+ All Categories
Home > Documents > Part 4 - Frequency Analysis; Correlation Analysis

Part 4 - Frequency Analysis; Correlation Analysis

Date post: 28-Feb-2018
Category:
Upload: farideh
View: 222 times
Download: 0 times
Share this document with a friend
34
System Identication Control Engineering B.Sc., 3 rd year Technical University of Cluj-Napoca Romania Lecturer: Lucian Bus ¸ oniu
Transcript
Page 1: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 1/34

System IdentificationControl Engineering B.Sc., 3rd yearTechnical University of Cluj-Napoca

Romania

Lecturer: Lucian Busoniu

Page 2: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 2/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Part IV

Frequency analysis. Correlation analysis

Page 3: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 3/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Table of contents

1   Frequency analysis

2   Correlation analysis

3   Correlation analysis: Matlab example

Page 4: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 4/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Classification

Recall Types of models from Part I:

1 Mental or verbal models

2 Graphs and tables (nonparametric)3 Mathematical models, with two subtypes:

First-principles, analytical models

Models from system identification

Frequency analysis produces a model in the form of the frequencyresponse – the Bode diagram .

C C

Page 5: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 5/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Response to sinusoidal input

Apply unit sine of frequency  ω  to system with transfer function H :

u (t ) = sin(ωt )

In steady-state, the output is a sine of the same frequency, possiblywith different amplitude and phase:

y ss(t ) = k (ω) sin[ωt  + α(ω)]

Gain:   k (ω) = |H ( j ω)|, where j  is the imaginary unit, so H ( j ω)is a complex number.

Phase:   α(ω) = arg(H ( j ω)).

F l i C l ti l i C l ti l i M tl b l

Page 6: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 6/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Frequency analysis

By walking through a grid of frequencies  ω, and measuring the gains

k (ω) and phase shifts  α(ω), a Bode diagram for the system isexperimentally created:

 – a nonparametric model, which can be used to analyze the system

further or to perform control design.

Frequency analysis Correlation analysis Correlation analysis: Matlab example

Page 7: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 7/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Table of contents

1   Frequency analysis

2   Correlation analysis

Analytical development

A practical algorithm. FIR model

Accuracy guarantee

3   Correlation analysis: Matlab example

Frequency analysis Correlation analysis Correlation analysis: Matlab example

Page 8: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 8/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Context

Transient analysis of step and impulse responses gives a rough,heuristic model of the system.

The upcoming methods provide:

Fully implementable algorithms, which derive a solutionprogramatically.

Solution accuracy guarantees (under appropriate conditions).

Frequency analysis Correlation analysis Correlation analysis: Matlab example

Page 9: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 9/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Classification

Recall Types of models from Part I:

1 Mental or verbal models

2 Graphs and tables (nonparametric)3 Mathematical models, with two subtypes:

First-principles, analytical models

Models from system identification

Correlation analysis is still a nonparametric method; it produces animpulse response model .

Frequency analysis Correlation analysis Correlation analysis: Matlab example

Page 10: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 10/34

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Recall: discrete-time model

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 11: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 11/34

q y y y y p

Discrete-time impulse response

Discrete-time, unit impulse signal:

u I(k ) =

1   k  = 0

0   k  > 0

Discrete-time impulse response:

y I (k ) = h (k ),   k  ≥ 0

h (k ), k  ≥ 0 is also called the weighting function of the system.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 12: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 12/34

q y y y y p

Convolution

The (disturbance-free) response to an arbitrary signal u (k ) is the

convolution  of the input and the impulse response:

y (k ) =∞

 j =0

h ( j )u (k  − j )

Intuition: Consider a signal  u  j (k ) equal to u ( j ) at k  = j , and 0elsewhere; just a shifted and scaled unit impulse:

u  j (k ) = u ( j )u I(k  − j )

So, the response to  u  j (k ) is a shifted and scaled impulse response:

y  j 

(k ) = u ( j )h (k  −

 j )

Now, u (k ) is the superposition of all signals  u  j , and due to linearity:

y (k ) =

 j =0

y  j (k ) =

 j =0

u ( j )h (k − j ) =

 j =0

h ( j )u (k − j ) =∞

 j =0

h ( j )u (k − j )

where zero initial conditions were assumed, i.e.  u ( j ) = 0∀ j  < 0.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 13: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 13/34

Impulse-response model

y (k ) =∞

 j =0

h ( j )u (k  − j ) + v (k )

Includes, in addition to the ideal model, a disturbance term  v (k ).

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 14: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 14/34

Assumptions

Assumptions

1 The input u (k ) is a stationary stochastic process.

2 The input u (k ) and the disturbance  v (k ) are independent.

Recall:

Independence of random variables.

Stationary stochastic process: constant mean at every time step,

covariance only depends on difference between time steps andnot on absolute time.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 15: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 15/34

Covariance functions

The covariance functions are defined as follows:

r yu (τ ) = E

{y (k  + τ )u (k )}r u (τ ) =  E {u (k  + τ )u (k )}

Note: These quantities are true covariances only when the input andoutput are zero-mean.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 16: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 16/34

Relationship of covariances and impulse response

If there were no disturbance, then:

r yu (τ ) =  E {y (k  + τ )u (k )}

=  E∞

 j =0

h ( j )u (k  + τ  − j )u (k )=

∞ j =0

h ( j )E {u (k  + τ  − j )u (k )} =

∞ j =0

h ( j )r u (τ  − j )

The errors coming from the disturbance are dealt with later, usinglinear regression.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 17: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 17/34

Impulse response identification

Writing the covariance relationship for all  τ :

r yu (0) =∞

 j =0

h ( j )r u (− j )

r yu (1) =

∞ j =0

h ( j )r u (1 − j )

. . .

we obtain (in principle) an infinite system of linear equations:

Coefficients r u (τ ), r yu (τ ).

Unknowns  h (0),h (1), . . . , solution of the system.

Next, a practical algorithm working with finite data is given.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 18: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 18/34

Table of contents

1   Frequency analysis

2   Correlation analysis

Analytical development

A practical algorithm. FIR model

Accuracy guarantee

3   Correlation analysis: Matlab example

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 19: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 19/34

Covariances from data

Consider we are given signals u (k ), y (k ) with k  = 1, . . . ,N .Denote by {a (k )}k =b ,c ,...  the signal a (k ) at time steps b , c , . . . .

We have:r u (τ ) =  E {u (k  + τ )u (k )}

≈ mean{u (k  + τ )u (k )}k =1,...,N −τ 

=: r u (τ ),   ∀τ  ≥ 0

and r u (−τ ) = r u (τ ), due to u  being a stationary process.

r yu (τ ) =  E {y (k  + τ )u (k )}

≈ mean{y (k  + τ )u (k )}k =1,...,N −τ 

=: r yu (τ ),   ∀τ  ≥ 0

Note: to allow negative   τ   in  b r yu , the range of k  would need to be

1 − min{τ, 0}, . . . , N  − max{τ, 0}.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 20: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 20/34

Finite impulse response model

Impose the condition h (k ) = 0 for k  ≥ M . We obtain the finite impulseresponse (FIR) model:

y (k ) =M −1

 j =0

h ( j )u (k  − j ) + v (k )

The covariance relationship is similarly truncated:

r yu (τ ) =M −1 j =0

h ( j )r u (τ  − j )

Note:  M  must be taken so that  MT s   dominant time constants!

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 21: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 21/34

Linear system

Using r yu , r u  estimated from data, write the truncated equations forτ  = 0, . . . ,T  − 1:

 r yu (0) =

M −1 j =0

h ( j )

 r u (− j )

 r yu (1) =M −1 j =0

h ( j ) r u (1 − j )

. . .

 r yu (T  − 1) =

M −1 j =0

h ( j ) r u (T  − 1 − j )

This is a linear system of  T  equations in M  unknownsh (0), . . . ,h (M  − 1).

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 22: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 22/34

Linear system (continued)

In matrix form:

 r yu (0)

r yu (1)..

.r yu (T  − 1)

=

 r u (0)   r u (1)   . . .   r u (M  − 1)

 r u (1)

  r u (0)   . . .

  r u (M  − 2)

..

. r u (T  − 1) r u (T  − 2)   . . . r u (T  − M )

·

h (0)h (1)

..

.h (M  − 1)

(keep in mind that

 r u (−τ ) =

 r u (τ )).

Taking T   = M  gives (if input is informative enough) an exact solution.

Due to disturbances and errors, it is a good idea to take T  > M .

Then we can apply the machinery of linear regression (see Part 3) tosolve this problem.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 23: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 23/34

Table of contents

1   Frequency analysis

2   Correlation analysis

Analytical development

A practical algorithm. FIR model

Accuracy guarantee

3   Correlation analysis: Matlab example

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 24: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 24/34

Special case: White noise input

Assumptions

3 The input u (k ) is zero-mean white noise.

Then r u (τ ) = 0 whenever  τ  = 0 (since white noise is uncorrelated),

and r yu (τ ) = ∞ j =0 h ( j )r u (τ  − j ) simplifies to:

r yu (τ ) = h (τ )r u (0)

leading to the easy algorithm:

h (τ ) = r yu (τ ) r u (0)

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 25: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 25/34

Simplified guarantee

Theorem

In the white-noise case, as the number of data points N  grows to

infinity, the estimates h (τ ) converge to the true values  h (τ ).

Remark: This type of property, where the true solution is obtained inthe limit of infinite data, is called  consistency .

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 26: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 26/34

Table of contents

1   Frequency analysis

2   Correlation analysis

3   Correlation analysis: Matlab example

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 27: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 27/34

Experimental data

Consider we are given the following, separate, identification andvalidation data sets.

plot(id);  and  plot(val);

Note the identification input is white noise, while the validation input isnot. There are 2000 samples in the identification data.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 28: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 28/34

Applying correlation analysis

fir = cra(id, M, 0); or  fir = cra(id, M, 0, ’plot’);

Arguments:

1 Identification data.

2 FIR length M , here it is set to 40.

3 Third argument 0 means no input whitening  is performed.

Dealing with non-ideal inputs:

If input is not zero-mean, pass the data through  detrend to

remove the means.If input is not white noise, the third argument should be left todefault (by not specifying it or setting it to an empty matrix).

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 29: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 29/34

Applying correlation analysis (continued)

With the  ’plot’ switch the covariance functions are shown, as well

as the FIR parameters with a 99% confidence interval.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 30: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 30/34

Results on the identification data

yhat = conv(fir, id.u); yhat = yhat(1:length(id.u);

To simulate the FIR model, a  convolution  between the FIRparameters and the input is performed. The simulated output islonger than needed so we cut it off at the right length.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Page 31: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 31/34

Validation of the FIR model

yhat = conv(fir, val.u); yhat = yhat(1:length(val.u);

Results OK, not great.

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

Al i f i

Page 32: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 32/34

Alternative:   impulse functionimpulse(id, ’sd’, 5);

This function produces a more complicated model than the one

studied in the lectures. Called as shown, it plots the impulseresponse with the 5-sigma confidence level.

Negative-time coefficients correspond to possible feedback in thedata (input depends on output); here the data is open-loop.Statistically significant coefficients appear to exist after the defaulttime interval. We therefore manually set a time interval [0,4].

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

f ti ( ti d)

Page 33: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 33/34

impulse function (continued)

impulse(id, ’sd’, 5, [0 4]);

To obtain the actual model:mod = impulse(id, [0 4]);

Frequency analysis   Correlation analysis   Correlation analysis: Matlab example

V lid ti f i d l

Page 34: Part 4 - Frequency Analysis; Correlation Analysis

7/25/2019 Part 4 - Frequency Analysis; Correlation Analysis

http://slidepdf.com/reader/full/part-4-frequency-analysis-correlation-analysis 34/34

Validation of  impulse model

compare(mod, val);

The fit is very good.


Recommended