+ All Categories
Home > Documents > Part 6-Chap 1_26-08-2012 of bnbc

Part 6-Chap 1_26-08-2012 of bnbc

Date post: 03-Jun-2018
Category:
Upload: masum91032
View: 219 times
Download: 0 times
Share this document with a friend

of 25

Transcript
  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    1/25

    Chapter 1

    DEFINITIONS AND GENERAL EQUIREMENTS1.1 INTRODUCTION

    1.1.1 SCOPE

    The definitions providing meanings of different terms and general requirements for the structural design of

    buildings,structures,andcomponents thereofarespecified in thischapter.Theserequirementsshallapplytoall

    buildingsandstructuresor theircomponentsregulatedbythiscode.Allanticipated loadsrequired forstructural

    design shallbedetermined inaccordancewith theprovisionsofChapter2.Designparameters required for the

    structuraldesignoffoundationelementsshallconformtotheprovisionsofChapter3.Designofstructuralmembers

    usingvariousconstructionmaterialsshallcomplywiththe relevantprovisionsofChapters4through13.TheFPS

    equivalentsoftheempiricalexpressionsusedthroughoutPart6arelistedinAppendixA.

    ThisCodeshallgoverninallmatterspertainingtodesign,construction,andmaterialpropertieswhereverthisCode

    is in conflictwith requirements contained inother standards referenced in thisCode.However, in special cases

    wherethedesignofastructureoritscomponentscannotbecoveredbytheprovisionsofthiscode,otherrelevant

    internationallyacceptedcodesreferredinthiscodemaybeused.

    1.1.2

    DEFINITIONS

    Thefollowingdefinitionsshallprovidethemeaningofcertaintermsusedinthischapter.

    BASESHEAR:Totaldesignlateralforceorshearatthebaseofastructure.

    BASICWINDSPEED :Threesecondgust speedat10metresabove themean ground level in terrainExposureB

    definedinSec2.4.8andassociatedwithanannualprobabilityofoccurrenceof0.02.

    BEARINGWALLSYSTEM:Astructuralsystemwithoutacompleteverticalloadcarryingspaceframe.

    BRACEDFRAME:Anessentiallyverticaltrusssystemoftheconcentricoreccentrictypewhichisprovidedtoresist

    lateralforces.

    BUILDINGFRAMESYSTEM:Anessentiallycompletespaceframewhichprovidessupportforloads.

    CONCENTRICBRACEDFRAME(CBF):AsteelbracedframedesignedinconformancewithSec10.20.13.or10.20.14.

    COLLECTOR :Amemberor elementused to transfer lateral forces fromaportionofa structure to the vertical

    elementsofthelateralforceresistingelements.

    BUILDINGS:Structuresthatencloseaspaceandareusedforvariousoccupancies.

    DEADLOAD:Theloadduetotheweightofallpermanentstructuralandnonstructuralcomponentsofabuildingor

    astructure,suchaswalls,floors,roofsandfixedserviceequipment.

    DIAPHRAGM :Ahorizontalornearly horizontal systemacting to transmit lateral forces to thevertical resisting

    elements.Theterm"diaphragm"includeshorizontal bracingsystems.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    2/25

    Part6

    2

    DUALSYSTEM:AcombinationofMomentResistingFramesandShearWallsorBracedFramestoresistlateralloads

    designedinaccordancewiththecriteriaofSec1.3.2.

    ECCENTRICBRACEDFRAME(EBF):AsteelbracedframedesignedinconformancewithSec10.20.15.

    HORIZONTAL BRACING SYSTEM : A horizontal truss system that serves the same function as a floor or roof

    diaphragm.

    INTERMEDIATEMOMENTRESISTINGFRAME (IMRF) :Aconcretemomentresisting framedesigned inaccordance

    withSec8.3.10.

    LIVELOAD:Theloadsuperimposedbytheuseandoccupancyofabuilding.

    MOMENTRESISTING FRAME :A frame inwhichmembersandjointsare capableof resisting forcesprimarilyby

    flexure.

    ORDINARY MOMENT RESISTING FRAME (OMRF) : A moment resisting frame not meeting special detailing

    requirementsforductilebehaviour.

    PRIMARYFRAMINGSYSTEM:Thatpartofthestructuralsystemassignedtoresistlateralforces.

    SHEARWALL:Awalldesignedtoresist lateralforcesparalleltotheplaneofthewall(sometimesreferredtoasa

    verticaldiaphragmorastructuralwall).

    SLENDERBUILDINGSAND STRUCTURES :Buildingsand structureshavingaheightexceeding five times the least

    horizontal dimension, or having a fundamental natural frequency less than 1 Hz. For those cases where the

    horizontaldimensionsvarywithheight,theleasthorizontaldimensionatmidheightshallbeused.

    SOFTSTOREY:Storeyinwhichthelateralstiffnessislessthan70 percentofthestiffnessofthestoreyabove.

    SPACEFRAME:Athreedimensionalstructuralsystemwithoutbearingwallscomposedofmembersinterconnected

    soastofunctionasacompleteselfcontainedunitwithorwithouttheaidofhorizontaldiaphragmsorfloorbracing

    systems.

    SPECIAL MOMENT RESISTING FRAME (SMRF) : A moment resisting frame specially detailed to provide ductilebehaviourcomplyingwiththerequirementsofChapter8or10forconcreteorsteelframesrespectively.

    SPECIALSTRUCTURALSYSTEM :A structural systemnot listed inTable1.3.1and speciallydesigned to carry the

    lateralloads.SeeSec1.3.2.5.

    STOREY:Thespacebetweenanytwofloorlevelsincludingtheroofofabuilding.Storeyxisthestoreybelowlevel

    x.

    STOREYSHEAR,Vx :Thesummationofdesignlateralforcesabovethestoreyunderconsideration.

    STRENGTH:Theusablecapacityofanelementoramembertoresisttheloadasprescribedintheseprovisions.

    TERRAIN:Thegroundsurfaceroughnessconditionwhenconsideringthesizeandarrangementofobstructionsto

    thewind.

    THREESECONDGUSTSPEED: Thehighestaveragewindspeedovera3seconddurationataheightof10m.The

    threesecondgustspeedisderivedusingDurst'smodelintermsofthemeanwindspeedandturbulenceintensity.

    TOWER:Atall,slimverticalstructure.

    VERTICALLOADCARRYINGFRAME: Aspaceframedesignedtocarryallverticalgravityloads.

    WEAKSTOREY: Storeyinwhichthelateralstrengthislessthan80percentofthatofthestoreyabove.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    3/25

    Chapter1

    3

    1.1.3 SYMBOLSANDNOTATION

    The following symbols and notation shall apply to the provisions of this chapter:D =dead load on a member including self weight and weight of components, materials andpermanent equipments supported by the memberE

    =earthquake loadFi =lateral force applied at leveliof a buildingh =height of a building or a structure above ground level in metreshi,hn,hx =height in metres above ground level to leveli, nor xrespectivelyleveli = ith level of a structure above the base; i=1 designates the first level above

    the baseleveln =upper most level of a structurelevelx =xth level of a structure above the base;x=1 designates the first level above the base.L

    =live load due to intended use or occupancyl =span of a member or component.Mx =overturning moment at levelxV =the total design lateral force or shear at the baseVx =the storey shear at storey levelxR =response modification or reduction coefficient for structural system given in Table 2.5.7 for

    seismic design.S

    =Snow loadT = Fundamental period of vibration in secondsW = Load due to wind pressure.W = Weight of an element or componentZ = Seismic zone coefficient given in Fig 2.5.1 or Tables 2.5.2 or 2.5.3 = Storey lateral drift.

    1.2 BASIC CONSIDERATIONS

    1.2.1 GENERAL

    Allbuildingsandstructuresshallbedesignedandconstructed inconformancewiththeprovisionsofthissection.

    Thebuildingsandportionsthereofshallsupportallloadsincludingdeadloadspecifiedinthischapterandelsewhere

    inthisCode.Impact,fatigueandselfstrainingforcesshallbeconsideredwheretheseforcesoccur.

    1.2.2

    BUILDINGSANDSTRUCTURES

    A structure shall ordinarily be described as an assemblage of framing members and components arranged to

    support both gravity and lateral forces. Structures may be classified as building and nonbuilding structures.

    Structuresthatencloseaspaceandareusedforvariousoccupanciesshallbecalledbuildingsorbuildingstructures.

    Structuresotherthanbuildings,suchaswatertanks,bridges,communication towers,chimneysetc.,shallbecalled

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    4/25

    Part6

    4

    nonbuildingstructures.Whenusedinconjunctionwiththewordbuilding(s),thewordstructure(s)shallmeannon

    buildingstructures,e.g.'buildingsandstructures'or'buildingsorstructures'.Otherwisetheword'structures'shall

    includebothbuildingsandnonbuildingstructures.

    1.2.3 BUILDINGANDSTRUCTUREOCCUPANCYCATEGORIES

    Buildingsandotherstructuresshallbeclassified,basedonthenatureofoccupancy,accordingtoTable1.2.1forthe

    purposesofapplying flood,surge,windandearthquakeprovisions.Theoccupancycategories range from Ito IV,

    whereOccupancyCategoryIrepresentsbuildingsandotherstructureswithalowhazardtohumanlifeintheevent

    of failure and Occupancy Category IV represents essential facilities. Each building or other structure shall be

    assignedtothehighestapplicableoccupancycategoryorcategories.Assignmentofthesamestructuretomultiple

    occupancycategoriesbasedonuseandthetypeofloadconditionbeingevaluated(e.g.,windorseismic)shallbe

    permissible.

    Whenbuildingsorotherstructureshavemultipleuses(occupancies),therelationshipbetweentheusesofvarious

    partsofthebuildingorotherstructureandtheindependence ofthestructuralsystemsforthosevariouspartsshall

    beexamined.Theclassificationforeachindependentstructuralsystemofamultipleusebuildingorotherstructure

    shallbethatofthehighestusagegroupinanypartofthebuildingorotherstructurethatisdependentonthatbasic

    structuralsystem.

    1.2.4 SAFETY

    Buildings, structuresand components thereof, shallbedesignedand constructed to support all loads, including

    deadloads,withoutexceedingtheallowablestressesorspecifiedstrengths(underapplicablefactoredloads)forthe

    materialsofconstructioninthestructuralmembersandconnections.

    1.2.5 SERVICEABILITY

    Structuralframingsystemsandcomponentsshallbedesignedwithadequatestiffnesstohavedeflections,vibration,

    or any other deformations within the serviceability limit of building or structure. The deflections of structural

    members shall not exceed the more restrictive of the limitations provided in Chapters 2 through 13 or thatpermittedbyTable1.2.2orthenotesthatfollow.Forwindandearthquake loading,storydriftandswayshallbe

    limitedinaccordancewiththeprovisionsofSec1.5.6.

    1.2.6 RATIONALITY

    Structuralsystemsandcomponentsthereofshallbeanalyzed,designedandconstructedbasedonrationalmethods

    whichshallinclude,butnotbelimitedto,theprovisionsofSec1.2.7

    1.2.7 ANALYSIS

    Analysisof the structural systems shallbemade fordetermining the loadeffectson the resistingelementsand

    connections, basedonwellestablishedprinciplesofmechanicstakingequilibrium,geometriccompatibilityandboth

    shortandlongtermpropertiesoftheconstruction materialsintoaccountandincorporatingthefollowing:

    1.2.7.1 MATHEMATICALMODEL

    A mathematical model of the physical structure shall represent the spatial distribution of stiffness and other

    propertiesofthestructurewhichisadequatetoprovideacompleteloadpathcapableoftransferringallloadsand

    forces from theirpoints of origin to the loadresisting elements forobtaining various load effects. Fordynamic

    analysis,mathematical modelshallalso incorporatetheappropriatelydistributedmassanddampingpropertiesof

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    5/25

    Chapter1

    5

    thestructureadequateforthedeterminationofthesignificantfeaturesof itsdynamicresponse.Allbuildingsand

    structuresshallbe thusananlyzedpreferablyusinga threedimensionalcomputerizedmodel incorporating these

    featuresofmathematicalmodel.It isessentialtousethreedimensionalcomputermodeltorepresentastructure

    havingirregularplanconfigurationsuchasthoselistedinTables1.3.2and1.3.3andhavingrigidorsemirigidfloor

    and roof diaphragms. Requirements for twodimensional model and three dimensional models for earthquake

    analysisaredescribedinSec.2.5.11to2.5.14.

    Table1.2.1 OccupancyCategoryofBuildingsandOtherStructuresforFlood,Surge,WindandEarthquakeLoads

    NatureofOccupancyOccupancy

    Category

    Buildingsandotherstructuresthatrepresentalowhazardtohumanlifeintheeventoffailure,including,butnotlimited

    to:

    Agriculturalfacilities Certaintemporaryfacilities Minorstoragefacilities

    I

    AllbuildingsandotherstructuresexceptthoselistedinOccupancyCategoriesI,III,andIV II

    Buildingsandotherstructuresthatrepresentasubstantialhazardtohumanlifeintheeventoffailure,including,butnot

    limitedto:

    Buildingsandotherstructureswheremorethan300peoplecongregateinonearea Buildingsandotherstructureswithdaycarefacilitieswithacapacitygreaterthan150 Buildingsandotherstructureswithelementaryschoolorsecondaryschoolfacilitieswithacapacitygreaterthan250 Buildingsandotherstructureswithacapacitygreaterthan500forcollegesoradulteducationfacilities Healthcarefacilitieswithacapacityof50ormoreresidentpatients,butnothavingsurgeryoremergency

    treatmentfacilities Jailsanddetentionfacilities

    Buildingsandotherstructures,notincludedinOccupancyCategoryIV,withpotentialtocauseasubstantialeconomicimpactand/ormassdisruptionofdaytodaycivilianlifeintheeventoffailure,including,butnotlimitedto:

    Powergeneratingstationsa Watertreatmentfacilities Sewagetreatmentfacilities Telecommunicationcenters

    BuildingsandotherstructuresnotincludedinOccupancyCategoryIV(including,butnotlimitedto,facilitiesthatmanufacture,process,handle,store,use,ordisposeofsuchsubstancesashazardousfuels,hazardouschemicals,hazardouswaste,orexplosives)containingsufficientquantitiesoftoxicorexplosivesubstancestobedangeroustothepublicifreleased.

    III

    Buildingsandotherstructuresdesignatedasessentialfacilities,including,butnotlimitedto:

    Hospitalsandotherhealthcarefacilitieshavingsurgeryoremergencytreatmentfacilities Fire,rescue,ambulance,andpolicestationsandemergencyvehiclegarages Designatedearthquake,hurricane,orotheremergencyshelters Designatedemergencypreparedness,communication,andoperationcentersandotherfacilitiesrequiredfor

    emergencyresponse Powergeneratingstationsandotherpublicutilityfacilitiesrequiredinanemergency Ancillarystructures(including,butnotlimitedto,communicationtowers,fuelstoragetanks,coolingtowers,

    electricalsubstationstructures,firewaterstoragetanksorotherstructureshousingorsupportingwater,orotherfiresuppressionmaterialorequipment)requiredforoperationofOccupancyCategoryIVstructuresduringanemergency

    Aviationcontroltowers,airtrafficcontrolcenters,andemergencyaircrafthangars Waterstoragefacilitiesandpumpstructuresrequiredtomaintainwaterpressureforfiresuppression Buildingsandotherstructureshavingcriticalnationaldefensefunctions

    Buildingsandotherstructures(including,butnotlimitedto,facilitiesthatmanufacture,process,handle,store,use,ordisposeof such substancesashazardous fuels,hazardous chemicals,or hazardouswaste) containinghighly toxicsubstanceswhere the quantityof thematerialexceeds a thresholdquantityestablishedby the authorityhavingjurisdiction.

    IV

    aCogenerationpowerplantsthatdonotsupplypoweronthenationalgridshallbedesignatedOccupancyCategoryII.

    1.2.7.2

    LOADSAND

    FORCES

    Allprescribed loadsandforcestobesupportedbythestructuralsystemsshallbedetermined inaccordancewith

    theapplicable provisionsofthischapterandChapter2.Loadsshallbeappliedonthemathematicalmodelspecified

    inSec.1.2.7.1atappropriatespatiallocationsandalongdesireddirections.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    6/25

    Part6

    6

    Table1.2.2DeflectionLimits(Exceptearthquakeload)

    In the above table lstands for span of the member under consideration; Lstands for live load, Wstands forwind load andDstands for dead load.Notes:

    a. For structural roofing and siding made of formed metal sheets, the total load deflection shall not exceed l/60. For secondary roofstructural members supporting formed metal roofing, the live load deflection shall not exceed l/150. For secondary wall memberssupporting formed metal siding, the design wind load deflection shall not exceed l/90. For roofs, this exception only applies when themetal sheets have no roof covering.b. Interior partitions not exceeding 2m in height and flexible, folding and portable partitions are not governed by the provisions of thissection.c. For cantilever members, lshall be taken as twice the length of the cantilever.d. For wood structural members having a moisture content of less than 16 percent at time of installation and used under dry conditions,the deflection resulting from L + 0.5D is permitted to be substituted for the deflection resulting from L + D.e. The above deflections do not ensure against ponding. Roofs that do not have sufficient slope or camber to assure adequate drainage shallbe investigated for ponding. See Section 1.6.5 for rain and ponding requirements.f. The wind load is permitted to be taken as 0.7 times the component and cladding loads for the purpose of determining deflection limitsherein.g. For steel structural members, the dead load shall be taken as zero.h. For aluminum structural members or aluminum panels used in skylights and sloped glazing framing, roofs or walls of sunroomadditions or patio covers, not supporting edge of glass or aluminum sandwich panels, the total load deflection shall not exceed l/60. Forcontinuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed l/175 for each glass lite orl/60 for the entire length of the member, whichever is more stringent. For aluminum sandwich panels used in roofs or walls of sunroomadditions or patio covers, the total load deflection shall not exceed l/120.

    1.2.7.3

    SOIL-STRUCTUREINTERACTION

    Soilstructure interactioneffects,where required, shallbe included in theanalysisbyappropriately including the

    properlysubstantiatedpropertiesofsoilintothemathematicalmodelspecifiedinSec.1.2.7.1above.

    1.2.8 DISTRIBUTIONOFHORIZONTALSHEAR

    Thetotallateralforceshallbedistributedtothevariouselementsofthelateralforceresistingsysteminproportion

    totheirrigiditiesconsideringtherigidityofthehorizontalbracingsystemsordiaphragms.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    7/25

    Chapter1

    7

    1.2.9 HORIZONTALTORSIONALMOMENTS

    Structural systemsand components shallbedesigned to sustainadditional forces resulting from torsiondue to

    eccentricitybetween thecentreofapplicationof the lateral forcesand thecentreof rigidityof the lateral force

    resistingsystem.Forcesshallnotbedecreaseddue to torsionaleffects.Foraccidental torsioneffectson seismic

    forces,requirementsshallconformtoSec2.5.9.6

    1.2.10 STABILITYAGAINSTOVERTURNINGANDSLIDING

    Everybuildingorstructureshallbedesignedtoresisttheoverturningandslidingeffectscausedbythelateralforces

    specifiedinthischapter.

    1.2.11

    ANCHORAGE

    Anchorageoftherooftowallandcolumns,andofwallsandcolumnstofoundations,shallbeprovidedtoresistthe

    upliftandslidingforcesresultingfromtheapplicationoftheprescribedloads.Additionalrequirementsformasonry

    orconcretewallsshallbethosegiveninSec1.7.3.6.

    1.2.12 GENERALSTRUCTURALINTEGRITY

    Buildingsandstructuralsystemsshallpossessgeneralstructuralintegrity,that istheabilitytosustainlocaldamage

    causeddue tomisuseor accidentaloverloading,with the structure as awhole remaining stable andnotbeing

    damagedtoanextentdisproportionatetotheoriginallocaldamage.

    1.2.13 PROPORTIONINGOFSTRUCTURALELEMENTS

    Structuralelements,componentsandconnectionsshallbeproportionedanddetailedbasedonthedesignmethods

    provided inthesubsequentchapters forvariousmaterialsofconstruction,suchasreinforcedconcrete,masonry,

    steeletc.toresistvariousloadeffectsobtainedfromarationalanalysisofthestructuralsystem.

    1.2.14 WALLSANDFRAMING

    Walls and structural framing shall be erected true and plumb in accordance with the design. Interior walls,

    permanentpartitionsand temporarypartitionsexceeding1.8mofheightshallbedesigned to resistall loads to

    whichtheyaresubjected.IfnototherwisespecifiedelsewhereinthisCode,wallsshallbedesignedforaminimum

    loadof0.25kN/m2appliedperpendiculartothewallsurfaces.Thedeflectionofsuchwallsundera loadof0.25

    kN/m2shall not exceed

    1/240ofthespanforwallswithbrittlefinishesand

    1/120ofthespanforwallswithflexible

    finishes. However, flexible, folding or portable partitions shall not be required to meet the above load and

    deflectioncriteria,butshallbeanchoredtothesupportingstructure.

    1.2.15 ADDITIONSTOEXISTINGSTRUCTURES

    Whenanexistingbuildingorstructureisextendedorotherwisealtered,allportionsthereofaffectedby suchcause

    shall

    be

    strengthened,

    if

    necessary,

    to

    comply

    with

    the

    safety

    and

    serviceability

    requirements

    provided

    in

    Sec

    1.2.4

    and1.2.5respectively.

    1.2.16 PHASEDCONSTRUCTION

    Whenabuildingorstructureisplannedoranticipatedtoundergophasedconstruction,structuralmemberstherein

    shallbeinvestigatedanddesignedforanyadditionalstressesarisingduetosuchconstruction.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    8/25

    Part6

    8

    1.2.17 LOADCOMBINATIONSANDSTRESSINCREASE

    Every building, structure, foundation or components thereof shall be designed to sustain, within the allowable

    stress or specified strength (under factored load), the most unfavourable effects resulting from various

    combinations ofloadsspecifiedinsection2.7.Exceptotherwisepermittedorrestrictedbyanyothersectionofthis

    Code,maximumincreaseintheallowablestress shallbe33%whenallowableorworkingstressmethodofdesignis

    followed.Forsoilstressesduetofoundationloads,loadcombinationsandstressincreasespecifiedinSec2.7.4forallowablestressdesignmethodshallbeused.

    1.3 STRUCTURALSYSTEMS

    1.3.1 GENERAL

    Everystructureshallhaveoneofthebasicstructuralsystemsspecified inSec1.3.2oracombinationthereof.The

    structuralconfigurationshallbeasspecifiedinSec1.3.4withthelimitationsimposedinSec2.5.7.4.

    1.3.2 BASICSTRUCTURALSYSTEMS

    StructuralsystemsforbuildingsandotherstructuresshallbedesignatedasoneofthetypesAtoGlisted inTable

    1.3.1.Each type isagain classifiedas shown in the tableby the typesof verticalelementsused to resist lateral

    forces.Abriefdescriptionofdifferentstructuralsystemsarepresentedinfollowingsubsections.

    Table1.3.1:BasicStructuralSystems

    A.BEARINGWALLSYSTEMS(noframe)1. Special reinforced concrete shear walls

    2. Ordinary reinforced concrete shear walls

    3. Ordinary reinforced masonry shear walls

    4. Ordinary plain masonry shear walls

    B.BUILDINGFRAMESYSTEMS (withbracingorshearwall)1. Steel eccentrically braced frames, moment resisting connections atcolumns away from links2. Steel eccentrically braced frames, non-moment-resisting, connections at

    columns away from links3. Special steel concentrically braced frames

    4. Ordinary steel concentrically braced frames5. Special reinforced concrete shear walls

    6. Ordinary reinforced concrete shear walls

    7. Ordinary reinforced masonry shear walls

    8. Ordinary plain masonry shear walls

    C.MOMENTRESISTINGFRAMESYSTEMS(noshearwall)1. Special steel moment frames

    2. Intermediate steel moment frames

    3. Ordinary steel moment frames4. Special reinforced concrete moment frames

    5. Intermediate reinforced concrete moment frames

    6. Ordinary reinforced concrete moment frames

    D.DUALSYSTEMS:SPECIALMOMENTFRAMESCAPABLEOFRESISTINGATLEAST25%OF

    PRESCRIBEDSEISMICFORCES(withbracingorshearwall)1. Steel eccentrically braced frames2. Special steel concentrically braced frames

    3. Special reinforced concrete shear walls

    4. Ordinary reinforced concrete shear wallsE.DUALSYSTEMS:INTERMEDIATEMOMENTFRAMESCAPABLEOFRESISTINGATLEAST25%

    OFPRESCRIBEDSEISMICFORCES(withbracingorshearwall)1. Special steel concentrically braced frames

    2. Special reinforced concrete shear walls

    3. Ordinary reinforced masonry shear walls

    4. Ordinary reinforced concrete shear walls

    F.DUALSHEARWALLFRAMESYSTEM:ORDINARYREINFORCEDCONCRETEMOMENT

    FRAMESANDORDINARYREINFORCEDCONCRETESHEARWALLS

    G.STEELSYSTEMSNOTSPECIFICALLYDETAILEDFORSEISMICRESISTANCE

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    9/25

    Chapter1

    9

    1.3.2.1

    BEARINGWALLSYSTEM

    A structural systemhavingbearingwallsorbracing systemswithout a complete vertical load carrying frame to

    supportgravityloads.Resistancetolateralloadsisprovidedbyshearwallsorbracedframes.

    1.3.2.2 BUILDINGFRAMESYSTEM

    A structural systemwithanessentially complete space frameproviding support for gravity loads.Resistance tolateralloadsisprovidedbyshearwallsorbracedframesseparately.

    1.3.2.3 MOMENTRESISTINGFRAMESYSTEM

    Astructuralsystemwithanessentiallycompletespaceframeprovidingsupportforgravityloads.Momentresisting

    framesalso provideresistancetolateralloadprimarilybyflexuralactionofmembers,andmaybeclassifiedasone

    ofthefollowingtypes:

    a) SpecialMomentResistingFrames(SMRF)

    b) IntermediateMomentResistingFrames(IMRF)

    c) OrdinaryMomentResistingFrames(OMRF).

    The framing system, IMRFandSMRF shallhave specialdetailing toprovideductilebehaviour conforming to the

    provisionsofSec8.3and10.20 forconcreteandsteelstructures respectively.OMRFneednotconform to these

    specialductilityrequirementsofChapter8or10.

    1.3.2.4 DUALSYSTEM

    Astructuralsystemhavingacombinationofthefollowingframing systems:

    a) Momentresistingframes(SMRF,IMRForsteelOMRF),and

    b) Shearwallsorbracedframes.

    Thetwosystemsspecifiedin(a)and(b)aboveshallbedesignedtoresistthetotallateralforceinproportiontotheir

    relativerigiditiesconsideringtheinteractionofthedualsystematalllevels. However,themoment resistingframes

    shallbecapableofresistingatleast25%oftheapplicabletotalseismiclateralforce,evenwhenwindoranyother

    lateralforcegovernsthedesign.

    1.3.2.5 SPECIALSTRUCTURALSYSTEM:

    AstructuralsystemnotdefinedabovenorlistedinTable1.3.1andspeciallydesignedtocarrythelateralloads,such

    astubeintube,bundledtube,etc.

    1.3.2.6 NON-BUILDINGSTRUCTURALSYSTEM

    AstructuralsystemusedforpurposesotherthaninbuildingsandconformingtoSec1.5.4.8,1.5.4.9,2.4and2.5.

    1.3.3 COMBINATIONOFSTRUCTURALSYSTEMS

    WhendifferentstructuralsystemsofSec1.3.2arecombinedfor incorporation intothesamestructure,designof

    thecombinedseismicforceresistingsystemshallconformtotheprovisionsofSec2.5.7.5.

    1.3.4 STRUCTURALCONFIGURATIONS

    Based on the structural configuration, each structure shall be designated as a regular or irregular structure as

    definedbelow:

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    10/25

    Part6

    10

    1.3.4.1

    REGULARSTRUCTURES

    Regularstructureshavenosignificantphysicaldiscontinuitiesorirregularitiesinplanorverticalconfigurationorin

    theirlateralforceresistingsystems.TypicalfeaturescausingirregularityaredescribedinSec1.3.4.2.

    1.3.4.2

    IRREGULARSTRUCTURES

    Irregularstructureshaveeithervertical irregularityorplan irregularityorboth intheirstructuralconfigurationsor

    lateralforceresistingsystems.

    1.3.4.2.1 VerticalIrregularity

    StructureshavingoneormoreoftheirregularfeatureslistedinTable1.3.2shallbedesignatedashavingavertical

    irregularity.

    Table1.3.2:VerticalIrregularitiesofStructures

    VerticalIrregularity Reference*

    Type Definition Section

    I StiffnessIrregularity (SoftStorey):A soft storey is one in which the lateral stiffness is less than 70 per cent of thatin the storey above or less than 80 per cent of the average stiffness of thethree storeys above.

    2.5.7 to 2.5.14and 2.5.19

    II MassIrregularity :Mass irregularity shall be considered to exist where the effective mass of anystorey is more than 150 per cent of the effective mass of an adjacent storey. Aroof which is lighter than the floor below need not be considered.

    2.5.7 to 2.5.14

    III VerticalGeometricIrregularity :Vertical geometric irregularity shall be considered to exist where horizontaldimension of the lateral forceresisting system in any storey is more than 130per cent of that in an adjacent storey, onestorey penthouses need not beconsidered.

    2.5.7 to 2.5.14

    IV In-PlaneDiscontinuityinVerticalLateralForce-ResistingElement:An inplane offset of the lateral loadresisting elements greater than thelength of those elements.

    2.5.7 to 2.5.14

    Va DiscontinuityinCapacity (WeakStorey) :A weak storey is one in which the storey strength is less than 80 per cent ofthat in the storey above. The storey strength is the total strength of allseismicresisting elements sharing the storey shear for the direction underconsideration.

    2.5.7 to 2.5.14and 2.5.19

    Vb ExtremeDiscontinuityinCapacity (VeryWeakStorey) :A very weak storey is one in which the storey strength is less than 65 per centof that in the storey above.

    2.5.7 to 2.5.14and 2.5.19

    1.3.4.2.2 PlanIrregularity

    Structureshavingoneormoreof the irregular features listed inTable1.3.3shallbedesignatedashavingaplan

    irregularity.

    Table1.3.3:Plan Irregularities ofStructures

    PlanIrregularity Reference*

    Type Definition SectionI Torsional Irregularity (to be considered when diaphragms are not

    flexible):

    Torsional irregularity shall be considered to exist when the maximum storeydrift, computed including accidental torsion, at one end of the structure is morethan 1.2 times the average of the storey drifts at the two ends of the structure.

    2.5.7 to 2.5.14

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    11/25

    Chapter1

    11

    II ReentrantCorners:Plan configurations of a structure and its lateral forceresisting system containreentrant corners, where both projections of the structure beyond a reentrantcorner are greater than 15 per cent of the plan dimension of the structure inthe given direction.

    2.5.7 to 2.5.14

    III DiaphragmDiscontinuity :Diaphragms with abrupt discontinuities or variations in stiffness, includingthose having cutout or open areas greater than 50 per cent of the grossenclosed area of the diaphragm, or changes in effective diaphragm stiffness ofmore than 50 per cent from one storey to the next.

    2.5.7 to 2.5.14

    IV Out-of-planeOffsets :Discontinuities in a lateral force path, such as outofplane offsets of thevertical elements.

    2.5.7 to 2.5.14

    V NonparallelSystems :The vertical lateral loadresisting elements are not parallel to or symmetricabout the major orthogonal axes of the lateral forceresisting system.

    2.5.7 to 2.5.14

    1.4 DESIGNFORGRAVITYLOADS

    1.4.1

    GENERAL

    Designofbuildingsand components thereof forgravity loads shall conform to the requirementsof this section.

    Gravity loads, suchasdead loadand live loadsappliedat the floorsor roofofabuildingshallbedetermined in

    accordancewiththeprovisionsofChapter2.

    1.4.2 FLOORDESIGN

    Floorslabsanddecksshallbedesignedforthefulldeadandliveloadsasspecified inSec2.2and2.3respectively.

    Floor supporting elements such asbeams,joists, columns etc. shallbedesigned for the full dead load and the

    appropriately reduced live loads set forth by the provisions of Sec 2.3.13. Design of floor elements shall also

    conformtothefollowingprovisions:

    a) UniformlyDistributedLoads: Whereuniformfloorloadsareinvolved,considerationmaybe

    limitedtofulldeadloadonallspansincombinationwithfullliveloadonadjacentspans and

    on alternate spans to determine the most unfavourable effect of stresses in the member

    concerned.

    b) ConcentratedLoads : Provisionshallbemade indesigningfloorsforaconcentrated loadas

    set forth in Sec 2.3.5 applied at a location wherever this load acting upon an otherwise

    unloaded floor would produce stresses greater than those caused by the uniform load

    requiredtherefore.

    c) PartitionLoads :Loadsdue topermanentpartitionsshallbetreatedasadead loadapplied

    overthefloorasauniformlineloadhavinganintensityequaltotheweightpermetrerunof

    thepartitionsasspecifiedinSec2.2.5.Loadsforlightmovablepartitionsshallbedetermined

    inaccordancewiththeprovisionsofSec2.3.6.

    d) Design of Members : Floor members, such as slabs or decks, beams,joists etc. shall be

    designedtosustaintheworsteffectofthedeadplusliveloadsoranyotherloadcombinations

    asspecifiedinSec2.7.Wherefloorsareusedasdiaphragmstotransmitlateralloadsbetween

    various resisting elements, those loads shallbedetermined following theprovisionsof Sec

    1.7.3.8. Detailed design of the floor elements shall be performed using the procedures

    providedinChapters4through13for variousconstructionmaterials.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    12/25

    Part6

    12

    1.4.3 ROOFDESIGN

    Roofs and their supporting elements shall be designed to sustain, within their allowable stresses or specified

    strengthlimits,alldead loadsand live loadsassetoutbytheprovisionsofSec2.2and2.3respectively.Designof

    roofmembersshallalsoconformtothefollowingrequirements:

    a) Application of Loads : When uniformly distributed loads are considered for the design of

    continuousstructuralmembers,loadincludingfulldeadloadsonallspansincombinationwith

    fullliveloadsonadjacentspansandonalternate span,shallbeinvestigatedtodeterminethe

    worst effects of loading. Concentrated roof live loads and special roof live loads, where

    applicable,shallalsobeconsideredindesign.

    b) UnbalancedLoading:Effectsduetounbalancedloadsshallbeconsideredinthedesignofroof

    membersandconnectionswheresuchloadingwillresultinmorecriticalstresses.Trussesand

    archesshallbedesignedtoresistthestressescausedbyuniformliveloadsononehalfofthe

    span if such loading results in reverse stresses,or stresses greater in anyportion than the

    stressesproducedbythisunitliveloadwhenappliedupontheentirespan.

    c) RainLoads: Roofs,wherepondingofrainwaterisanticipatedduetoblockageofroofdrains,

    excessivedeflectionor insufficientslopes,shallbedesignedtosupportsuch loads.Loadson

    roofs due to rain shall be determined in accordance with the provisions of Sec 2.6.3. In

    additiontothedeadloadoftheroof,eithertheroofliveloadortherainload,whicheverisof

    higherintensity,shallbeconsideredindesign.

    1.4.4 REDUCTIONOFLIVELOADS

    Thedesign live loadsspecified inSec2.3,maybereducedtoappropriatevaluesaspermittedbytheprovisionsof

    Sec2.3.13.andSec.2.3.14.

    1.4.5

    POSTINGOFLIVELOADS

    Ineverybuilding,ofwhichthefloorsorpartsthereofhaveadesignliveloadof3.5kN/m2ormore,andwhichare

    usedas library stack room, file room, parking garage,machineorplant room,orused for industrialor storage

    purposes,theownerofthebuildingshallensurethatthe live loadsforwhichsuchspacehasbeendesigned,are

    postedondurablemetalplatesasshowninFig1.1,securelyaffixedinaconspicuousplaceineachspacetowhich

    theyrelate.Ifsuchplatesarelost,removed,ordefaced,theownershallberesponsibletohavethemreplaced.

    1.4.6

    RESTRICTIONSONLOADING

    Thebuildingowner shallensure that the live load forwhicha flooror roof isorhasbeendesigned,willnotbe

    exceededduringitsuse.

    1.4.7 SPECIALCONSIDERATIONS

    Intheabsenceofactualdeadandliveloaddata,theminimumvaluesoftheseloadsshallbethosespecifiedinSec

    2.2and2.3.Inaddition,specialconsiderationshallbegiventothefollowingaspectsofloadinganddueallowances

    shallbemadeindesignifoccurrenceofsuchloadingisanticipatedafterconstructionofabuilding:

    a) IncreaseinDeadLoad:Actualthicknessoftheconcreteslabsorothermembersmaybecome

    largerthanthedesignedthicknessduetomovementsordeflectionsoftheformworkduring

    construction.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    13/25

    1.4.8

    Structural

    deflection

    orthatpe

    effects(e.

    1.5

    1.5.1

    Everybuil

    windorea

    1.5.2

    Any of th

    whichever

    shallcom

    shallalso

    1.5.3

    Design of

    requireme

    b)

    Fut

    ins

    c)

    Oc

    tha

    DEFLECT

    systems and

    ofstructural

    mittedbyTa

    .creep,shrin

    DESIGN

    GENERA

    ing,structure

    rthquakeforc

    SELECTI

    lateral load

    producesthe

    lywith

    those

    onformtoSe

    DESIGN

    buildings an

    nts:

    ure Installatio

    allationsmay

    upancyChan

    nthatbeingd

    ION

    AND

    C

    members the

    memberssha

    le1.2.2.orpr

    ageorstress

    FORLAT

    orportionsth

    es,incomplia

    N

    OF

    LAT

    prescribed i

    mostcritical

    prescribedin

    1.3.2.4.

    OR

    WIND

    d their com

    ns: Changes

    increaseactu

    es:Increasei

    esignedfor.

    Figure1.1:

    AMBER

    reof shall be

    llnotexceedt

    ovisionsofSe

    relaxation)sh

    ERALLO

    ereofshallbe

    cewithther

    RAL

    FOR

    Chapter 2,

    ffect,shallgo

    Sec1.7.

    Whe

    OAD

    onents to r

    13

    in the numb

    lloadonthe

    liveloadsdu

    SampleLiveLo

    designed to h

    hemorerest

    1.2.5.Incalc

    uldalsobeco

    DS

    designedtor

    quirementsp

    E

    FOR

    DE

    considered ei

    ernthedesig

    adual

    struct

    sist wind in

    rs, types and

    loorsofabuil

    etochangeso

    adSign

    ave adequat

    ictiveoftheli

    latingdeflect

    nsidered.

    esistthelater

    escribedinth

    IGN

    her alone or

    n.However,t

    uralsystem

    is

    uced forces

    positions of

    ing.

    foccupancyi

    stiffness to l

    mitationsofC

    ionsduetogr

    lloadeffects,

    issection.

    in combinati

    estructurald

    used

    to

    resis

    shall comply

    C

    partitions an

    volvingloads

    imit deflectio

    hapters2thr

    avityloads,lo

    suchasthos

    n with other

    etailingrequir

    lateral

    loads,

    with the fo

    hapter1

    other

    heavier

    ns. The

    ugh13

    gterm

    dueto

    forces,

    ements

    design

    llowing

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    14/25

    Part6

    14

    1.5.3.1

    DIRECTIONOFWIND

    Structural design for wind forces shall be based on the assumption that wind may blow from any horizontal

    direction.

    1.5.3.2 DESIGNCONSIDERATIONS

    DesignwindloadontheprimaryframingsystemsandcomponentsofabuildingorstructureshallbedeterminedonthebasisoftheproceduresprovidedinSec2.4consideringthebasicwindspeed,shapeandsizeofthebuilding,and

    theterrainexposureconditionofthesite.Forslenderbuildingsandstructures,dynamicresponsecharacteristics,

    such as fundamental natural frequency, shall be determined for calculating the gust response coefficient. Load

    effects, such as forces, moments, deflections etc. on various components of the building due to wind shall be

    determinedfromastaticanalysisofthestructureasspecifiedinSec1.2.7.1.

    1.5.3.3

    SHIELDINGEFFECT

    Reductions inwindpressureonbuildingsandstructuresdue toapparentdirect shieldingeffectsof theupwind

    obstructions,suchasmanmadeconstructionsornaturalterrainfeatures,shallnotbepermitted.

    1.5.3.4

    DYNAMICEFFECTS

    Dynamicwind forces suchas that fromalongwind vibrations causedby thedynamicwindstructure interaction

    effects,as set forthby theprovisionsofSec2.4.10, shallbe considered in thedesignof regular shaped slender

    buildings.Forotherdynamiceffectssuchascrosswindortorsionalresponsesasmaybeexperiencedbybuildings

    orstructureshavingunusualgeometricalshapes(i.e.verticalorplan irregularitieslistedinTables1.3.2and1.3.3),

    responsecharacteristics,orsitelocations,structuraldesignshallbemadebasedontheinformationobtainedeither

    fromother reliable referencesor fromwindtunnel testspecified inSec1.5.3.5below,complyingwiththeother

    requirementsofthissection.

    1.5.3.5 WINDTUNNELTEST

    Properlyconductedwindtunneltestsshallberequiredforthosebuildingsorstructureshavingunusualgeometricshapes,responsecharacteristics,orsitelocationsforwhichcrosswindresponsesuchasvortexshedding,galloping

    etc.warrant special consideration, and forwhich no reliable literature for the determination of such effects is

    available.This test isalso recommended for thosebuildingsor structures forwhichmoreaccuratewindloading

    informationisdesiredthanthosegiveninthissectionandinSec2.4.

    Testsforthedeterminationofmeanandfluctuatingcomponentsofforcesandpressuresshallbeconsideredtobe

    properlyconductedonlyifthefollowing requirementsaresatisfied:

    a)

    Thenaturalwindhasbeenmodelledtoaccountforthevariationofwindspeedwithheight,

    b)

    The intensityofthe longitudinalcomponentsof turbulencehasbeen taken intoconsideration in the

    model,

    c) Thegeometricscaleofthestructuralmodel isnotmorethanthreetimesthegeometricscaleofthe

    longitudinal component ofturbulence,

    d)

    Theresponsecharacteristicsofthewindtunnelinstrumentationareconsistentwiththemeasurements

    tobemade, and

    e)

    The Reynolds number is taken into consideration when determining forces and pressures on the

    structuralelements.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    15/25

    Chapter1

    15

    Tests for the purpose of determining the dynamic response of a structure shall be considered tobe properly

    conductedonly ifrequirements (a)through (e)aboveare fulfilledand, inaddition,thestructuralmodel isscaled

    withdueconsiderationtolength,distributionofmass,stiffnessanddamping ofthestructure.

    1.5.3.6 WINDLOADSDURINGCONSTRUCTION

    Buildings, structures and portions thereof under construction, and construction structures such as formwork,

    stagingetc.shallbeprovidedwithadequatetemporarybracingsorotherlateralsupportstoresistthewindloadon

    themduringtheerectionandconstructionphase.

    1.5.3.7 MASONRYCONSTRUCTIONINHIGH-WINDREGIONS

    Designandconstructionofmasonrystructuresinhighwindregionsshallconformtotherequirementsofrelevant

    sectionsofChapter7.

    1.5.3.8 HEIGHTLIMITS

    UnlessotherwisespecifiedelsewhereinthisCode,noheightlimitsshallbeimposed,ingeneral,onthedesignand

    constructionofbuildingsorstructurestoresistwindinducedforces.

    1.5.4 DESIGNFOREARTHQUAKEFORCES

    Design of structures and components thereof to resist the effects of earthquake forces shall comply with the

    requirementsofthissection.

    1.5.4.1

    BASICDESIGNCONSIDERATION

    Forthepurposeofearthquakeresistantdesign,eachstructureshallbeplacedinoneoftheseismiczonesasgivenin

    Sec2.5.6.2andassignedwitha structure importance categoryas set forth inSec2.5.7.1.The seismic forceson

    structuresshallbedeterminedconsideringseismiczoning,sitesoilcharacteristics,structureimportance,structural

    systemsandconfigurations,heightanddynamicpropertiesofthestructureasprovided inSec2.5.Thestructural

    systemand

    configuration

    types

    for

    abuilding

    or

    astructure

    shall

    be

    determined

    in

    accordance

    with

    the

    provisions

    ofSec2.5.7.4.Otherseismicdesignrequirementsshallbethosespecifiedinthissection.

    1.5.4.2 REQUIREMENTSFORDIRECTIONALEFFECTS

    Thedirectionsofapplicationofseismicforcesusedinthedesignshallbethosewhichwillproducethemostcritical

    loadeffects.Earthquakeforcesactinbothprincipaldirectionsofthebuildingsimultaneously.Designprovisionsfor

    consideringearthquakecomponentinorthogonaldirectionshavebeenprovidedinSec2.5.15.1.

    1.5.4.3 STRUCTURALSYSTEMANDCONFIGURATIONREQUIREMENTS

    Seismicdesignprovisionsimposethefollowinglimitationsontheuseofstructuralsystemsandconfigurations:

    a)

    The

    structural

    system

    used

    shall

    satisfy

    requirements

    of

    the

    Seismic

    Design

    Category

    (defined

    in

    Sec.2.5.7.2)andheightlimitationsgiveninSec2.5.7.4.

    b)

    StructuresassignedtoSeismicDesignCategoryDhavingverticalirregularityTypeVbofTable1.3.2

    shall not be permitted. Structures with such vertical irregularity may be permitted for Seismic

    DesignCategoryBorCbutshallnotbeovertwostoriesor9minheight.

    c)

    Structures having irregular features described in Table 1.3.2 or 1.3.3 shall be designed in

    compliancewiththeadditionalrequirementsofthesectionsreferencedintheseTables.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    16/25

    Part6

    16

    d) SpecialStructuralSystemsdefined inSec1.3.2.5maybepermitted if it canbedemonstratedby

    analytical and test data to be equivalent, with regard to dynamic characteristics, lateral force

    resistance and energy absorption, to one of the structural systems listed in Table 2.5.7, for

    obtaininganequivalentRandCdvalueforseismicdesign.

    1.5.4.4 METHODSOFANALYSIS

    Earthquake forces and their effects on various structural elements shallbedetermined by using either a static

    analysismethodoradynamicanalysismethodwhicheverisapplicablebasedonthelimitationssetforthinSec2.5.7

    through2.5.14andconformingtoSec1.2.7.

    1.5.4.5 MINIMUMDESIGNSEISMICFORCE

    Theminimumdesign seismic forces shallbe thosedetermined inaccordancewith the Sec2.5.7 through 2.5.14

    whicheverisapplicable.

    1.5.4.6 DISTRIBUTIONOFSEISMICFORCES

    Thetotallateralseismicforcesandmomentsshallbedistributedamongvariousresistingelementsatanyleveland

    alongtheverticaldirectionofabuildingorstructureinaccordancewiththeprovisionsofSec2.5.7through2.5.14

    asappropriate.

    1.5.4.7

    VERTICALCOMPONENTSOFSEISMICFORCES

    DesignprovisionsforconsideringverticalcomponentofearthquakegroundmotionisgiveninSec2.5.15.2

    1.5.4.8 HEIGHTLIMITS

    Height limitationsfordifferentstructuralsystemsaregiven inTable2.5.7ofSec2.5.7.4ofPart6ofthiscodeasa

    functionofseismicdesigncategory.

    1.5.4.9 NON-BUILDINGSTRUCTURES

    SeismiclateralforceonnonbuildingstructuresshallbedeterminedinaccordancewiththeprovisionsofChapter15

    ofASCE7 05.However,provisionsofChapter15ofASCE705maybesimplified,consistentwiththeprovisionsof

    Section2.5ofPart6ofthiscode.Otherdesignrequirementsshallbethoseprovidedinthischapter.

    1.5.5

    OVERTURNINGREQUIREMENTS

    Everystructureshallbedesignedtoresisttheoverturningeffectscausedbywindorearthquakeforcesspecifiedin

    Sec2.4and2.5respectivelyaswellotherlateralforceslikeearthpressure,tidalsurgeetc.Theoverturningmoment

    Mx atanystoreylevelxofabuildingshallbedeterminedas:

    1.5.1

    where,

    hi,hx,hn = Heightinmetresatlevel i, xor nrespectively.

    Fi = Lateralforceappliedatleveli,i=1ton.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    17/25

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    18/25

    Part6

    18

    1.6 DESIGNFORMISCELLANEOUSLOADS

    1.6.1 GENERAL

    Buildings,structuresandcomponentsthereof,whensubjectto loadsotherthandead, live,windandearthquake

    loads,shallbedesignedinaccordancewiththeprovisionsofthissection.Miscellaneousloads,suchasthosedueto

    temperature,rain,

    flood

    and

    surge

    etc.

    on

    buildings

    or

    structures,

    shall

    be

    determined

    in

    accordance

    with

    Sec

    2.6.

    Structural memberssubjecttomiscellaneousloads,notspecifiedinSec2.6shallbedesignedusingwellestablished

    methods giveninanyreliablereferences,andcomplyingwiththeotherrequirementsofthisCode.

    1.6.2 SELF-STRAININGFORCES

    Selfstraining forces such as those arising due to assumed differential settlements of foundations and from

    restraineddimensionalchangesduetotemperature,moisture,shrinkage,creep,andsimilareffects,shallbetaken

    intoconsiderationinthedesignofstructural members.

    1.6.3

    STRESSREVERSALANDFATIGUE

    Structuralmembersandjointsshallbe investigatedanddesignedagainstpossiblestressreversalscauseddueto

    variousconstruction loads.Where required,allowanceshallbemade in thedesign toaccount for theeffectsof

    fatigue.Theallowablestressmaybeappropriatelyreducedtoaccountforsucheffectsinthestructuralmembers.

    1.6.4 FLOOD,TIDAL/STORMSURGEANDTSUNAMI

    Buildings, structures and components thereof shall be designed, constructed and anchored to resist flotation,

    collapseoranypermanentmovementduetoloadsincludingflood,tidal/Stormsurgeandtsunami,whenapplicable.

    Structuralmembersshallbedesignedtoresistbothhydrostaticandsignificanthydrodynamic loadsandeffectsof

    buoyancyresultingfromfloodorsurge.Floodandsurge loadsonbuildingsandstructuresshallbedetermined in

    accordancewithSec2.6.4.Loadcombination including floodandsurge loadsshallconform toSec2.7.Designof

    foundationstosustaintheseloadeffectsshallconformtotheprovisionsofSec1.8.

    Stability against overturning and sliding caused due to wind and flood or surge loads simultaneously shall be

    investigated,andsucheffectsshallberesistedwithaminimumfactorofsafetyof1.5,consideringdeadloadonly.

    1.6.5 RAINLOADS

    Roofsofthebuildingsandstructuresaswellastheirothercomponentswhichmayhavethecapabilityofretaining

    rainwatershallbedesignedforadequategravityloadinducedbyponding.Roofsandsuchothercomponentsshall

    beanalysedanddesignedforloadduetopondingcausedbyaccidentalblockageofdrainagesystemcomplyingwith

    Sec.2.6.3.

    1.6.6

    OTHERLOADS

    Buildingsand

    structures

    and

    their

    components

    shall

    be

    analyzed

    and

    designed

    for

    stresses

    caused

    by

    the

    following

    effects

    a. TemparatureEffects(Sec2.6.5).

    b. SoilandHydrostaticPressure(Sec2.6.6).

    c. ImpactsandCollisions

    d.

    Explosions(Sec2.6.7).

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    19/25

    Chapter1

    19

    e. Fire

    f. VerticalForcesonAirRaidShelters(Sec2.6.8).

    g. LoadsonHelicopterLandingAreas(Sec2.6.9).

    h.

    ErectionandConstructionLoads(Sec2.6.10).

    i.

    MovingLoadsforCraneMovements

    j. CreepandShrinkage

    k.

    DynamicLoadsduetoVibrations

    l. ConstructionLoads

    Designofbuildingsandstructuresshallincludeloadingandstressescausedbytheaboveeffectsinaccordancewith

    theprovisionssetforthinChapter2.

    1.7 DETAILEDDESIGNREQUIREMENTS

    1.7.1

    GENERAL

    All structural framing systems shall comply with the requirements of this section. Only the elements of the

    designated lateral force resisting systems canbeused to resistdesign lateral forces specified inChapter2.The

    individual componentsshallbedesignedtoresisttheprescribedforcesactingonthem.Designofcomponentsshall

    alsocomplywiththespecificrequirementsforthematerialscontainedinChapters4through13.Inaddition,such

    framingsystemsandcomponentsshallcomplywiththedesignrequirementsprovidedinthissection.

    1.7.2 STRUCTURALFRAMINGSYSTEMS

    Thebasicstructuralsystemsaredefined inSec1.3.2andshowninTable1.3.1,andeachtypeissubdividedbythe

    typesofframingelementsusedtoresistthelateralforces.Thestructuralsystemusedshallsatisfyrequirementsof

    seismicdesigncategoryandheight limitations indicated inTable 2.5.7.Specialframingrequirementsaregiven in

    thefollowingsectionsinadditiontothoseprovidedinChapters4through13.

    1.7.3 DETAILINGREQUIREMENTSFORCOMBINATIONSOF STRUCTURAL

    SYSTEMS:

    Forcomponentscommontodifferentstructuralsystems,amorerestrictivedetailingshallbeprovided.

    1.7.3.1 CONNECTIONSTORESISTSEISMICFORCES

    Connections which resist prescribed seismic forces shall be designed in accordance with the seismic design

    requirements provided inChapters 4 through 13.Detailed sketches for these connections shallbe given in the

    structuraldrawings.

    1.7.3.2 DEFORMATIONCOMPATIBILITY

    Allframingelementsnotrequiredbydesigntobepartofthelateralforceresistingsystem,shallbeinvestigatedand

    showntobeadequateforverticalloadcarryingcapacitywhensubjectedtolateraldisplacementsresultingfromthe

    seismic lateral forces. For designs using working stress methods, this capacity may be determined using an

    allowablestressincreaseof30percent.PDeltaeffectsonsuchelementsshallbeaccountedfor.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    20/25

    Part6

    20

    a. AdjoiningRigidElements : Momentresistingframesmaybeenclosedoradjoinedbymorerigid

    elementswhichwouldtendtoprevent aspaceframefromresistinglateralforceswhereitcanbe

    shownthattheactionorfailureofthemorerigidelementswillnotimpairtheverticalandlateral

    loadresistingabilityofthespaceframe.

    b. ExteriorElements:Exteriornonbearing,nonshearwallpanelsorelementswhichareattachedto

    orenclosetheexterior ofastructure,shallbedesignedtoresisttheforcesaccordingtoSec.2.5.17ofChapter2, if seismic forcesarepresent,and shallaccommodatemovementsof the structure

    resulting from lateral forces or temperature changes. Such elements shall be supported by

    structural members or by mechanical connections and fasteners joining them to structural

    membersinaccordancewiththefollowingprovisions:

    i.

    Connectionsandpaneljointsshallallowforarelativemovementbetweenstoreysofnotless

    than two times thestoreydriftcausedbywind forcesordesign seismic forces,or12mm,

    whicheverisgreater.

    ii. Connections topermitmovement in theplaneof thepanel for storeydrift shallbe either

    slidingconnectionsusingslottedoroversizedholes,connectionswhichpermitmovementby

    bendingofsteel,orotherconnectionsprovidingequivalentslidingandductilitycapacity.

    iii. Bodiesof connectionsshallhavesufficientductilityand rotation capability toprecludeany

    fractureoftheanchoringelementsorbrittlefailuresatornearweldings.

    iv. Bodiesof the connectionshallbedesigned for1.33 times theseismic forcedeterminedby

    Sec.2.5.17ofChapter2,orequivalent.

    v. All fasteners in the connection system, such as bolts, inserts, welds, dowels etc. shall be

    designedfor4timestheforcesdeterminedbySec.2.5.17ofChapter2orequivalent.

    vi.

    Fastenersembeddedinconcreteshallbeattachedto,orhookedaroundreinforcingsteel,or

    otherwiseterminatedsoastotransferforcestothereinforcingsteeleffectively.

    1.7.3.3 TIESANDCONTINUITY

    Allpartsofastructureshallbe interconnected.Theseconnectionsshallbecapableoftransmittingtheprescribed

    lateralforcetothelateralforceresistingsystem.Individualmembers,includingthosenotpartoftheseismicforce

    resisting system, shall be provided with adequate strength to resist the shears, axial forces, and moments

    determined inaccordancewith thisstandard.Connectionsshalldevelopthestrengthoftheconnectedmembers

    andshallbecapableoftransmittingtheseismicforce(Fp)inducedbythepartsbeingconnected.

    1.7.3.4 COLLECTORELEMENTS

    Collector elements shall be provided which are capable of transferring the lateral forces originating in other

    portionsofthestructuretotheelementprovidingtheresistancetothoseforces.

    1.7.3.5 CONCRETEFRAMES

    Whenconcreteframesareprovidedbydesigntobepartofthelateralforceresistingsystem,theyshallconformto

    thefollowingprovisions:

    a) InSeismicZones3and4theseframesshallbedesignedasspecialmomentresistingframes(SMRF).

    b) InSeismicZone2theyshall,asaminimum,beintermediatemomentresistingframes(IMRF).

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    21/25

    Chapter1

    21

    1.7.3.6

    ANCHORAGEOFCONCRETEANDMASONRYSTRUCTURALWALLS

    The concrete and masonry structural walls shall be anchored to supporting construction. The anchorage shall

    provide a positive direct connection between the wall and floor or roof and shall be capable of resisting the

    horizontal forces specified in Secs2.4.13 and 2.5.17,oraminimum forceof4.09 kN/mofwall.Walls shallbe

    designedtoresistbendingbetweenanchorswheretheanchorspacingexceeds1.2m.Inmasonrywallsofhollow

    units or cavity walls, anchors shall be embedded in a reinforced grouted structural element of the wall.Deformationsofthe floorandroofdiaphragmsshallbeconsidered in thedesignof thesupportedwallsand the

    anchorageforcesinthediaphragmsshallbedeterminedinaccordancewithSec1.7.3.9below.

    1.7.3.7

    BOUNDARYMEMBERS

    Speciallydetailedboundarymembers shallbe considered for shearwallsand shearwallelementswhenever their

    designisgovernedbyflexure.

    1.7.3.8 FLOORANDROOFDIAPHRAGMS

    Deflection in theplaneof thediaphragm shallnotexceed thepermissibledeflectionof the attachedelements.

    Permissibledeflection shallbe thatdeflectionwhichwillpermit theattachedelement tomaintain its structural

    integrityundertheindividual loadingandcontinuetosupporttheprescribedloads.Designofdiaphragmsshallalso

    complywiththefollowingrequirements.

    a) DiaphragmForces: Diaphragmsshallbe designedtoresist theseismicforcesgiveninSec2.5or

    forsimilarnonseismiclateralforces,whicheverisgreater.

    b) DiaphragmTies:Diaphragmssupportingconcreteormasonrywallsshallhavecontinuousties,or

    strutsbetween thediaphragm chords todistribute theanchorage forces specified inSec1.7.3.6

    above.Addedchordsmaybeprovidedtoformsubdiaphragmstotransmittheanchorageforcesto

    themaincrossties.

    c) WoodDiaphragms :Wherewooddiaphragmsareused to laterallysupportconcreteormasonry

    walls,theanchorageshallconformtoSec1.7.3.6 above.InseismicZones2,3and4thefollowingrequirementsshallalsoapply:

    i.

    Anchorageshallnotbeaccomplishedbyuseoftoenailsornailssubjecttowithdrawal,

    norshallwoodledgersorframingbeusedincrossgrainbendingorcrossgraintension.

    ii. The continuous ties required by paragraph (b) above, shall be in addition to the

    diaphragmsheathing.

    d) Structureshavingirregularities

    i) ForstructuresassignedtoSeismicDesignCategoryDandhavingaplanirregularityofType

    I,II,III,orIVinTable1.3.3oraverticalstructuralirregularityofTypeIVinTable1.3.2,the

    designforcesdeterminedfromSection2.5.9shallbeincreased25percentforconnectionsofdiaphragms toverticalelementsandtocollectorsand forconnectionsofcollectorsto

    the vertical elements.Collectors and their connections also shall be designed for these

    increased forces unless they are designed for the load combinations with overstrength

    factor.

    ii) For structureshavingaplan irregularityofType II inTable1.3.3,diaphragm chords and

    collectorsshallbedesignedconsideringindependentmovementofanyprojectingwingsof

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    22/25

    Part6

    22

    thestructure.Eachofthesediaphragmelementsshallbedesignedforthemoresevereof

    thefollowingcases:

    1. Motionoftheprojectingwingsinthesamedirection.

    2. Motionoftheprojectingwingsinopposingdirections.

    Exception:

    ThisrequirementmaybedeemedtobesatisfiediftheproceduresofSec2.5.10whenseismicforcesarepresent,in

    conjunctionwithathreedimensionalmodel,havebeenusedtodeterminethelateralseismicforcesfordesign.

    1.7.3.9 FRAMINGBELOWTHEBASE

    Whenstructuralframingscontinuebelowthebase,thefollowingrequirementsshallbesatisfied.

    a.

    FramingbetweentheBaseandtheFoundation: Thestrengthandstiffnessoftheframingbetween

    thebaseandthefoundationshallnotbelessthanthatofthesuperstructure.Thespecialdetailing

    requirementsof Sec8.3or10.20,asappropriate for reinforced concreteor steel, shallapply to

    columns supporting discontinuous lateral force resisting elements and to SMRF, IMRF, and EBF

    systemelementsbelowthebasewhicharerequiredtotransmitthe forcesresulting from lateralloadstothefoundation.

    b. Foundations: The foundation shall be capable of transmitting the design base shear and the

    overturning forces from the superstructure into the supporting soil,but the short termdynamic

    natureof the loadsmaybe taken intoaccount inestablishing thesoilproperties.Sec1.8below

    prescribestheadditionalrequirementsforspecifictypesoffoundationconstruction.

    1.8 FOUNDATIONDESIGNREQUIREMENTS

    1.8.1 GENERAL

    Thedesignandconstructionof foundation, foundationcomponentsandconnectionbetweenthe foundationand

    superstructureshallconformtotherequirementsofthissectionandapplicableprovisionsofChapter3andother

    portionsofthisCode.

    1.8.2 SOILCAPACITIES

    The bearingcapacityofthesoil,orthecapacityofthesoilfoundationsystemincludingfooting,pile,pierorcaisson

    andthesoil,shallbesufficienttosupportthestructurewithallprescribedloads,consideringthesettlementofthe

    structure. For piles, this refers to pile capacity as determined by pilesoil friction and bearing which may be

    determinedinaccordancewiththeprovisionsofChapter3.Fortheloadcombinationincludingearthquake,thesoil

    capacity shallbe sufficient to resist loadsatacceptable strains consideringboth the short time loadingand the

    dynamicpropertiesofthesoil.Thestressandsettlementofsoilunderappliedloadsshallbedeterminedbasedon

    establishedmethodsofSoilMechanics.

    1.8.3 SUPERSTRUCTURE-TO-FOUNDATIONCONNECTION

    Theconnectionofsuperstructureelementstothefoundationshallbeadequatetotransmittothefoundationthe

    forcesforwhichtheelementsarerequiredtobedesigned.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    23/25

    Chapter1

    23

    1.8.4 FOUNDATION-SOILINTERFACE

    For regularbuildings thebaseoverturningmoments for the entire structureor for anyoneof its lateral force

    resisting elements, shall not exceed twothirds of the dead load resisting moment. The weight of the earth

    superimposedoverfootingsmaybeusedtocalculatethedeadloadresistingmoment.

    1.8.5

    SPECIAL

    REQUIREMENTS

    FOR

    FOOTINGS,

    PILES

    AND

    CAISSONS

    IN

    SEISMIC

    ZONES2,3AND4

    1.8.5.1

    PILESANDCAISSONS

    Pilesand caissonsshallbedesigned for flexurewhenever the topof suchmembers isanticipated tobe laterally

    displacedbyearthquakemotions.ThecriteriaanddetailingrequirementsofSec8.3forconcreteandSec10.20for

    steelshallapplyforalengthofsuchmembersequalto120percentoftheflexurallength.

    1.8.5.2 FOOTINGINTERCONNECTION

    a. Footingsandpilecapsshallbecompletely interconnectedbystruttiesorotherequivalentmeans

    torestraintheirlateralmovementsinanyorthogonaldirection.

    b. Thestruttiesorotherequivalentmeansasspecified in(a)above,shallbecapableofresisting in

    tensionorcompressionaforcenotlessthan10%ofthelargerfootingorcolumnloadunlessitcan

    bedemonstratedthatequivalentrestraintcanbeprovidedbyfrictionalandpassivesoilresistance

    orbyotherestablishedmeans.

    1.8.6 RETAININGWALLDESIGN

    Retainingwallsshallbedesignedtoresistthelateralpressureoftheretainedmaterial,underdrainedorundrained

    conditions and including surcharge, in accordance with established engineering practice. For such walls, the

    minimumfactorofsafetyagainstbaseoverturningandslidingduetoappliedearthpressureshallbe1.5.

    1.9

    DESIGNAND

    CONSTRUCTION

    REVIEW

    Everybuildingorstructuredesignedshallhaveitsdesigndocumentspreparedinaccordancewiththeprovisionsof

    Sec1.9.1.Theminimumrequirementsfordesignreviewandconstructionobservationshallbethosesetforthunder

    Sec1.9.2and1.9.3respectively.

    1.9.1 DESIGNDOCUMENT

    Thedesigndocumentsshallbepreparedandsignedby theengineer responsible for thestructuraldesignofany

    building or structure intended for construction. The design documents shall include a design report, material

    specificationsandasetofstructuraldrawings,whichshallbepreparedincompliancewithSec1.9.2and1.9.3below

    forsubmittaltotheconcernedauthority.Forthepurposeofthisprovision,theconcernedauthorityshallbeeither

    personsfromthegovernmentapprovalagencyfortheconstruction,ortheownerofthebuildingorthestructure,or

    oneofhisrepresentatives.

    1.9.2 DESIGNREPORT

    Thedesignreportshallcontainthedescriptionofthestructuraldesignwithbasicdesign informationasprovided

    below,sothatanyotherstructuraldesignengineerwillbeabletoindependently verifythedesignparametersand

    themembersizesusingthesebasicinformation.Thedesignreportshallinclude,butnotbelimitedto,thefollowing

    :

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    24/25

    Part6

    24

    a) Nameand governing editionof thisCodeandother referenced standards, and the specific

    portions, stating chapter, section, clause etc. of these Code and standards including any

    specialistreportusedforthestructuraldesign.

    b) Methodsusedforthecalculationofallapplied loadsalongwith basic loadcoefficientsand

    other basic information including any assumption or judgment made under special

    circumstances.

    c) Adrawingof the completemathematicalmodelprepared inaccordancewithSec1.2.7.1 to

    represent the structureand showingon it thevalues, locationsanddirectionsofallapplied

    loads,andlocationofthelateralloadresistingsystemssuchasshearwalls,bracedframesetc.

    d) Methodsofstructuralanalysis,andresultsoftheanalysissuchasshear,moment,axialforce

    etc., used for proportioning various structural members and joints including foundation

    members.

    e) Methods of structural design including types and strengthof thematerialsof construction

    usedforproportioningthestructuralmembers.

    f)

    Reference of the soil report or any other documents used in the design of the structure,foundationorcomponentsthereof.

    g) Statementsupportingthevalidityoftheabovedesigndocumentswithdateandsignatureof

    theengineerresponsibleforthestructuraldesign.

    h)

    When computer programs are used, to any extent, to aid in the analysis or design of the

    structure,thefollowing items,inadditiontoitems(a)through(g)above,shallberequiredto

    beincludedinthedesignreport:

    i.

    Asketchofthemathematicalmodelusedtorepresentthestructure inthecomputer

    generatedanalysis.

    ii.

    Thecomputer

    output

    containing

    the

    date

    of

    processing,

    program

    identification,

    identificationofstructuresbeinganalysed,all inputdata,unitsand final results.The

    computer input data shall be clearly distinguished from those computed in the

    program.

    iii.

    Aprogramdescription containing the informationnecessary toverify the inputdata

    and interpret the results todetermine thenatureandextentof theanalysisand to

    checkwhetherthecomputationscomplywiththeprovisionsofthisCode.

    iv.

    Thefirstsheetofeachcomputerrunshallbesignedbytheengineerresponsibleforthe

    structuraldesign.

    1.9.3

    STRUCTURAL

    DRAWINGS

    AND

    MATERIAL

    SPECIFICATIONS

    Thestructuraldrawingsshallinclude,butnotbelimitedto,thefollowing:

    a)

    Thefirstsheetshallcontain:(1)identificationoftheprojecttowhichthebuildingorthestructure,

    orportionthereofbelongs,(2)referencetothedesignreportspecifiedinSec1.9.2above,(3)date

    ofcompletionofdesign,and(4)identificationandsignaturewithdateoftheengineerresponsible

    forthestructuraldesign.

  • 8/11/2019 Part 6-Chap 1_26-08-2012 of bnbc

    25/25

    Chapter1

    b) The secondsheetshall containdetailmaterial specificationsshowing : (1)Specified compressive

    strengthofconcreteat statedagesor stagesof construction forwhicheachpartofstructure is

    designed (2)Specified strengthor gradeof reinforcement (3)Specified strengthofprestressing

    tendonsorwires(4)Specifiedstrengthorgradeofsteel(5)Specifiedstrengthsforbolts,weldsetc.

    (6) Specified strength of masonry, timber, bamboo, ferrocement (7) Minimum concrete

    compressivestrengthattimeofposttensioning(8)Stressingsequenceforposttensioningtendons

    (9)Generalnotes indicating clear cover, development lengthsof reinforcements,oranyother

    design parameter relevant to the member or connection details provided in drawings to be

    followed,asapplicable,and(10)identificationandsignaturewithdateoftheengineerresponsible

    forthestructuraldesign.

    c)

    Drawing sheets,other than the first two, shall include structural detailsof theelementsof the

    structure clearly showing all sizes, crosssections and relative locations, connections,

    reinforcements, laps, stiffeners,welding types, lengthsand locationsetc.whichever isapplicable

    foraparticularconstruction. Floor levels, columncentresandoffsetetc.,shallbedimensioned.

    Camber of trusses and beams, if required, shall be shown on drawings. For bolt connected

    members,connectiontypessuchasslip,critical,tensionorbearingtype,shallbeindicatedonthe

    drawing.

    d) Drawingsshallbepreparedtoascalelargeenoughtoshowtheinformationclearlyandthescales

    shallbemarkedonthedrawingsheets.Ifanyvariationfromthedesignspecificationsprovided in

    sheettwooccurs, thedrawingsheet shallbeprovidedadditionallywiththedesignspecifications

    includingmaterialtypesandstrength,clearcoveranddevelopment lengthsofreinforcements,or

    anyotherdesignparameterrelevanttothememberorconnectiondetailsprovidedinthatdrawing

    sheet.Eachdrawingsheetshallalsocontainthesignaturewithdateoftheengineerresponsiblefor

    thestructuraldesign.

    1.9.4 DESIGNREVIEW

    ThedesigndocumentsspecifiedinSec1.9.1shallbeavailableforreviewwhenrequiredbytheconcernedauthority.

    Reviewshallbeaccomplishedbyan independentstructuralengineerqualified forthistaskandappointedbythe

    concernedauthority.Designreviewshallbeperformedthroughindependentcalculations,basedontheinformation

    provided in thedesigndocumentsprepared and signedby theoriginal structuraldesign engineer, to verify the

    designparameters includingapplied loads,methodsofanalysisanddesign,andfinaldesigndimensionsandother

    detailsofthestructuralelements.Thereviewingengineershallalsocheckthesufficiencyandappropriatenessof

    thesuppliedstructuraldrawingsforconstruction.

    1.9.5 CONSTRUCTIONOBSERVATION

    Construction observation shall be performed by a responsible person who will be a competent professional

    appointedbytheownerofthebuildingorthestructure.Constructionobservationshallinclude,butnotbelimited

    to,thefollowing:

    a.

    Specificationofanappropriatetestingand inspectionschedulepreparedandsignedwithdateby

    theresponsibleperson;

    b.

    Reviewoftestingandinspectionreports;and

    c. Regular site visit to verify the general compliance of the constructionworkwith the structural

    drawingsandspecificationsprovidedinSec1.9.3above.


Recommended