11.0600 69.4920 0.2680 0.3790

    55 11.0900 69.6805 0.3050 0.431356 11.1100 69.8062 0.3510 0.4964

    57 11.2600 70.7487 1.3300 1.8809

    58 11.2900 70.9372 0.7420 1.0493

    59 11.4200 71.7540 0.2280 0.3224

    60 11.5200 72.3823 0.1470 0.2079

    61 11.8200 74.2673 0.0620 0.0877

    62 11.8600 74.5186 0.0603 0.0853

    63 12.1500 76.3407 0.0370 0.0523

    64 12.2000 76.6549 0.0320 0.0453

    65 12.4600 78.2885 0.0226 0.0320

    66 12.6900 79.7336 0.0208 0.0294

    67 12.9500 81.3672 0.0155 0.0219

    68 13.1200 82.4354 0.0132 0.0187

    Table 11.6 Estimate of the natural frequencies of the three-story shear building frame; Experiment-I:

    Impulse hammer test and modal extraction using ME scope; Experiment-II: Shake table test

    Natural frequencies in Hz

    Mode No. FE Model 3-DOF

    ModelExperiment I

    Experiment

    II

    1 2.84 2.8479 2.79 2.77

    2 8.03 7.9176 7.91 7.47

    3 11.74 11.3191 11.64 11.26

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    15/114

    173

    Table 11.7 Estimate of the mode shapes of the three-story shear building frame; Experiment-I: Impulse

    hammer test and modal extraction using ME scope; Experiment-II: Shake table test

    Mode shapes

    FE Model 3-DOF Model Experiment I Experiment II

    I

    mode

    II

    mode

    III

    mode

    I

    mode

    II

    mode

    III

    mode

    I

    mode

    II

    mode

    III

    mode

    I

    mode

    II

    mode

    III

    mode

    1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

    1.7990.398

    -

    1.2661.792 0.394 -1.281 1.813 0.392

    -

    1.4152.074 0.571 -1.17

    2.224 -

    0.8450.638 2.212

    -

    0.8440.6408 2.172

    -

    0.8850.713 3.591

    -

    1.2180.480

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    16/114

    174

    Experiment 2

    Dynamics of a one-storied building frame with planar asymmetry

    subjected to harmonic base motions.

    The performance of the experiment, as per the suggested procedure, on the setup

    developed at IISc, resulted in observations and subsequent analysis as provided in

    tables 12.1 -12.9 and figures 12.1 and 12.2. The calculations related to the analysis of

    the model is briefly summarized below:

    Location of mass center (m)

    bs=0.30 , ds=0.15 , ts=10.625e-3

    bs1=0.286 , ds1=0.136

    Mass matrix

    M = [4.0444(kg) 0 0

    0 4.0444 (kg) 0

    0 0 0.0431 (kgm2)];

    Stiffness matrix (force in N, distance in m and angle in rad).

    k1=k2=k3=k4=k7=k8= 3.4240e+003 N/m

    k5=k6=9.2674e+003 N/m

    k*=313.1298 Nm

    K = 1.0e+004 *[ 1.9539 0 0.0475

    0 1.9539 -0.0824

    0.0475 -0.0824 0.0805];

    Natural frequencies (rad/s)

    {n} = [66.8321

    69.5064

    138.0460];

    Mass normalized modal matrix

    =[ -0.2452 0.4308 0.0392

    0.4254 0.2483 -0.0681

    0.7615 0 4.7567]

    Damping ratios

    {} = [0.0218

    0.0201

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    17/114

    175

    0.0112];

    Damping matrix determination

    1][

    t =[-0.9915 1.7425 0.1587

    1.7206 1.0041 -0.2755

    0.0328 0 0.2050]

    ]2[ = [2.9139 0 0

    0 2.7942 0

    0 0 3.0922];

    1][ = [-0.9915 1.7206 0.0328

    1.7425 1.0041 -0.0000

    0.1587 -0.2755 0.2050]

    C = [ ][ ] 11 2][ t = [11.4260 -0.2173 0.0058-0.2173 11.6779 -0.0101

    0.0058 -0.0101 0.1331];

    Orthogonality checks:

    Mt =[1.0000 0.0000 0.0000

    0.0000 1.0000 0.0000

    0.0000 0.0000 1.0000];

    Kt

    = 1.0e+004 *[ 0.4467 -0.0000 0.0000

    -0.0000 0.4831 0.0000

    0.0000 0.0000 1.9057];

    =

    \

    \2

    n

    Ct = [2.9139 -0.0000 -0.0000

    -0.0000 2.7942 -0.0000

    0.0000 0.0000 3.0922];

    =

    \

    2

    \

    nn

    The structure under study was also analyzed using more sophisticated methods,

    namely, numerical modeling using finite element method, and, frequency response

    measurements using impulse hammer test. Figure 12.3 shows the set up for modal test

    using impulse hammer. The frequency response functions so measured are compared

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    18/114

    176

    with theoretical predictions based on equation (2.2) in figure 12.4. The mode shapes

    derived from the detailed finite element model (with 630 dofs) are shown in figure

    12.5. Table 12.8 summarizes the results on natural frequencies obtained using

    different methods.

    (a)

    (b)Figure 12.1 Comparison of displacement as a function of driving frequency using theory and

    experiment using shake table; =0.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    19/114

    177

    (a)

    (b)

    Figure 12.2 Maximum amplitude response of one-story building frame subjected to

    harmonic base motion with angle of incidence varying from 0 to 90 degrees;

    frequency of excitation = 7.42 Hz; maximum support displacement = 0.291mm. (a)

    response alongxdirection; (b) response alongy direction;

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    20/114

    178

    Figure 12.3 Block diagram of building modal test using impulse hammer excitation F:

    Impulse hammer; A1-A2: Accelerometers

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    21/114

    179

    (a) (b)

    (c)

    Figure 12.4 Plots of frequency response function of building frame model using

    impulse hammer test; impulse applied in the x-direction (a) displacement along x-

    direction; (b) displacement along y-direction; (c) rotation about z-axis.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    22/114

    180

    (a)

    (b)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    23/114

    181

    (c)

    Figure 12.5 Mode shapes of the three-story shear building frame obtained from

    detailed FE model; (a) I-mode; (b) II-mode; (c) III-mode

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    24/114

    182

    Table 12.1 Equipment used in free vibration and forced vibration test of one-story building frame

    S.No. Equipment Quantity

    1 Oscilloscope 1

    2 Accelerometers 2

    3 Conditioning amplifiers 2 channels

    4 Shake table 1

    Table 12.2 Physical properties of parts of the structure

    Material Properties

    Sl.

    No.

    Part Qty.

    Nos.Material

    Mass

    Kg

    Mass

    density

    ()

    kg/m3

    Modulus

    of

    elasticity

    (E) N/m2

    Poissons

    ratio ()

    1 Columns 3 Aluminum(m1+m2+m3)

    = 0.32642700 69.0E+009 0.3

    2 Column 1 Steel m4=0.3037 7800 2.00E+011 0.3

    3 Slab 1 Steel Ms=3.7294 7800 2.00E+011 0.3

    Table 12.3 Geometric data of the structure

    Sl. No. Part Dimensions in mm

    Depth (t) 10.625

    Length (bs ) 3001 Slab

    Width (ds) 150

    Diameter (Dal) 10.132Aluminum

    Column Length (L) 500

    Diameter (Ds) 9.958

    3 Steel Column Length (L) 500

    Table 12.4 Details of the sensors used; CF: conversion factor

    Sensitivity, SSl.

    No.Sensor mV/ms

    -

    2

    mV/g

    Mass

    gm

    1 B & K Deltatron Accelerometer

    Type 4507 002, Sl. No. 10308

    93.8 920 4.8

    2 B & K Deltatron Accelerometer

    Type 4507 002, Sl. No. 10309

    94.6 928 4.8

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    25/114

    183

    Table 12.5 Base motion test data on one-story building frame; Measurement made at first floor along

    X direction; Amplitude of base motion, =0.055 mm

    No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    x

    rms (mV)

    Conversion

    Factor

    CF(V/m)

    Displacement

    Amplitude

    X = 2 (CF) x

    (mm)1 2.68 16.84 29.45 1000 0.041648190

    2 2.86 17.97 33.30 1000 0.047092860

    3 3.19 20.05 32.85 1000 0.046456470

    4 3.50 22.00 31.70 1000 0.044830140

    5 3.55 22.31 25.22 1000 0.035666124

    6 3.88 24.38 26.20 1000 0.037052040

    7 4.25 26.71 32.32 1000 0.045706944

    8 4.62 29.04 33.76 1000 0.047743392

    9 4.91 30.86 34.50 1000 0.048789900

    10 4.95 31.11 35.72 1000 0.050522295

    11 5.19 32.62 35.23 1000 0.049822266

    12 5.41 34.00 30.42 1000 0.043027035

    13 5.49 34.50 35.36 1000 0.050006112

    14 5.56 34.94 33.60 1000 0.047517120

    15 5.85 36.77 33.55 1000 0.047446410

    16 6.17 38.78 36.16 1000 0.051137472

    17 6.51 40.92 39.71 1000 0.056157882

    18 6.80 42.74 40.06 1000 0.056652852

    19 7.17 45.06 45.88 1000 0.064883496

    20 7.25 45.57 48.50 1000 0.068588700

    21 7.31 45.94 41.32 1000 0.058434744

    22 7.77 48.84 54.42 1000 0.076967835

    23 8.10 50.91 55.50 1000 0.078488100

    24 8.15 51.22 59.35 1000 0.083932770

    25 8.30 52.17 83.03 1000 0.117421026

    26 8.32 52.29 82.50 1000 0.116671500

    27 8.55 53.74 95.67 1000 0.13530358528 8.62 54.18 98.50 1000 0.139298700

    29 8.87 55.75 117.67 1000 0.166408914

    30 9.09 57.13 136.00 1000 0.192331200

    31 9.30 58.45 155.67 1000 0.220148514

    32 9.48 59.58 182.50 1000 0.258091500

    33 9.68 60.84 265.00 1000 0.374763000

    34 9.83 61.78 349.25 1000 0.493909350

    35 10.15 63.80 177.50 1000 0.251020500

    36 10.2 64.11 384.00 1000 0.543052800

    37 10.36 65.12 758.33 1000 1.072430286

    38 10.36 65.12 766.50 1000 1.083984300

    39 10.60 66.62 863.40 1000 1.221020280

    40 10.66 67.00 670.00 1000 0.947514000

    41 10.68 67.13 659.50 1000 0.93266490042 10.84 68.13 381.75 1000 0.539870850

    43 11.13 69.96 222.00 1000 0.313952400

    44 11.14 70.02 225.50 1000 0.318902100

    45 11.67 73.35 127.50 1000 0.180310500

    46 11.83 74.36 111.50 1000 0.157683300

    47 11.85 74.48 107.67 1000 0.152266914

    48 12.20 76.68 85.83 1000 0.121380786

    49 12.25 77.00 80.45 1000 0.113772390

    50 12.59 79.13 67.50 1000 0.095458500

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    26/114

    184

    51 12.67 79.64 64.00 1000 0.090508800

    52 12.80 80.45 61.43 1000 0.086874306

    53 13.08 82.21 52.12 1000 0.073715175

    54 13.19 82.90 48.20 1000 0.06816444

    55 13.25 83.28 49.53 1000 0.070049569

    56 13.35 83.91 46.94 1000 0.066382548

    57 13.46 84.60 45.44 1000 0.064261248

    58 13.53 85.04 43.30 1000 0.06123486059 13.82 86.86 38.88 1000 0.054984096

    60 13.96 87.74 37.92 1000 0.053626464

    61 14.15 88.94 35.97 1000 0.050875845

    62 14.36 90.26 30.98 1000 0.043811916

    63 14.37 90.32 32.14 1000 0.045452388

    64 14.76 92.77 29.46 1000 0.041662332

    65 14.81 93.09 29.27 1000 0.041400705

    66 15.10 94.91 26.67 1000 0.037723785

    67 15.16 95.29 23.57 1000 0.033344008

    68 15.40 96.80 23.36 1000 0.033035712

    69 20.75 130.42 8.86 1000 0.012529812

    70 22.05 138.60 24.40 1000 0.034506480

    Table 12.6 Base motion test data on one-story building frame; measurement made at first floor along Y

    direction; Amplitude of base motion, =0.055 mm

    Sl.

    No.

    Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    x1rms (mV)

    Amplitude

    x2rms (mV)

    Conversion

    Factor

    CF1(V/m)

    Displacement

    Amplitude

    X1= 2

    (CF1) x1(mm)

    ConversionFactor

    CF2(V/m)

    DisplacementAmplitude

    X2= 2

    (CF2) x2(mm)

    Rotation**

    z

    (rad)

    1 3.61 22.72 34.50 36.20 1000 0.04878990 1000 0.051194040 0.017677500

    2 3.62 22.77 34.10 35.60 1000 0.04822422 1000 0.050345520 0.015597794

    3 5.56 34.94 27.00 26.00 1000 0.03818340 1000 0.036769200 0.010398529

    4 5.64 35.47 17.90 18.20 1000 0.02531418 1000 0.025738440 0.003119559

    5 5.66 35.63 18.60 19.40 1000 0.02630412 1000 0.027435480 0.008318824

    6 5.88 36.96 35.40 34.40 1000 0.05006268 1000 0.048648480 0.010398529

    7 6.32 39.73 53.50 51.60 1000 0.07565970 1000 0.072972720 0.019757206

    8 6.34 39.88 53.60 51.70 1000 0.07580112 1000 0.073114140 0.019757206

    9 6.46 40.60 33.10 35.80 1000 0.04681002 1000 0.050628360 0.028076029

    10 6.48 40.78 53.40 51.70 1000 0.07551828 1000 0.073114140 0.017677500

    11 6.85 43.11 61.10 59.10 1000 0.08640762 1000 0.083579220 0.020797059

    12 6.87 43.23 59.20 58.00 1000 0.08372064 1000 0.082023600 0.012478235

    13 7.1 44.62 63.80 60.70 1000 0.09022596 1000 0.085841940 0.032235441

    14 7.50 47.19 75.20 72.10 1000 0.10634784 1000 0.101963820 0.032235441

    15 7.56 47.52 73.90 71.90 1000 0.10450938 1000 0.101680980 0.020797059

    16 7.75 48.71 79.20 76.10 1000 0.11200464 1000 0.107620620 0.032235441

    17 7.77 48.84 78.50 74.50 1000 0.11101470 1000 0.105357900 0.041594118

    18 7.81 49.11 81.20 79.10 1000 0.11483304 1000 0.111863220 0.02183691219 7.92 49.80 84.40 82.40 1000 0.11935848 1000 0.116530080 0.020797059

    20 8.02 50.44 86.10 81.50 1000 0.12176262 1000 0.115257300 0.047833235

    21 8.14 51.16 91.30 85.90 1000 0.12911646 1000 0.121479780 0.056152059

    22 8.22 51.69 97.70 94.40 1000 0.13816734 1000 0.133500480 0.034315147

    23 8.54 53.68 103.0 94.30 1000 0.14566260 1000 0.133359060 0.090467206

    24 8.57 53.90 114.0 105.0 1000 0.16121880 1000 0.148491000 0.093586764

    25 8.80 55.33 127.0 118.0 1000 0.1796034 1000 0.166875600 0.093586764

    26 9.11 57.26 161.0 147.0 1000 0.2276862 1000 0.207887400 0.145579411

    27 9.29 58.41 188.0 172.0 1000 0.2658696 1000 0.243242400 0.166376469

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    27/114

    185

    28 9.45 59.41 216.0 197.0 1000 0.3054672 1000 0.278597400 0.197572056

    29 9.66 60.73 276.0 250.0 1000 0.3903192 1000 0.353550000 0.270361758

    30 9.78 61.50 328.0 295.0 1000 0.4638576 1000 0.417189000 0.343151457

    31 9.82 61.74 338.0 306.0 1000 0.4779996 1000 0.432745200 0.332752929

    32 9.96 62.60 451.0 402.0 1000 0.6378042 1000 0.568508400 0.509527897

    33 10.14 63.73 890.0 754.0 1000 1.2586380 1000 1.066306800 1.414199057

    34 10.31 64.80 188.0 130.0 1000 0.2658696 1000 0.183846000 0.603114633

    35 10.34 64.99 140.0 157.0 1000 0.1979880 1000 0.222029400 0.17677499836 10.56 66.37 1100.0 1050.0 316 4.922848101 316 4.699082278 1.645335448

    37 10.64 66.88 465.0 670.0 316 2.081022152 316 2.998462025 6.745779097

    38 10.78 67.76 210.0 199.0 316 0.939816456 316 0.890587975 0.361974109

    39 11.09 69.70 108.0 99.10 316 0.483334177 316 0.443503861 0.292869966

    40 11.25 70.71 85.00 78.20 316 0.380401899 316 0.349969747 0.223765819

    41 11.45 71.97 67.40 61.10 316 0.301636329 316 0.273441835 0.207312450

    42 11.61 72.97 57.20 51.70 316 0.255988101 316 0.231373861 0.180987061

    43 11.74 73.79 50.70 45.80 316 0.226898544 316 0.204969494 0.161243018

    44 11.82 74.29 48.50 43.80 316 0.217052848 316 0.196018861 0.154661670

    45 12.10 76.05 40.00 35.10 316 0.179012658 316 0.157083608 0.161243018

    46 12.20 76.68 36.80 32.30 316 0.164691646 316 0.144552722 0.148080323

    47 12.45 78.25 28.10 25.00 316 0.125756392 316 0.111882911 0.102010889

    48 12.52 78.69 89.80 79.60 1000 0.126995160 1000 0.112570320 0.106065000

    49 12.92 81.21 77.60 67.80 1000 0.109741920 1000 0.095882760 0.101905588

    50 13.20 82.97 69.60 59.60 1000 0.098428320 1000 0.084286320 0.103985294

    51 13.60 85.48 59.50 51.60 1000 0.084144900 1000 0.072972720 0.082148382

    52 14.00 88.00 51.10 42.40 1000 0.072265620 1000 0.059962080 0.090467206

    53 14.20 89.25 47.10 39.50 1000 0.066608820 1000 0.055860900 0.079028823

    54 21.50 135.14 555.0 489.0 3160 0.248380063 3160 0.218842975 0.217184472

    55 21.80 137.02 116.0 134.0 316 0.519136709 316 0.599692405 0.592321226

    56 22.26 139.92 249.0 362.0 3160 0.111435380 3160 0.162006456 0.371846130

    57 23.21 145.89 88.80 154.0 3160 0.039740810 3160 0.068919873 0.214551933

    Table 12.7 Base motion test data on one-story building frame; Frequency of excitation = 7.42 Hz;

    Amplitude of base motion, = 0.291mm

    No. Angle of

    Incidence(degrees)

    Amplitude

    xrms (V)

    Amplitude

    yrms (V)

    Conversion

    FactorCF

    (V/m)

    Displacement

    AmplitudeX = 2 (CF) x

    (mm)

    Displacement

    AmplitudeY = 2 (CF)

    y

    (mm)

    1 0 0.4156 0.0117 1000 0.58689 0.01655

    2 5 0.4136 0.0172 1000 0.58407 0.02432

    3 10 0.4106 0.0221 1000 0.57982 0.03125

    4 15 0.3991 0.0278 1000 0.56356 0.03932

    5 20 0.3876 0.1312 1000 0.54730 0.18526

    6 25 0.3706 0.1653 1000 0.52325 0.23334

    7 30 0.3536 0.1943 1000 0.49921 0.27436

    8 35 0.3375 0.2274 1000 0.47659 0.32102

    9 40 0.3155 0.2604 1000 0.44547 0.36769

    10 45 0.2915 0.2884 1000 0.41153 0.4072911 50 0.2634 0.3055 1000 0.37194 0.43133

    12 55 0.2274 0.3155 1000 0.32102 0.44547

    13 60 0.2013 0.3355 1000 0.28425 0.47376

    14 65 0.1758 0.3515 1000 0.24819 0.49638

    15 70 0.1432 0.3596 1000 0.20223 0.50770

    16 75 0.1077 0.3636 1000 0.15203 0.51336

    17 80 0.0775 0.3616 1000 0.10939 0.51053

    18 85 0.0378 0.2864 1000 0.05332 0.40446

    19 90 0.0178 0.1422 1000 0.02517 0.20082

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    28/114

    186

    Table 12.8 Estimate of the natural frequencies of the one-story building frame; Experiment-I: Impulsehammer test and modal extraction using ME scope; Experiment-II: shake table test.

    Natural frequencies in Hz

    Mode No. FE Model 3-DOFModel ExperimentI ExperimentII

    1 10.1559 10.6367 10.1380 10.1400

    2 10.8203 11.0623 10.3820 10.6400

    3 18.0018 21.9707 21.7250 21.8000

    Table 12.9 Estimate of the damping of one-story building frame using the data from Experiment-I:

    Impulse hammer test

    Mode No.Experiment

    I

    1 0.0218

    2 0.02013 0.0112

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    29/114

    187

    Experiment 3

    Dynamics of a three storied building frame subjected to periodic

    (non-harmonic) base motion.

    The performance of the experiment, as per suggested procedure, on the setup

    developed at IISc, resulted in observations and subsequent deductions as provided in

    figures13.1-13.3. Refer to the notes provided in Experiment 1 for details of the mass,

    stiffness and damping matrices. Figure 13.1 shows the base motions for different

    RPM of the motor resulting in base motion periods of 0.9870,1.0328, 1.1845 and

    1.2490 s respectively. The base motions re-constructed from the derived Fourier

    coefficients are also shown in this figure. Figure 13.2 shows the computed floor

    displacement from the mathematical model. Here the solution is obtained using two

    alternative strategies: the first method involves modal decomposition of the system

    and Fourier decomposition of excitation (equation 3.2) and, the second, employs

    direct integration technique using the base motion without Fourier decomposition.

    The two solutions show the expected mutual agreement. The steady oscillatoryresponse of the system obtained using experiments and theory are compared in figure

    13.3. It may be noted that the phase difference that is observed between the two

    results in these figures is because of the arbitrary choice of time axis for the two

    results. The instructor may note that significant amount of computer work is needed

    for obtaining the analytical results of this study.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    30/114

    188

    Period=0.9870 s Period=1.0328 s

    Period=1.1845 s Period=1.2490 s

    Figure 13.1 Typical base motion profiles with differing periods; the reconstructed

    signals using Fourier series are also shown in these figures.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    31/114

    189

    Figure 13.2 Displacement of floors (a) Floor I (b) Floor II (c) Floor III. Period=1.0328

    s

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    32/114

    190

    (a)

    (b)

    (c)Figure 13.3 Comparison of experimental and analytical results on the total floor

    displacement in the steady state. Note that only the oscillatory motion is measured in

    the experiment; Period=1.0328 s; (a) First floor; (b) Second floor; (c) third floor.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    33/114

    191

    Experiment 4

    Vibration isolation of a secondary system

    The performance of the experiment, as per suggested procedure here in, on the setup

    developed at IISc, resulted in observations and subsequent analysis as shown in tables

    14.1-14.8 and figures 14.1-14.5. Refined methods of experimental and mathematical

    modeling can be brought to bear on the structure under study. Thus the frame was

    analyzed mathematically using finite element (FE) analysis and experimentally by

    using experimental modal analysis (EMA) procedures. The FE analysis was carried

    out using NISA software and the EMA was carried out using MEscopeVES software.

    The FE modeling involved discretization of the structure using 3-D beam, 4-node

    shell and concentrated mass elements resulting in a system with 1482 degrees of

    freedom. Figure 14.2 shows the setup used for measurement of frequency response

    functions using impulse hammer test. Table 14.8 summarizes the natural frequencies

    of the frame using refined and approximate methods. As may be observed from this

    table, these estimates show good mutual agreement Figures 14.3 and 14.4 respectively

    show the first three mode shapes as predicted by detailed FE analysis and EMA.

    In the development of mathematical model, as described in section 4.3, the structural

    matrices were obtained as

    Mass matrix (kg)

    M1= MS+ 4* MC+ Msc1

    M2= MS+ 4* MC+ Msc1+ Mbb+0.5* Msp+ Macc

    M3= MS+ 4*0.5* MC+ Msc1

    M4= Miso+ 0.5* Msp+ Macc+ Msc2

    Amplitude of the Base motion= 0.1015mm

    M = [1.8965 0 0 0

    0 1.9543 0 0

    0 0 1.7338 0

    0 0 0 0.0915]

    Stiffness matrix (N/m)

    K = 1.0e+003 *[ 5.8475 -2.9237 0 0

    -2.9237 5.9379 -2.9237 -0.0904

    0 -2.9237 2.9237 00 -0.0904 0 0.0904]

    The solution of the eigenvalue problem MK 2= lead to the natural frequencies

    (rad/s)

    {n} = [17.5682

    31.6945

    49.7510

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    34/114

    192

    70.7656]

    and mass normalized mode shapes

    = [-0.2406 -0.0400 0.5392 -0.4208

    -0.4331 -0.0540 0.2127 0.5253

    -0.5301 -0.1336 -0.4547 -0.2667-0.6299 3.2391 -0.1413 -0.1291]

    The damping ratios derived from the measured frequency response functions were

    found to be

    {} = [0.0100

    0.0080

    0.0060

    0.0040];

    The C matrix associated with the above damping ratios was obtained as follows:

    1][

    t = [-0.4564 -0.0759 1.0225 -0.7981

    -0.8464 -0.1055 0.4157 1.0266

    -0.9191 -0.2316 -0.7884 -0.4624

    -0.0577 0.2965 -0.0129 -0.0118]

    ]2[ = [0.3514 0 0 0

    0 0.5071 0 0

    0 0 0.5970 0

    0 0 0 0.5661]

    1][ =[-0.4564 -0.8464 -0.9191 -0.0577

    -0.0759 -0.1055 -0.2316 0.2965

    1.0225 0.4157 -0.7884 -0.0129

    -0.7981 1.0266 -0.4624 -0.0118]

    C = [ ][ ] 11 2][ t = [1.0609 -0.0703 -0.1160 -0.0047-0.0703 0.9572 -0.1786 -0.0088

    -0.1160 -0.1786 0.8161 -0.0070

    -0.0047 -0.0088 -0.0070 0.0459]

    Furthermore, the following orthogonality checks were also made:

    Mt

    =[1.0000 0.0000 -0.0000 -0.0000

    0.0000 1.0000 -0.0000 -0.0000

    -0.0000 -0.0000 1.0000 -0.0000

    -0.0000 -0.0000 -0.0000 1.0000];

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    35/114

    193

    Kt

    = 1.0e+003 [0.3086 0.0000 0.0000 0.0000

    0.0000 1.0045 0.0000 0.0000

    0.0000 0.0000 2.4752 -0.0000

    0.0000 0.0000 -0.0000 5.0078]

    Ct = [0.3514 -0.0000 0.0000 0.0000

    -0.0000 0.5071 0.0000 0.0000-0.0000 -0.0000 0.5970 -0.0000

    0.0000 0.0000 -0.0000 0.5661]

    The following calculations were involved in making a sdof model:

    M4= Miso+ 0.5* Msp+ Macc+ Msc2

    = 0.0675+ 0.5*0.0073+0.012+ 0.00836 (from tables 14.2 and 14.3)

    = 0.0915 kg

    12

    3

    2

    bdI =

    = 0.02*0.0083/12

    = 8.5333e-13 m4

    3

    2

    224

    3

    L

    IEk =

    = 3*69e9*8.5333e-13/0.1253k

    = 90.4397 N-m

    Hence, in this approximation, 0.0915/4397.90/ 44 == mkn = 31.43 rad/s (5.0036

    Hz)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    36/114

    194

    (a)

    (b)

    (c ) (d)

    Figure 14.1 Comparison of experimental results and theoretical predictions.

    Experimental results were obtained for the frame under harmonic base motions

    supplied by the shake table and theoretical results from the 4-dof model of equation

    4.6. (a) Amplitude of the base motion as the speed of the motor is varied; note that

    this amplitude is expected to be independent of the motor speed; (b) Displacement of

    mass M2; (c) Displacement of mass M4; (d) Displacement transmissibility ratio.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    37/114

    195

    Figure 14.2 Test set-up for the impulse hammer test on the frame in figures 4.1c and

    d; impulse hammer excitations; F: Impulse hammer; A1-A3: Accelerometers.

    (a)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    38/114

    196

    (b)

    (c)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    39/114

    197

    (d)

    Figure 14.3 Mode shapes of the the frame in figures 4.1c and d obtained from detailed

    FE model; (a) I-mode; (b) II-mode; (c) III-mode; (d) IV-mode

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    40/114

    198

    I-modeII-mode

    III-mode IV-mode

    Figure 14.4 Mode shapes of the frame in figures 4.1c and d obtained from

    experimental modal analysis using impulse hammer tests and modal extractionsoftware.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    41/114

    199

    Figure 14.5 Displacement transmissibility ratios obtained using different alternativeapproaches. (Experiment-I: Impulse hammer test and modal extraction using ME scope;Experiment-II: Shake table test)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    42/114

    200

    Table 14.1 Equipments used in free vibration and forced vibration test of three-story shear building

    frame

    No. Equipments Quantity

    1 Oscilloscope/Data acquisition system 1

    2 Accelerometer 3

    3 Charge amplifier/Transducer conditioner 14 Shake table 1

    Table 14.2 Physical properties of parts of the structure

    Material Properties

    No. Part Material

    Mass kg

    Youngs

    Modulus (E)

    N/m2

    Mass density ()kg/m

    3

    1 Column Aluminum Mc= 0.0814 69.0E+009 2700

    2 Slab Aluminum Ms=1.5430 69.0E+009 2700

    3Allen screw,

    M8Steel Msc1=0.0280 2.0E+011 7800

    4 Allen screw,M3 Steel Msc2=0.00836

    5 Base block Aluminum Mbb=0.0422 69.0E+009 2700

    6Spring (Al

    strip)Aluminum Msp

    *=0.0073 69.0E+009 2700

    7Mass to be

    isolatedAluminum Miso=0.0675 69.0E+009 2700

    8

    Mass of

    accelerometer - Macc=0.012

    *Msp = *d*b*L2

    Table 14.3 Geometric data of the structure

    Dimensions in mm

    No. PartDepth (D) Width (B)

    Length (L) Effective

    length

    1 Column DC=3.00 BC=25.11 LC=400.00 -

    2 Slab DS=12.70 BS=150.00 LS=300.00 -

    3 Base block Dbb=25.00 Bbb=25.00 Lbb=25.00 -

    4 Spring (Al strip) d=0.80 b=20.00 L2=170.00 LE2=125.00

    5Mass to be

    isolatedDiso=10.00 Biso =50.00 Liso=50.00 -

    Table 14.4 Details of the sensors used; CF: conversion factor

    No. SensorSensitivity, S

    mV/g

    CF

    m/s

    2

    /V

    Mass

    kg1 Flat Pack, Model JTF, Sensotec 129.3298 75.8526 0.012

    2 Flat Pack, Model JTF, Sensotec 326.6722 30.0301 0.012

    3 Flat Pack, Model JTF, Sensotec 336.5686 29.1471 0.012

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    43/114

    201

    Table 14.5 Free vibration test data on three-story shear building frame with a mass, on second floor, to

    be isolated

    No. Quantity Notation Observations

    1 Amplitude of 0th

    peak A0 0.5448 m/s2

    2 Amplitude of nth

    peak An 0.4489 m/s2

    3 Number of cycles n 18

    4 Logarithmic decrement 0.0108

    5 Damping ratio 0.0017

    Table 14.6 Base motion test data on frame in figures 4.1c and d

    No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    1rms (mm)

    Amplitude

    2rms (mm)

    Amplitude

    3rms (mm)

    Displacement

    Amplitude

    Y =

    2 (CF) 1

    (mm)

    Displacement

    Amplitude

    X2=

    2 (CF) 2(mm)

    Displacement

    Amplitude

    X4=

    2 (CF) 3(mm)

    1 2.1362 13.4221 0.0770 0.2083 0.2838 0.1089 0.2946 0.4014

    2 2.3499 14.7649 0.0761 0.3063 0.4464 0.1076 0.4332 0.6313

    3 2.5024 15.7230 0.0750 0.4797 0.7347 0.1061 0.6784 1.0390

    4 2.5635 16.1069 0.0757 0.6222 0.9846 0.1070 0.8799 1.3924

    5 2.7161 17.0658 0.0770 2.1028 3.3068 0.1090 2.9738 4.6765

    6 2.8381 17.8323 0.0761 1.0113 1.8413 0.1076 1.4301 2.6040

    7 2.9907 18.7911 0.0728 0.4373 0.8376 0.1030 0.6185 1.1845

    8 3.0823 19.3667 0.0744 0.2813 0.5800 0.1053 0.3978 0.8202

    9 3.4180 21.4759 0.0766 0.1454 0.3268 0.1084 0.2056 0.4621

    10 3.6926 23.2013 0.0738 0.1003 0.1998 0.1043 0.1418 0.2826

    11 4.1199 25.8861 0.0723 0.0617 0.1477 0.1023 0.0873 0.2088

    12 4.3030 27.0365 0.0723 0.0520 0.1612 0.1022 0.0735 0.2279

    13 4.5471 28.5703 0.0712 0.0403 0.1872 0.1007 0.0570 0.2648

    14 4.7913 30.1046 0.0718 0.0341 0.2137 0.1015 0.0482 0.3022

    15 4.9744 31.2551 0.0719 0.0297 0.2891 0.1016 0.0421 0.4089

    16 5.0354 31.6384 0.0718 0.0271 0.4273 0.1016 0.0384 0.6043

    17 5.0659 31.8300 0.0712 0.0263 0.4430 0.1007 0.0372 0.626518 5.0964 32.0216 0.0710 0.0256 0.6779 0.1004 0.0362 0.9587

    19 5.2490 32.9804 0.0706 0.0321 0.5760 0.0998 0.0454 0.8146

    20 5.3101 33.3643 0.0718 0.0295 0.3615 0.1015 0.0418 0.5112

    21 5.4321 34.1309 0.0705 0.0258 0.2207 0.0997 0.0364 0.3121

    22 5.4626 34.3225 0.0701 0.0249 0.2043 0.0992 0.0353 0.2889

    23 5.7068 35.8569 0.0697 0.0207 0.0975 0.0986 0.0292 0.1379

    24 5.8289 36.6241 0.0698 0.0261 0.0684 0.0987 0.0370 0.0967

    25 6.1340 38.5411 0.0702 0.0116 0.0275 0.0993 0.0165 0.0388

    26 6.2561 39.3082 0.0704 0.0101 0.0194 0.0996 0.0142 0.0274

    27 6.4697 40.6503 0.0707 0.0068 0.0087 0.1000 0.0097 0.0124

    28 7.0190 44.1017 0.0723 0.0146 0.0171 0.1022 0.0207 0.0242

    29 7.0801 44.4856 0.0723 0.0182 0.0204 0.1023 0.0258 0.0289

    30 7.2632 45.6360 0.0719 0.0291 0.0305 0.1017 0.0412 0.0431

    31 7.3853 46.4032 0.0720 0.0432 0.0408 0.1018 0.0611 0.0577

    32 7.6294 47.9369 0.0714 0.0927 0.0771 0.1009 0.1311 0.1090

    33 7.7820 48.8957 0.0714 0.2502 0.1848 0.1009 0.3539 0.2614

    34 7.8430 49.2790 0.0709 0.4139 0.2953 0.1003 0.5854 0.4177

    35 7.9651 50.0462 0.0701 0.9613 0.6324 0.0992 1.3595 0.8943

    36 7.9956 50.2378 0.0705 0.4943 0.3257 0.0997 0.6991 0.4606

    37 8.1787 51.3883 0.0701 0.1706 0.1061 0.0992 0.2412 0.1500

    38 8.3008 52.1555 0.0700 0.1267 0.0752 0.0990 0.1792 0.1064

    39 8.4229 52.9226 0.0700 0.1010 0.0574 0.0990 0.1428 0.0812

    40 8.6060 54.0731 0.0698 0.0821 0.0435 0.0987 0.1161 0.0615

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    44/114

    202

    41 8.9111 55.9901 0.0693 0.0669 0.0318 0.0980 0.0947 0.0450

    42 8.9416 56.1817 0.0695 0.0658 0.0308 0.0983 0.0931 0.0436

    43 9.0942 57.1405 0.0693 0.0622 0.0272 0.0980 0.0880 0.0385

    44 9.3079 58.4833 0.0690 0.0590 0.0237 0.0976 0.0835 0.0335

    45 9.4910 59.6337 0.0689 0.0576 0.0219 0.0975 0.0815 0.0310

    46 9.7351 61.1674 0.0690 0.0573 0.0204 0.0976 0.0810 0.0288

    47 10.0098 62.8934 0.0693 0.0597 0.0194 0.0980 0.0845 0.0275

    48 10.2539 64.4272 0.0696 0.0646 0.0205 0.0985 0.0914 0.029049 10.4370 65.5776 0.0695 0.0690 0.0200 0.0983 0.0976 0.0283

    50 10.6812 67.1120 0.0701 0.0816 0.0227 0.0992 0.1154 0.0321

    51 11.1389 69.9878 0.0712 0.1460 0.0369 0.1006 0.2064 0.0522

    52 11.3220 71.1382 0.0712 0.2168 0.0523 0.1007 0.3066 0.0739

    53 11.5356 72.4803 0.0719 2.7661 0.6252 0.1017 3.9118 0.8842

    54 11.5967 72.8642 0.0716 1.8836 0.4200 0.1013 2.6639 0.5940

    55 11.9019 74.7818 0.0728 0.1822 0.0391 0.1030 0.2576 0.0553

    56 12.2375 76.8905 0.0733 0.0812 0.0166 0.1036 0.1148 0.0235

    57 12.2986 77.2744 0.0737 0.0712 0.0144 0.1042 0.1007 0.0204

    58 12.6343 79.3836 0.0738 0.0449 0.0088 0.1044 0.0635 0.0124

    59 13.0005 81.6846 0.0732 0.0306 0.0060 0.1035 0.0432 0.0085

    60 13.5193 84.9443 0.0745 0.0206 0.0038 0.1054 0.0291 0.0054

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    45/114

    203

    Table 14.7 Frequency ratio and the displacement transmissibility ratio

    No.

    Frequency ratio

    f / fn

    Amplitude ratio

    X4/ X2

    1 0.4192 1.3652

    2 0.4611 1.4574

    3 0.4910 1.53154 0.5030 1.5825

    5 0.5329 1.5726

    6 0.5569 1.8208

    7 0.5868 1.9152

    8 0.6048 2.0619

    9 0.6707 2.2475

    10 0.7246 1.9927

    11 0.8084 2.3916

    12 0.8443 3.1017

    13 0.8922 4.6431

    14 0.9401 6.2660

    15 0.9761 9.7197

    16 0.9880 15.7434

    17 0.9940 16.8614

    18 1.0000 26.5040

    19 1.0299 17.9559

    20 1.0419 12.2436

    21 1.0659 8.5645

    22 1.0719 8.1901

    23 1.1198 4.7185

    24 1.1437 2.6171

    25 1.2036 2.3581

    26 1.2276 1.9267

    27 1.2695 1.2771

    28 1.3772 1.1698

    29 1.3892 1.1200

    30 1.4252 1.045531 1.4491 0.9437

    32 1.4970 0.8314

    33 1.5270 0.7387

    34 1.5389 0.7134

    35 1.5629 0.6579

    36 1.5689 0.6588

    37 1.6048 0.6217

    38 1.6288 0.5937

    39 1.6527 0.5688

    40 1.6886 0.5296

    41 1.7485 0.4750

    42 1.7545 0.4685

    43 1.7844 0.4379

    44 1.8264 0.4010

    45 1.8623 0.3797

    46 1.9102 0.3560

    47 1.9641 0.3255

    48 2.0120 0.3171

    49 2.0479 0.2895

    50 2.0958 0.2779

    51 2.1856 0.2516

    52 2.2216 0.2411

    53 2.2635 0.2260

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    46/114

    204

    54 2.2755 0.2230

    55 2.3354 0.2147

    56 2.4012 0.2097

    57 2.4132 0.2027

    58 2.4791 0.1949

    59 2.5509 0.1910

    60 2.6527 0.1846

    Table 14.8 Estimate of the natural frequencies of theframe in figures 4.1c and d; Experiment-I:

    Impulse hammer test and modal extraction using ME scope; Experiment-II: Shake table test.

    Natural frequencies in Hz

    Mode No. FE Model 4-DOF ModelExperiment I Experiment II

    1 2.79916 2.7914 2.74658 2.7161

    2 5.16252 5.0438 5.06592 5.0964

    3 8.05047 7.9083 7.93457 7.9651

    4 11.68590 11.2579 11.59668 11.5356

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    47/114

    205

    Experiment 5

    Dynamics of a vibration absorber

    The performance of the experiment, as per suggested procedure here in, on the setup

    developed at IISc, resulted in observations and subsequent analysis as provided in

    tables 15.1-15.9 and figures15.1-15.3. Refined methods of experimental and

    mathematical modeling can be brought to bear on the structure under study. Thus the

    beam vibration absorber system was analyzed mathematically using finite element

    (FE) analysis and experimentally by using experimental modal analysis (EMA)

    procedures. The FE analysis was carried out using NISA software and the EMA was

    carried out using MEscope software. The FE modeling involved descretization of the

    structure using 2-D beam and concentrated mass elements resulting in a system with

    40 degrees of freedom. Figure 15.4 shows the setup used for measurement of

    frequency response functions using impulse hammer test. Figures 15.5 and 15.6

    respectively show the first three mode shapes as predicted by detailed FE analysis and

    EMA. Both the FE model and the EMA model predict the presence of an intermediate

    mode that gets sandwiched between the two modes predicted by the approximate 2-dof model for the beam-absorber system.Figure 15.7 shows the frequency response

    functions obtained using refined and approximate methods.

    Calculations for main beam(1 dof system)

    Mass of main beam, M0 = (0.3714*MA)+MB+MC+2*MD+ME+ Mac1 = 3.9999 Kg

    Stiffness of the main beam, K1=2.5898e+004 N/m

    Frequency of the main beam, f =12.8065 Hz

    Damping ratio = 0.202 % obtained from table15.5

    Calculations for main beam and absorber beam (2 dof system)

    M1=(0.3714*MA)+MB+MC+2*MD+ME+MF + Mac1= 4.1952 kg

    K1=192*E*I/L3

    e 1 = 2.5898e+004 N/m

    M2=0.2357*2*MG+2*MH + Mac2 = 0.4516 kg

    K2=2*3*E*I/L3

    e 2 = 0.30229 e+004 N/m

    Mass matrix (kg)

    M=[4.1952 0

    0 0.4516]

    Stiffness matrix (N/m)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    48/114

    206

    K= 1.0e+004 * [2.89209 -0.30229

    -0.30229 0.30229]

    Natural frequencies (rad/s)

    {n} = =[67.7897

    94.8288]

    Mass normalized modal matrix

    = [-0.3373 -0.3530

    -1.0759 1.0281]

    Damping ratios obtained from half power bandwidth method

    {} = [0.026508

    0.021382]

    Damping matrix determination

    1][

    t =[-1.4150 -1.4808

    -0.4858 0.4643];

    ]2[ = [3.5939 0

    0 4.0554];

    1][ = [-1.4150 -0.4858

    -1.4808 0.4643];

    Damping matrix (Ns/m)

    C = [ ][ ] 11 2][ t = [16.0892 -0.3172-0.3172 1.7224];

    Orthogonality checks:

    Mt =[1.0000 0.0000

    0.0000 1.0000]

    Kt

    = 1.0e+003 *[4.5954 -0.0000

    0.0000 8.9925];

    =

    \

    \2

    n

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    49/114

    207

    Ct = [3.5939 0.0000-0.0000 4.0554];

    =

    \

    2

    \

    nn

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    50/114

    208

    Figure 15.1 Plot ofX/Fversusf

    Figure 15.2 Plot of Y/Fversusf

    Figure 15.3 Plot ofZ/Fversusf

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    51/114

    209

    F

    A1

    A2A3

    Figure 15.4 Setup for impulse hammer test; F: point of application of impulse; A1, A2,

    A3: accelerometers.

    Charge Amplifier

    Signal

    Conditioning

    Amplifiers

    Anti-aliasing

    Filters

    Simultaneous

    Sampling and

    hold Board

    Analyzer

    &

    Display

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    52/114

    210

    (b)

    (c)

    Figure 15.5 Mode shapes of the combined system obtained from detailed FE model; (a) I-mode; (b) II-

    mode; (c) III-mode

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    53/114

    211

    (a)

    (b)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    54/114

    212

    (c)

    Figure 15.6 Mode shapes of the combined system obtained from experimental modal analysis; (a) I-

    mode; (b) II-mode; (c) III-mode

    (a)

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    55/114

    213

    (b)

    (c)

    Figure 15.7 Frequency response functions using refined and approximate methods; (a)F

    X&versusf;(b)

    F

    Y&versus f ; (c)

    F

    Z&& versus f; Experiment-I: Impulse hammer test and modal extraction using ME

    scope; Experiment-II: sine test using motor with eccentric mass.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    56/114

    214

    Table 15.1 Equipments used in free vibration and forced vibration test of DVA

    S.No. Equipments Quantity

    1 Oscilloscope 1

    2 Accelerometers 2

    3 Transducer conditioning amplifiers 2

    4 Regulated DC power supplier 1

    Table 15.2 Physical properties of parts of the structure

    Mass kg Material PropertiesNotat

    ionPart Material Formula Value Youngs Modulus

    (E) N/m2

    Mass density

    () kg/m3

    A Main Beam Mild Steel*D1*B1*

    Le1MA= 3.0153 2.10E+11

    7800

    B D.C. Motor -

    C Fly wheel Aluminum

    - MB+MC=

    2.2550.69E+11 2700

    D Eccentric mass Mild Steel- MD=0.03 2.10E+11 7800

    E Connectingplates

    Mild Steel - ME=0.510 2.10E+11 7800

    F Connecting rod Mild Steel*Dc*Bc*

    LcMF =0.1953 2.10E+11 7800

    GAbsorber beam

    Aluminum*D2*B2*

    L2MG = 0.0762 0.69E+11 2700

    HMass on

    absorber beamMild Steel

    *(pi*DG2

    /4)*TGMH = 0.2058 2.10E+11 7800

    ac1 Accelrometer1 - - Mac1= 0.055 - -

    ac2 Accelrometer2 - - Mac2= 0.004 - -

    Table 15.3 Geometric data of the structure

    Dimensions in mmPart

    Depth (D) Width (B) Length (L) Effective Length (Le)

    Main beam D1=6.43 B1=50.10 L1=1500 Le 1= 1200

    Absorber beam D2=3.15 B2=29.85 L2=300* Le 2= 220

    Connecting rod Dc=11.92 Bc=11.92 Lc=176.26 -

    Diameter (DG ) 40Mass on absorber

    beam Thickness (TG ) 21

    Eccentricity of eccentric mass on the flywheel, e=50 mm

    * The absorber is modeled as a cantilever beam. The total length of the absorber beam is 2*L2

    Table 15.4 Details of the sensors used; CF: conversion factor

    Sensitivity, SSl. No. Sensor

    pC/ms-2

    pC/g

    CFx10-6

    Mass

    kg1 Accelerometer type 4370, B & K 10.05 98.7 1 m/mV 0.055

    2 Accelerometer type 4375, B & K 0.320 3.14 1 m/mV 0.004

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    57/114

    215

    Table 15.5 Free vibration test data on primary beam (without the absorber)

    S.No. Quantity Notation Observations

    1 Amplitude of 0th

    peak A0 2600 mV

    2 Amplitude of nth

    peak An 2440 mV

    3 Number of cycles n 5

    4 Logarithmic decrement 0.0135 Damping ratio 0.00202

    Table 15.6 Forced vibration test data on primary beam (without the absorber)

    No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    rms (mV)

    Amplitude

    X = 2 (CF)

    (m) x10-3

    Force,

    F=2MD e2

    (N)

    Receptance

    X/F

    (m/N) x10-3

    1 5.1000 32.0442 60 0.0849 3.0805 0.0275

    2 5.6000 35.1858 80 0.1131 3.7141 0.0305

    3 6.2000 38.9557 114 0.1612 4.5527 0.0354

    4 6.6000 41.4690 140 0.1980 5.1590 0.0384

    5 7.2000 45.2389 184 0.2602 6.1397 0.0424

    6 7.7000 48.3805 233 0.3295 7.0220 0.0469

    7 8.2000 51.5221 290 0.4101 7.9636 0.05158 8.7000 54.6637 373 0.5275 8.9644 0.0588

    9 9.2000 57.8053 464 0.6562 10.0244 0.0655

    10 9.8000 61.5752 630 0.8910 11.3745 0.0783

    11 10.4000 65.3451 880 1.2445 12.8100 0.0972

    12 10.8000 67.8584 1130 1.5981 13.8143 0.1157

    13 11.3000 71.0000 1660 2.3476 15.1230 0.1552

    14 11.6000 72.8849 2000 2.8284 15.9366 0.1775

    15 11.9000 74.7699 2830 4.0022 16.7716 0.2386

    16 12.0000 75.3982 3140 4.4406 17.0547 0.2604

    17 12.2500 76.9690 4730 6.6892 17.7727 0.3764

    18 12.3000 77.2832 5130 7.2549 17.9181 0.4049

    19 12.6000 79.1681 11000 15.5563 18.8028 0.8273

    20 12.7000 79.7965 20000 28.2843 19.1024 1.4807

    21 12.8000 80.4248 35000 49.4975 19.4044 2.5508

    22 12.8500 80.7389 40000 56.5685 19.5563 2.8926

    23 12.9000 81.0531 50000 70.7107 19.7088 3.5878

    24 13.0000 81.6814 15000 21.2132 20.0156 1.0598

    25 13.6000 85.4513 4050 5.7276 21.9058 0.2615

    26 13.8500 87.0221 3370 4.7659 22.7185 0.2098

    27 14.0500 88.2788 2910 4.1154 23.3794 0.1760

    28 14.3500 90.1637 2470 3.4931 24.3885 0.1432

    29 14.6500 92.0487 2130 3.0123 25.4189 0.1185

    30 15.0200 94.3734 1870 2.6446 26.7190 0.0990

    31 15.3500 96.4469 1700 2.4042 27.9060 0.0862

    32 16.0000 100.5310 1450 2.0506 30.3194 0.0676

    33 16.7000 104.9292 1270 1.7961 33.0304 0.0544

    34 17.1000 107.4425 1190 1.6829 34.6317 0.048635 17.6000 110.5841 1130 1.5981 36.6865 0.0436

    36 18.2000 114.3540 1050 1.4849 39.2305 0.0379

    37 19.1000 120.0088 978 1.3831 43.2064 0.0320

    38 19.9000 125.0354 925 1.3081 46.9015 0.0279

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    58/114

    216

    Table 15.7 Free vibration test data combined system.

    S.No. Quantity Notation Observations on

    primary beam

    Observations on

    absorber beam

    1 Amplitude of 0th

    peak A0 20.0 V 2.12 V

    2 Amplitude of n

    th

    peak An 18.4 V 1.92 V3 Number of cycles n 8 7

    4 Logarithmic decrement 0.0104 0.0142

    5 Damping ratio 0.00165 0.00225

    Average value of damping ratio, =0.00195

    Table 15.8 Forced vibration test data on combined system; measurement made on main beam

    No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    rms (mV)

    Amplitude

    Y = 2 (CF)

    (m) x10-3

    Force,

    F=2MD e2

    (N)

    Receptance

    Y/F

    (m/N) x10-3

    1 5.0000 31.4159 60 0.0849 2.9609 0.0287

    2 5.7000 35.8142 91 0.1287 3.8480 0.03343 6.3600 39.9611 131 0.1853 4.7907 0.0387

    4 6.9500 43.6681 182 0.2574 5.7207 0.0450

    5 7.7000 48.3805 269 0.3804 7.0220 0.0542

    6 8.3300 52.3389 383 0.5416 8.2181 0.0659

    7 8.9600 56.2973 567 0.8019 9.5082 0.0843

    8 9.5600 60.0673 880 1.2445 10.8242 0.1150

    9 10.0800 63.3345 1530 2.1637 12.0338 0.1798

    10 10.5500 66.2876 3500 4.9497 13.1821 0.3755

    11 10.8700 68.2982 28000 39.5980 13.9939 2.8297

    12 11.4400 71.8796 2700 3.8184 15.5000 0.2463

    13 12.0200 75.5239 1300 1.8385 17.1116 0.1074

    14 12.7400 80.0478 703 0.9942 19.2229 0.0517

    15 13.2500 83.2522 405 0.5728 20.7928 0.0275

    16 13.6400 85.7026 240 0.3394 22.0348 0.015417 14.1000 88.5929 36 0.0509 23.5461 0.0022

    18 14.6000 91.7345 340 0.4808 25.2457 0.0190

    19 15.1300 95.0646 1040 1.4708 27.1118 0.0542

    20 15.5800 97.8920 3200 4.5255 28.7485 0.1574

    21 15.7700 99.0858 13300 18.8090 29.4540 0.6386

    22 16.3700 102.8557 5240 7.4105 31.7379 0.2335

    23 16.7200 105.0549 3090 4.3699 33.1096 0.1320

    24 17.1200 107.5681 2230 3.1537 34.7127 0.0909

    25 17.8300 112.0292 1610 2.2769 37.6516 0.0605

    26 18.2500 114.6681 1420 2.0082 39.4463 0.0509

    27 19.0000 119.3805 1200 1.6971 42.7551 0.0397

    28 19.7600 124.1557 1060 1.4991 46.2439 0.0324

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    59/114

    217

    Table 15.9 Forced vibration test data on combined system; measurement made on absorber beam

    No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    rms (mV)

    Amplitude

    Z = 2 (CF)

    (m) x10-3

    Force,

    F=2MD e2

    (N)

    Receptance

    Z /F

    (m/N) x10-3

    1 5.2000 32.6726 72 0.1018 3.2025 0.0032

    2 6.0000 37.6991 256 0.3620 4.2637 0.0085

    3 6.5000 40.8407 436 0.6166 5.0039 0.01234 7.2000 45.2389 940 1.3294 6.1397 0.0217

    5 7.7200 48.5062 1680 2.3759 7.0586 0.0337

    6 8.3600 52.5274 3550 5.0205 8.2774 0.0607

    7 8.8800 55.7947 6630 9.3762 9.3391 0.1004

    8 9.5000 59.6903 13800 19.5161 10.6888 0.1826

    9 10.0000 62.8319 27500 38.8909 11.8435 0.3284

    10 10.4800 65.8478 67000 94.7523 13.0078 0.7284

    11 10.8500 68.1726 70000 989.9495 13.9425 7.1002

    12 11.3000 71.0000 14700 207.8894 15.1230 1.3747

    13 11.5000 72.2566 8610 121.7638 15.6631 0.7774

    14 11.9000 74.7699 6620 93.6209 16.7716 0.5582

    15 12.2000 76.6549 4470 63.2153 17.6279 0.3586

    16 12.8500 80.7389 3720 52.6087 19.5563 0.269017 13.5000 84.8230 3310 46.8105 21.5848 0.2169

    18 14.0000 87.9646 3510 49.6389 23.2133 0.2138

    19 14.5000 91.1062 4060 57.4171 24.9010 0.2306

    20 15.0000 94.2478 5270 74.5291 26.6479 0.2797

    21 15.5500 97.7035 11000 155.5635 28.6379 0.5432

    22 15.7500 98.9602 20700 292.7422 29.3793 0.9964

    23 15.8000 99.2743 32800 463.8620 29.5662 1.5689

    24 16.2000 101.7876 12600 178.1909 31.0821 0.5733

    25 16.6000 104.3009 7230 102.2476 32.6360 0.3133

    26 17.0000 106.8142 4070 57.5585 34.2278 0.1682

    27 17.5000 109.9557 2500 35.3553 36.2708 0.0975

    28 18.1000 113.7257 1390 19.6576 38.8006 0.0507

    29 18.7300 117.6841 904 12.7845 41.5486 0.0308

    30 19.2000 120.6372 720 10.1823 43.6600 0.023331 19.8000 124.4071 550 7.7782 46.4314 0.0168

    Note: Here in this case CF=1 m/mV from 1-10 points and 0.1 m/mV from 11-31 points

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    60/114

    218

    EXPERIMENT 6

    Dynamics of a four storied building model with and without an open

    ground floor

    The frequency response functions for displacement of different floors were obtained

    using impulse hammer test. Figure 16.1 shows the experimental setup and figures

    16.2 and 16.3 show the comparison between analytical and experimental results.

    Tables 16.1-16.8 document the results of experiment as per the suggested procedure.

    Figure 16.4 show the plot of absolute floor displacements for the two frames obtained

    using theory and experiment. Results on spring forces from theory and experiment are

    shown in figure 16.5 for the two frames. Tables 16.9 and 16.10 compare the results on

    fundamental natural frequency for the two frames using theory and experiment. From

    Table 16.9 it may be observed that the match between theoretical and experiment is

    not good. This could be due to the approximate nature of determination of inter-storey

    stiffness.

    Brief details of analysis of the 4-dof model is given below.

    Calculations for building frame without soft first story

    Mass matrix (kg)

    M = [3.0390 0 0 0

    0 3.0390 0 0

    0 0 3.0390 0

    0 0 0 2.2910];

    Stiffness matrix (N/m)

    K = [558260 -279130 0 0

    -279130 558260 -279130 0

    0 -279130 558260 -279130

    0 0 -279130 279130];

    Natural frequencies (rad/s)

    { }n = [111.2212317.4533

    478.3553

    575.2993];

    Mass normalized modal matrix

    = [-0.1418 0.3483 0.3719 -0.2221

    -0.2645 0.3145 -0.1827 0.3561

    -0.3516 -0.0644 -0.2821 -0.3489

    -0.3913 -0.3726 0.3213 0.2033] ;

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    61/114

    219

    Damping ratios

    {} = [0.0190

    0.0074

    0.0076

    0.0056];

    Damping matrix determination

    [ ] 1 t = [-0.4309 1.0586 1.1301 -0.6750-0.8037 0.9557 -0.5552 1.0823

    -1.0684 -0.1957 -0.8573 -1.0603

    -0.8964 -0.8537 0.7360 0.4657];

    [ ]2 = [4.23534.6922

    7.2446

    6.4940];

    [ ] 1 = [-0.4309 -0.8037 -1.0684 -0.89641.0586 0.9557 -0.1957 -0.8537

    1.1301 -0.5552 -0.8573 0.7360

    -0.6750 1.0823 -1.0603 0.4657];

    Damping matrix (Ns/m)

    [ ] [ ][ ] == 11 2tC [18.2551 -3.0760 -1.3936 1.3802-3.0760 16.8615 -1.2451 -0.4640

    -1.3936 -1.2451 17.6396 -2.93791.3802 -0.4640 -2.9379 12.1562];

    Orthogonality checks:

    [ ][ ] Mt = [1.0000 0.0000 0.0000 -0.00000.0000 1.0000 -0.0000 -0.0000

    0.0000 -0.0000 1.0000 0.0000

    -0.0000 -0.0000 0.0000 1.0000];

    [ ][ ] Kt = 1.0e+005 *[0.1237 0.0000 0.0000 0.00000.0000 1.0078 0.0000 0.0000

    0.0000 0.0000 2.2882 0.0000-0.0000 0.0000 0.0000 3.3097];

    [ ][ ] Ct = [4.2353 -0.0000 -0.0000 -0.00000.0000 4.6922 -0.0000 -0.0000

    0.0000 0.0000 7.2446 -0.0000

    -0.0000 -0.0000 0.0000 6.4940];

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    62/114

    220

    Calculations for building frame with soft first story

    Mass matrix (kg)

    M = [2.6398 0 0 0

    0 3.0390 0 0

    0 0 3.0390 00 0 0 2.2910];

    Stiffness matrix (N/m)

    K = [306801 -279130 0 0

    -279130 558260 -279130 0

    0 -279130 558260 -279130

    0 0 -279130 279130];

    Natural frequencies (rad/s)

    { }n = [ 48.0745261.8895

    456.5069

    571.1084];

    Mass normalized modal matrix

    = [-0.2768 0.4047 0.3263 -0.1788

    -0.2981 0.1823 -0.2845 0.3550

    -0.3120 -0.1762 -0.2498 -0.3718

    -0.3181 -0.4031 0.3516 0.2217] ;

    Damping ratios

    {} = [0.0050

    0.0050

    0.0050

    0.0050];

    Damping matrix determination

    [ ] 1 t = [-0.7306 1.0683 0.8614 -0.4720-0.9061 0.5540 -0.8645 1.0788

    -0.9483 -0.5355 -0.7592 -1.1299

    -0.7287 -0.9236 0.8056 0.5079];

    [ ]2 = [0.48072.6189

    4.5651

    5.7111];

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    63/114

    221

    [ ] 1 = [-0.7306 -0.9061 -0.9483 -0.72871.0683 0.5540 -0.5355 -0.9236

    0.8614 -0.8645 -0.7592 0.8056

    -0.4720 1.0788 -1.1299 0.5079];

    Damping matrix (Ns/m)

    [ ] [ ][ ] == 11 2tC [7.9050 -4.4390 -1.1052 -0.5289-4.4390 11.2563 -4.3286 -1.0729

    -1.1052 -4.3286 11.1055 -4.4424

    -0.5289 -1.0729 -4.4424 6.9254];

    Orthogonality checks:

    [ ][ ] Mt = [1.0000 -0.0000 -0.0000 0.0000-0.0000 1.0000 -0.0000 -0.0000

    -0.0000 -0.0000 1.0000 0.0000

    0.0000 -0.0000 0.0000 1.0000];

    [ ][ ] Kt = 1.0e+005 *[0.0231 0.0000 -0.0000 0.00000.0000 0.6859 -0.0000 0.0000

    -0.0000 -0.0000 2.0840 0.0000

    0.0000 0.0000 0.0000 3.2616];

    [ ][ ] Ct = [0.4807 -0.0000 -0.0000 -0.00000.0000 2.6189 -0.0000 0.0000

    -0.0000 -0.0000 4.5651 -0.0000

    0.0000 -0.0000 0.0000 5.7111];

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    64/114

    222

    Figure 16.1 Setup for impact hammer tests on the two frames.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    65/114

    223

    (a)

    (b)

    (c)

    Figure 16.2 Frequency response function for the structure with soft first storey;

    response measured at (a) first floor (drive point); (b) second floor; (c) third floor.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    66/114

    224

    (a)

    (b)

    (c)

    Figure 16.3 Frequency response function for the structure without soft first storey;

    response measured at (a) first floor (drive point); (b) second floor; (c) third floor.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    67/114

    225

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0.02

    Frequency, Hz

    AbsoluteDisplacement,m

    I Floor

    II Floor

    III Floor

    IV Floor

    (a)

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    Frequency, Hz

    AbsoluteDisplacement,m

    I Floor

    II Floor

    III Floor

    (b)

    10 11 12 13 14 15 16 17 18 19 200

    1

    2

    3

    4

    5

    6

    7 x 10-3

    Frequency, Hz

    AbsoluteDisplacement,m

    I Floor

    II Floor

    III Floor

    IV Floor

    (c)

    10 11 12 13 14 15 16 17 18 19 200

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5 x 10-3

    Frequency, Hz

    AbsoluteDisplacement,m

    I Floor

    II Floor

    III Floor

    (d)

    Figure 16.4 Absolute displacement response of the four storied building model (a)

    analytical (with soft first storey); (b) experimental (with soft first storey); (c)

    analytical (without soft first storey); (d) experimental (without soft first storey).

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    68/114

    226

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    50

    100

    150

    200

    250

    300

    350

    400

    450

    Frequency, Hz

    Springforce,

    N

    I Floor

    II Floor

    III Floor

    IV Floor

    (a)

    5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 100

    50

    100

    150

    200

    250

    300

    Frequency, Hz

    Springforce,

    N

    I Floor

    II Floor

    III Floor

    (b)

    10 11 12 13 14 15 16 17 18 19 200

    100

    200

    300

    400

    500

    600

    Frequency, Hz

    Springforce,

    N

    I FloorII Floor

    III Floor

    IV Floor

    (c)

    10 11 12 13 14 15 16 17 18 19 20-50

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    Frequency, Hz

    Springforce,

    N

    I FloorII Floor

    III Floor

    (d)

    Figure 16.5 Spring forces in four storied building model (a) analytical (with soft first

    storey); (b) experimental (with soft first storey); (c) analytical (without soft first

    storey); (d) experimental (without soft first storey).

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    69/114

    227

    Table 16.1 Details of sensors and equipment used.

    Sl.No. Equipments Quantity

    1 Accelerometers 4

    2 Nexus conditioning amplifier 1

    3 Shake Table 1

    4 Data Acquisition System 1

    Table 16.2 Physical properties of parts of the structure

    Material PropertiesSl.

    No.Part Quantit

    y

    MaterialMass

    kgYoungs Modulus

    (E) N/m2

    Mass density ()

    kg/m3

    1 Column 4 nos. Aluminum Mc= 0.6976 69.0E+009

    2700

    2 Slab 1 no. Aluminum Ms= 1.5430 69.0E+009

    2700

    3Stiffener

    A

    2 nos.Aluminum Msa= 0.2592 69.0E+009

    2700

    4Stiffener

    B

    2 nos.Aluminum Msb= 0.5391 69.0E+009

    2700

    Table 16.3 Geometric data of the structure

    Dimensions in mmSl.

    No.

    Part

    Depth Width Length

    1 Slab 150 300 12.7

    2 Column 25.1391 6.4233 400

    3 Stiffener A 150 2 160

    4 Stiffener B 2 312 160

    Table 16.4 Details of the sensors usedSensitivity, SSl.

    No.Sensor

    mV/ms-2

    mV/g

    Mass

    gm

    1 B & K Deltatron Accelerometer Type 4507

    002, Sl. No. 10308

    93.8 920 4.8

    2 B & K Deltatron Accelerometer Type 4507

    002, Sl. No. 10309

    94.6 928 4.8

    3 B & K Deltatron Accelerometer Type 4507,

    Sl. No. 11574

    9.80 96.1 4.8

    4 B & K Deltatron Accelerometer Type 4507,

    Sl. No. 11575

    10.04 98.4 4.8

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    70/114

    Table 16.5 Base motion test data on four storey building frame with soft first storey

    Sl.no Frequency

    Hz

    Base motion

    Amplitudex*10

    -4

    rms (V)

    First floor

    Amplitudex1*10

    -4

    rms (V)

    Second floor

    Amplitudex2*10

    -4

    rms (V)

    Third floor

    Amplitudex3*10

    -4

    rms (V)

    Base motionDisplacement

    Amplitude

    Xg= 2 x

    (m) *10-4

    First floorDisplacement

    Amplitude

    X1= 2 x1

    (m) *10-4

    D

    1 2.29 1.0930 3.6610 3.9680 4.2210 1.545721 5.177386

    2 2.40 1.0810 1.4110 1.3380 1.3410 1.528750 1.995436

    3 2.62 1.0840 1.4590 1.4890 1.3970 1.532993 2.063318

    4 2.90 1.0870 1.4360 1.5300 1.4170 1.537235 2.030791

    5 3.00 1.1360 1.5350 1.5050 1.4600 1.606531 2.170797

    6 3.30 1.1220 2.4460 2.6490 2.6870 1.586732 3.459133

    7 3.70 1.1520 1.7940 1.6850 1.7230 1.629158 2.537075

    8 4.00 1.1510 1.7600 1.8170 1.8830 1.627744 2.488992

    9 4.30 1.1750 2.0680 2.1060 2.1000 1.661685 2.924566

    10 4.40 1.2160 2.1920 2.1920 2.2350 1.719667 3.099926

    11 4.50 1.2180 2.1390 2.2150 2.2520 1.722496 3.024974

    12 4.75 1.2100 2.4190 2.4340 2.4980 1.711182 3.420950

    13 4.90 1.2280 2.5780 2.7920 2.8530 1.736638 3.645808

    14 4.95 1.2640 2.6830 2.7610 2.8690 1.787549 3.794299

    15 5.10 1.2580 3.0420 3.2030 3.2120 1.779064 4.301996

    16 5.25 1.2550 3.4880 3.6870 3.7870 1.774821 4.932730

    17 5.40 1.3360 4.0300 4.2500 4.4080 1.889371 5.699226

    18 5.68 1.3240 4.5040 4.7730 5.0380 1.872401 6.369557

    19 5.81 1.3620 5.3090 5.6370 5.9360 1.926140 7.507988

    20 5.95 1.3950 6.1890 6.6130 7.0100 1.972809 8.752484

    21 6.30 1.5220 11.6120 12.5850 13.4630 2.152412 16.421690

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    71/114

    22 6.40 1.5510 13.3400 14.3090 15.3550 2.193424 18.865428

    23 6.70 1.0330 69.5040 75.5870 82.3930 1.460869 98.292557

    24 6.80 0.9240 25.3700 27.4880 29.7840 1.306721 35.878254

    25 6.90 0.9900 17.8570 19.4060 20.9650 1.400058 25.253369

    26 7.20 1.1690 6.1100 6.6630 7.2090 1.653200 8.640762

    27 7.60 1.2040 4.3970 4.8490 5.1800 1.702697 6.218237

    28 7.80 1.2390 3.1800 3.5220 3.7620 1.752194 4.497156

    29 8.20 1.2110 2.0140 2.2400 2.4220 1.712596 2.848199

    30 8.70 1.2170 1.7510 1.8360 1.8850 1.721081 2.476264

    31 9.26 1.2260 1.5690 1.5460 1.6080 1.733809 2.218880

    32 9.95 1.2010 1.5100 1.5700 1.5890 1.698454 2.135442

    33 10.70 1.1620 1.1220 1.2040 1.2060 1.643300 1.586732

    34 12.00 1.1440 0.7930 0.7420 0.7780 1.617845 1.121461

    35 12.95 1.1370 0.7830 0.8350 0.7270 1.607945 1.107319

    36 13.89 1.1830 0.8330 0.8700 0.6130 1.672999 1.178029

    37 15.30 1.2610 0.7100 0.7990 0.5210 1.783306 1.004082

    38 17.20 1.4310 0.8040 0.8490 0.5070 2.023720 1.137017

    39 17.60 1.4730 0.8990 0.8760 0.6740 2.083117 1.271366

    40 19.70 1.2740 0.7550 0.6440 0.4430 1.801691 1.067721

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    72/114

    Table 16.6 Base motion test data on four storey building frame without soft first storey

    Sl.no Frequency

    (Hz)

    Base motion

    Amplitude

    x*10-4

    rms(V)

    First floor

    Amplitude

    x1*10-4

    rms(V)

    Second

    floor

    Amplitude

    x2*10-4

    rms(V)

    Third floor

    Amplitude

    x3*10-4

    rms(V)

    Base motion

    DisplacementAmplitude

    Xg= 2 x

    (m) *10-4

    First floor

    DisplacementAmplitude

    X1= 2 x1

    (m) *10-4

    Second fl

    DisplacemAmplitu

    X2= 2

    (m) *10

    1 2.44 1.0110 1.2370 1.3210 1.1800 1.4298 1.7494 1.8682

    2 2.44 1.0400 1.2380 1.2620 1.1700 1.4708 1.7508 1.7847

    3 4.88 1.1200 1.3560 1.4070 1.3130 1.5839 1.9177 1.9898

    4 5.11 1.1300 1.3340 1.4720 1.3780 1.5980 1.8865 2.0817

    5 5.49 1.1440 1.3340 1.4700 1.4000 1.6178 1.8865 2.0789

    6 5.68 1.1540 1.3720 1.5690 1.4110 1.6320 1.9403 2.2189

    7 5.62 1.1880 1.4320 1.4650 1.4530 1.6801 2.0251 2.0718

    8 6.17 1.1800 1.4060 1.4810 1.4910 1.6688 1.9884 2.0944

    9 6.58 1.1960 1.3990 1.6550 1.5410 1.6914 1.9785 2.3405

    10 6.90 1.2240 1.4910 1.6680 1.6570 1.7310 2.1086 2.3589

    11 7.30 1.2410 1.6280 1.8720 1.9060 1.7550 2.3023 2.6474

    12 7.70 1.2780 1.7600 2.0330 2.1470 1.8073 2.4890 2.8751

    13 7.95 1.3220 1.7060 1.9510 2.0110 1.8696 2.4126 2.7591

    14 8.20 1.3290 1.6510 1.8390 1.9830 1.8795 2.3348 2.6007

    15 8.70 1.3600 1.6810 1.8920 2.0330 1.9233 2.3773 2.6757

    16 8.93 1.3780 1.9470 2.0190 2.1350 1.9488 2.7534 2.8553

    17 9.30 1.4230 1.7830 2.0960 2.2430 2.0124 2.5215 2.9642

    18 9.45 1.4350 1.8240 2.1480 2.3490 2.0294 2.5795 3.0377

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    73/114

    19 9.54 1.4550 1.8470 2.2170 2.4170 2.0577 2.6120 3.1353

    20 9.80 1.4860 2.1270 2.3180 2.5570 2.1015 3.0080 3.2781

    21 10.42 1.4970 2.0960 2.4660 2.7290 2.1171 2.9642 3.4874

    22 10.64 1.5050 2.2070 2.5430 2.8600 2.1284 3.1211 3.5963

    23 10.70 1.5120 2.3360 2.7350 2.9990 2.1383 3.3036 3.8678

    24 11.00 1.5370 2.3280 2.8420 3.1330 2.1736 3.2923 4.0192

    25 11.30 1.5310 2.2940 2.9070 3.3970 2.1651 3.2442 4.1111

    26 11.50 1.5630 2.4860 3.1400 3.7450 2.2104 3.5157 4.4406

    27 11.90 1.5630 2.7140 3.4230 4.1670 2.2104 3.8381 4.8408

    28 12.20 1.5790 2.9110 3.8420 4.6580 2.2330 4.1167 5.4334

    29 12.40 1.6100 2.9760 3.9290 4.8510 2.2769 4.2087 5.5564

    30 12.50 1.6030 2.9710 4.0240 4.8710 2.2670 4.2016 5.6907

    31 12.82 1.6220 3.2440 4.5840 5.7250 2.2938 4.5877 6.4827

    32 13.00 1.6450 3.3390 4.6220 5.8200 2.3264 4.7220 6.5364

    33 13.20 1.6670 3.7240 5.2750 6.7020 2.3575 5.2665 7.4599

    34 13.35 1.7050 3.8260 5.5730 7.1550 2.4112 5.4107 7.8813

    35 13.55 1.7070 4.2920 6.1980 8.1130 2.4140 6.0697 8.7652

    36 13.65 1.7330 4.3690 6.2910 8.2480 2.4508 6.1786 8.8967

    37 13.71 1.7360 4.4560 6.3670 8.3410 2.4551 6.3017 9.0042

    38 13.80 1.8250 5.6400 8.6810 11.7310 2.5809 7.9761 12.2767

    39 13.90 1.8720 6.7390 10.7160 14.6900 2.6474 9.5303 15.1546

    40 14.29 1.3430 11.4610 20.1390 29.9940 1.8993 16.2081 28.4806

    41 14.29 1.3280 11.0010 19.2880 28.8310 1.8781 15.5576 27.277

    42 14.50 0.9850 7.7460 14.1780 21.4670 1.3930 10.9544 20.0505

    43 15.40 0.8750 4.5600 8.7890 13.3670 1.2374 6.4488 12.4294

    44 15.15 0.9050 4.7640 9.0380 13.6860 1.2799 6.7372 12.7815

    45 15.62 0.9100 3.6440 7.1750 10.8740 1.2869 5.1533 10.1469

    46 15.80 0.9040 3.0770 6.2160 9.4210 1.2784 4.3515 8.7907

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    74/114

    47 16.40 0.9560 2.4460 5.0660 7.7640 1.3520 3.4591 7.1643

    48 16.50 1.0170 1.8250 4.1010 6.3160 1.4382 2.5809 5.7996

    49 16.80 1.0090 1.7150 3.3770 5.2740 1.4269 2.4254 4.7758

    50 17.10 1.0540 1.3010 2.9370 4.6540 1.4906 1.8399 4.1535

    51 17.50 1.0800 1.0120 2.6460 4.0600 1.5273 1.4312 3.7420

    52 17.70 1.0970 1.1360 2.1580 3.5570 1.5514 1.6065 3.0518

    53 18.31 1.1400 1.2010 2.1120 3.2940 1.6122 1.6985 2.9868

    54 18.50 1.1490 0.8010 1.8190 2.9320 1.6249 1.1328 2.5724

    55 18.50 1.1370 1.2130 1.6990 2.9220 1.6079 1.7154 2.4027

    56 18.52 1.1940 0.8350 1.5770 2.7990 1.6886 1.1809 2.2302

    57 19.23 1.2140 1.3720 1.3570 2.5530 1.7168 1.9403 1.9191

    58 19.70 1.2400 0.7690 1.1550 2.1430 1.7536 1.0875 1.6334

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    75/114

    233

    Table 16.7: Free vibration test data for the one storey structure without walls

    S.No. Quantity Notation Observations

    1 Amplitude of 0th

    peak A0 16.0 mV

    2 Amplitude of nth

    peak An 10.0 mV

    3 Number of cycles n 16

    4 Logarithmic decrement 0.0294

    5 Damping ratio 0.00476 Natural Frequency

    (experiment)

    f 19.23 Hz

    7 Total mass (SDOF

    approximation)

    M1 1.8954 kg

    8 Stiffness (from experiment) Kopen 2.7671E+04 N/m

    Table 16.8: Free vibration test data for the one storey structure with walls

    S.No. Quantity Notation Observations

    1 Amplitude of 0th

    peak A0 18.4 mV

    2 Amplitude of nth

    peak An 6.4 mV

    3 Number of cycles n 24 Logarithmic decrement 0.5280

    5 Damping ratio from modal

    analysis

    0.019

    6 Natural Frequency

    (experiment)

    fs 55.51 Hz

    7 Total mass (SDOF

    approximation)

    M2 2.2946 kg

    8 Stiffness (from experiment) Kclose 2.7913E+05 N/m

    Table 16.9 Estimate of the first natural frequency in Hz of the building frame with and without soft first

    story

    Frame with soft first story Frame without soft first story

    Analytical Experimental Analytical Experimental

    7.65 6.70 17.70 14.29

    Table 16.10 Estimate of the fundamental mode shape of the building frame with and without soft first

    story

    Frame with soft first storyFrame without soft first

    story

    Analytical Experimental Analytical Experimental1.0000 1.0000 1.0000 1.0000

    1.0759 1.0887 1.8562 1.7572

    1.1266 1.1905 2.4653 2.6171

    1.1456 * 2.7433 *

    *: this coordinate was not measured.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    76/114

    234

    Experiment 7

    Dynamics of one-span and two-span beams

    Tables 17.1-17.11 show the results of experiment conducted on the setup developed at

    IISc. The two beam structures were also studied experimentally using impulse

    hammer test and, computationally, using commercial finite element software. The

    results of these studies are superposed on the experimental results in figure 17.1. The

    results show reasonable mutual agreement. In the FE model developed, and also in the

    two-dof analytical model developed, the stiffening effect of due to the placement of

    the motor and the dummy mass has not been included. Similarly the support

    conditions have been assumed to correspond to perfect simple support situations. This

    may not be correctly realized in the experimental setup. These features possibly

    explain the difference between the analytical and experimental predictions. Some of

    the calculations involved in the development of the two-dof model for the two beams

    systems are summarized below.

    Calculations for one-span beam

    Mass matrix (kg)

    M1 = 0.5* MA + ME + MF

    M2 = 0.5*MA + MB + MC+2* MD1+ MF

    M = [4.0826 0

    0 4.0891]

    Flexibility matrix (m/N)

    F = 1.0e-004 *[0.9122 0.7095

    0.7095 0.9122]

    Stiffness matrix (N/m)

    K = 1.0e+004 *[2.7748 -2.1582

    -2.1582 2.7748]

    Natural frequencies (rad/s)

    { }n = [38.8479109.8784]

    Mass normalized modal matrix

    = [-0.3498 -0.3501

    -0.3499 0.3495]

    Damping ratios

    {} = [0.0372

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    77/114

    235

    0.0148]

    Damping matrix determination

    [ ] 1 t = [-1.4280 -1.4295-1.4306 1.4291]

    [ ]2 = [2.8903 00 3.2524]

    [ ] 1 = [-1.4280 -1.4306-1.4295 1.4291]

    Damping matrix (Ns/m)

    [ ] [ ][ ] == 11 2tC [12.5398 -0.7398-0.7398 12.5582]

    Orthogonality checks:

    [ ][ ] Mt = [1.0000 0.00000.0000 1.0000]

    [ ][ ] Kt = 1.0e+004 [0.1509 0.00000.0000 1.2073]

    [ ][ ] Ct = [2.8903 0.00000.0000 3.2524];

    Calculations for two-span beam

    Mass matrix (kg)

    M1 = 0.25*MA + ME + MF

    M2 = 0.25*MA + MB+MC+2* MD2 + MF

    M = [3.3338 0

    0 3.3386]

    Flexibility matrix (m/N)

    F = 1.0e-004 *[0.1457 -0.0570

    -0.0570 0.1457]

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    78/114

    236

    Stiffness matrix (N/m)

    K = 1.0e+004 *[8.1041 3.1712

    3.1712 8.1041]

    Natural frequencies (rad/s)

    { }n = [121.5982183.8392];

    Mass normalized modal matrix

    = [-0.3869 0.3876

    0.3873 0.3866];

    Damping ratios

    {} = [0.0143

    0.0113];

    Damping matrix determination

    [ ] 1 t =[1.2899 -1.2923-1.2932 - 1.2908]

    [ ]2 = [3.4777 00 4.1548]

    [ ] 1 = [1.2899 -1.2932-1.2923 -1.2908]

    Damping matrix (Ns/m)

    [ ] [ ][ ] == 11 2tC [12.7246 1.12941.1294 12.7388];

    Orthogonality checks:

    [ ][ ] Mt = [1.0000 0.00000.0000 1.0000];

    [ ][ ] Kt = 1.0e+004 [1.4786 00 3.3797]

    [ ][ ] Ct = [3.4777 -0.0000-0.0000 4.1548]

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    79/114

    237

    (a) (b)

    (c) (d)

    Figure 17.1 Comparison of experimentally measured frequency response function, normalized with respect to the driving forceamplitude, with the corresponding results from analysis; (a) one-span beam; response under the dummy mass; (b) one-span beam

    response under drive point; (c) two-span beam; response under the dummy mass; (d) two-span beam; response under drive point.

    Experiment I: Impulse hammer test; Experiment II: harmonic excitation test using the excitation induced by the electric motor.

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    80/114

    238

    (a)

    (b)

    Figure 17.2 Setup for impact hammer tests on (a) one span beam (b) two span beam

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    81/114

    239

    Table 17.1 Equipments used in free vibration and forced vibration test of simply supported beam &

    continuous beam

    S.No. Equipments Quantity

    1 Oscilloscope 1

    2 Accelerometers 2

    3 Signal conditioning amplifier 14 Regulated DC power supply 1

    5 D.C Motor 1

    Table 17.2 Physical properties of parts of the structure

    Material Properties

    Part MaterialMass

    KgYoungs Modulus

    (E) N/m2

    Mass density

    () kg/m3

    Main Beam Mild Steel MA= 2.9952 2.00E+011

    7800

    D.C. Motor -

    Fly wheel AluminumMB+MC= 2.000 69.0E+009 2700

    Eccentric mass

    (Simply supported beam)

    Mild Steel MD1= 0.00324 2.00E+011 7800

    Eccentric mass

    (Continuous beam)

    Mild Steel MD2= 0.00240 2.00E+011 7800

    Lumped Mass Mild Steel ME= 2.000 2.00E+011 7800

    Base plate Mild Steel MF = 0.5850 2.00E+011 7800

    Table 17.3 Geometric data of the structure

    Dimensions in mmPart

    Depth (DA) Width (BA) Length (LA) Effective Length (Le)

    Main beam 6.4 50 1350 1200

    Eccentricity of eccentric mass on the flywheel, e=25 mm

    Formula for calculating, MA =DA*BA*Le*

    Table 17.4 Details of the sensors used

    Sensitivity, SSl.

    No.Sensor

    mV/ms-2

    mV/g

    Mass

    gm

    1 B & K Deltatron Accelerometer

    Type 4507, Sl. No. 11574

    9.80 96.1 4.8

    2 B & K Deltatron Accelerometer

    Type 4507, Sl. No. 11575

    10.04 98.4 4.8

    Table 17.5 Free vibration test data on simply supported beam (observations I) and continuous beam(observations II)

    S.No. Quantity Notation Observations I Observations II

    1 Amplitude of 0th

    peak A0 50mV 220mV

    2 Amplitude of nth

    peak An 6mV 80mV

    3 Number of cycles n 19 18

    4 Logarithmic decrement 0.11159 0.0562

    5 Damping ratio 0.01776 0.0089

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    82/114

    240

    Table 17.6 Flexibility coefficients obtained from the finite element analysis

    One span beam (m/N) Continuous beam (m/N)

    f11

    = 9.12233E-05 f12

    = 7.09514E-05 f11

    = 1.45704E-05 f12

    = -5.70146E-06

    f21= 7.09514E-05 f22= 9.12233E-05 f21= -5.70146E-06 f22= 1.45704E-05

  • 7/23/2019 PART 2_IISC_Instructors Manual (1).pdf

    83/114

    Table 17.7 Forced vibration test data on simply supported beam

    S.No. Frequency,

    f

    (Hz)

    Frequency

    =2f

    (rad/s)

    Amplitude

    x1rms (mV)

    Amplitude

    x2rms (mV)

    Conversion

    Factor

    CF

    (V/m)

    Displacement

    Amplitude

    X1=

    2 (CF) x1(mm)

    Displacement

    Amplitude

    X2=

    2 (


Recommended