+ All Categories
Home > Documents > Part I Assessment of BTP 5-3 Protocols - Public Meeting on February 19, 2015. · 2021. 1. 28. ·...

Part I Assessment of BTP 5-3 Protocols - Public Meeting on February 19, 2015. · 2021. 1. 28. ·...

Date post: 07-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
20
Assessment of BTP 53 Protocols Mark Kirk Senior Materials Engineer RES/DE/CIB [email protected] Public Mee4ng on Reactor Pressure Vessel Issues 19 th February 2015 Rockville, Maryland, USA
Transcript
  • Assessment  of  BTP  5-‐3  Protocols  

     Mark  Kirk      Senior  Materials  Engineer  

     RES/DE/CIB    [email protected]      

             

    Public  Mee4ng  on  Reactor  Pressure  Vessel  Issues  19th  February  2015  Rockville,  Maryland,  USA  

  • •  Review  of  defini4ons  &  es4mates  of  –  Un-‐Irradiated  RTNDT  

    (RTNDT(u))    –  Un-‐Irradiated  Upper  

    Shelf  Energy  (USE)  

    •  Background  of  ques4ons  concerning  BTP  5-‐3  

    •  Summary  of  recent  report    –  IS:  An  analysis  of  Charpy  

    &  NDT  data  to  •  Assess  non-‐

    conserva4sm  or  conserva4sm  

    •  Develop  adjustment  factors  

    –  IS  NOT:  An  assessment  of  plant  impact  

    TLR-‐RES/CE/CIB/2014-‐011  •  Report  completed  in  December  •  Review  completed  in  February  •  Plan  to  issue  in  ≈March  

    Outline  of  PresentaFon  

    Slide  #2  

  • TemperatureNDT is the lowest temperature of “no-break” performance

    No-Break: Fracture (darkened region) does not extend to the sides of the specimen

    Break: Crack completely severs tension surface of specimen.

    Temperature

    Ener

    gy A

    bsor

    bed

      { }60, 50/35 −= TTMAXRT NDTNDT(u)

    Specimens  notched  transverse  to  RD  DefiniFons  

    per  ASME  NB-‐2331  

    per  ASTM  E185-‐82  

    USE ≡ average of all energies > 95% shear

    per  ASTM  E208  

    NDTT:  highest  “break”  temperature  if  two“no-‐breaks”  measured  10  oF  higher    

    Slide  #3  

  • RTNDT(u)  &  USE  EsFmated  by  NUREG-‐0800  BTP  5-‐3  

      { }60, 50/35 −= TTMAXRT NDTNDT(u)

    USE ≡ average of all energies > 95% shear

    PosiFon  1.2  

    PosiFons  1.1(1)  &  1.1(2)  

    PosiFon  1.1(3)  

    PosiFon  1.1(4)  

    ApproximaFons  

    Slide  #4  

  • RTNDT(u)  &  USE  EsFmated  by  NUREG-‐0800  BTP  5-‐3  

      { }60, 50/35 −= TTMAXRT NDTNDT(u)

    USE ≡ average of all energies > 95% shear

    PosiFon  1.2  

    PosiFons  1.1(1)  &  1.1(2)  

    PosiFon  1.1(3)  

    PosiFon  1.1(4)  

    ApproximaFons  

    TLR-‐RES/CE/CIB/2014-‐011  •  Assesses  &  provides  

    adjustments  for  all  posi4ons  •  Focus  today  on  1.1(3)  &  1.2  

    –  We  have  found  these  applied  in  analyses  of  plants  

    Slide  #5  

  • Background  of  QuesFons  Concerning  BTP  5-‐3  

    BTP  5.3  states    

    “NRC  requirements  regarding  fracture  toughness,  pressure-‐temperature  limits,  material  surveillance,  and  pressurized  thermal  shock  (PTS)  (PWR  only)  are  contained  in  Appendices  A,  G,  and  H  to  10  CFR  Part  50  and  in  10  CFR  50.61;  these  requirements  also  refer  to  relevant  secTons  of  the  ASME  Code.  The  purpose  of  this  branch  technical  posiTon  is  to  summarize  these  requirements  and  provide  guidance,  as  necessary.    Since  many  of  these  requirements  were  not  in  force  when  some  plants  were  designed  and  built,  this  posiTon  also  provides  guidance  for  applying  these  requirements  to  older  plants.  Also  included  is  a  descripTon  of  acceptable  procedures  for  making  the  conserva:ve  esTmates  and  assumpTons  for  older  plants  that  may  be  used  to  show  compliance  with  the  new  requirements.”  

    Slide  #6  

  • •  AREVA  Le^er  (30  Jan  2014,  AREVA  Ref.  NRC:14:004)  &  PVP  Paper  (PVP2014-‐28897)  claim  Posi4on  1.1(4)  of  BTP  5.3  is  some4mes  non-‐conserva4ve  for  A508-‐2  forgings  

    •  Literature  search  reveals  1983  EG&G  report  &  1985  IJPVP  paper  –  Evalua4on  of  BTP  5-‐3  (then        

    MTEB  5-‐2)  for  NRC  –  Conclusions  

    •  Always  conserva4ve  –  Posi4on  1.1(1):  es4mates  TNDT  –  Posi4on  1.1(2):  es4mates  TNDT    

    •  Some4me  non-‐conserva4ve  –  Posi4on  1.1(3):  es4mates  TCVE(50/35)  –  Posi4on  1.1(4):  es4mates  RTNDT  –  Posi4on  1.2:    es4mates  USE  

    Background  of  QuesFons  Concerning  BTP  5-‐3  

    Slide  #7  

  • •  AREVA  Le^er  (30  Jan  2014,  AREVA  Ref.  NRC:14:004)  &  PVP  Paper  (PVP2014-‐28897)  claim  Posi4on  1.1(4)  of  BTP  5.3  is  some4mes  non-‐conserva4ve  for  A508-‐2  forgings  

    •  Literature  search  reveals  1983  EG&G  report  &  1985  IJPVP  paper  –  Evalua4on  of  BTP  5-‐3  (then        

    MTEB  5-‐2)  for  NRC  –  Conclusions  

    •  Always  conserva4ve  –  Posi4on  1.1(1):  es4mates  TNDT  –  Posi4on  1.1(2):  es4mates  TNDT    

    •  Some4me  non-‐conserva4ve  –  Posi4on  1.1(3):  es4mates  TCVE(50/35)  –  Posi4on  1.1(4):  es4mates  RTNDT  –  Posi4on  1.2:    es4mates  USE  

    Background  of  QuesFons  Concerning  BTP  5-‐3  

    Slide  #8  

  • •  Assembled  database  from  USA  surveillance  reports  (now  stored  in  REAP  database).    Data  sets  consist  of    –  NDTT  data  –  Full  transverse  Charpy  curve  –  Full  longitudinal  Charpy  curve  

    •  Having  all  of  the  data  needed  to  define  –  TNDT  –  T35/50  –  RTNDT(u)  –  USE  permits  assessment  of  the  conserva4sm,  or  lack  thereof,  in  the  BTP  5-‐3  es4mates  

    Staff  Assessment  TLR-‐RES/CE/CIB/2014-‐011  

    Forging:(A508-2(Forging:(A508-3(Plate:(A302B(Plate:(A533B(

    59  Data  Sets  Total  

    Slide  #9  

  • •  In  this  study,  “conserva4ve”  defined  as  a  2σ  bound  (±  as  appropriate)  to  the  data  –  Consistent  with  RG  1.99  

    defini4ons  

    •  All  BTP  5-‐3  posi4ons  found  to  be  non-‐conserva4ve  

    •  Degree  of  non-‐conserva4sm  –  Depends  on  product  form  –  Depends  on  method  of  

    calcula4on  in  addi4on  to  the  cited  BTP  “Posi4on”  

    •  The  similar  “GE  Method”  was  also  assessed  

    Preview  of  Results  Details  Follow    

    0%#

    20%#

    40%#

    60%#

    80%#

    100%#

    1.1(1&

    2)'

    1.1(3a)'

    1.1(3b

    )'

    1.1(4a)'

    1.1(4b

    )'

    1.2'

    %'of'D

    ata'Non

    3Con

    serva9

    vely'

    Pred

    icted'

    BTP'5.3'Posi9on'

    Plate'Forging'

    65%  

    65%  

    +20oF  

    Slide  #10  

  • QuotaFon  If  transversely-‐oriented  Charpy  V-‐notch  specimens  were  not  tested,  the  temperature  at  which  68  J  (50  h-‐lbs)  and  0.89  mm  (35  mils)  LE  would  have  been  obtained  on  transverse  specimens  may  be  es4mated  by  one  of  the  following  criteria:  

    –  Test  results  from  longitudinally-‐oriented  specimens  reduced  to  65%  of  their  value  to  provide  conserva4ve  es4mates  of  values  expected  from  transversely  oriented  specimens.  

    –  Temperatures  at  which  68  J  (50  h-‐lbs)  and  0.89  mm  (35  mils)  LE  were  obtained  on  longitudinally-‐oriented  specimens  increased  11  °C  (20  °F)  to  provide  a  conserva4ve  es4mate  of  the  temperature  that  would  have  been  necessary  to  obtain  the  same  values  on  transversely-‐oriented  specimens.  

    PosiFon  1.1(3)  

    EquaFons  

    ! ! !"&$! = ! ! !"&$! + 20!°F

    ! ! !"&$! = ! !"!.!" !"&$!

    TransiFon  temperatures  based  on  mean  tanh  curves    

    Slide  #11  

  • PosiFon  1.1(3)[a],  65%  Comparison  to  Data  

    !100$

    !50$

    0$

    50$

    100$

    150$

    !100$ !50$ 0$ 50$ 100$ 150$ 200$

    Tran

    sverse(T

    50&35(([

    o F](

    T50&35(from(Longitudinal(CVEx0.65([oF](

    Plate(Upper(Bound(T(T)50&35(=(0.53(x(T(Lx0.65)50&35(+(44(

    Forging:(A508L2(Forging:(A508L3(Plate:(A533BL1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5L3([1.1(3a):(x0.65](Mean(of(Data(2(Sigma(Upper(Bound(of(Data(

    !100$

    !50$

    0$

    50$

    100$

    150$

    !100$ !50$ 0$ 50$ 100$ 150$ 200$

    Tran

    sverse(T

    50&35(([

    o F](

    T50&35(from(Longitudinal(CVEx0.65([oF](

    Forging(Upper(Bound(T(T)50&35(=(0.99(x(T(Lx0.65)50&35(+(77(

    Forging:(A508L2(Forging:(A508L3(Plate:(A533BL1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5L3([1.1(3a):(x0.65](Mean(of(Data(2(Sigma(Upper(Bound(of(Data(

    Slide  #12  

  • PosiFon  1.1(3)[a],  65%  DistribuFon  of  EsFmaFon  Errors  

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    -60# -40# -20# 0# 20# 40# 60# 80# 100# 120# 140#

    Cumula&

    ve)Proba

    bility)

    T50&35(T))8)T50&35)from)Longl.)CVE)x)0.65))[oF])

    21%)of)data)non8conserva&vely)predicted)by)BTP)583)

    Forging:)A50882)

    Forging:)A50883)

    Plate:)A533B81)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)583)[1.1(3a):)x0.65])

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    -60# -40# -20# 0# 20# 40# 60# 80# 100# 120# 140#

    Cumula&

    ve)Proba

    bility)

    T50&35(T))8)T50&35)from)Longl.)CVE)x)0.65))[oF])

    48%)of)data)non8conserva&vely)predicted)by)BTP)583)

    Forging:)A50882)

    Forging:)A50883)

    Plate:)A533B81)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)583)[1.1(3a):)x0.65])

    Slide  #13  

  • PosiFon  1.1(3)[b],  +20  oF  Comparison  to  Data  

    !100$

    !50$

    0$

    50$

    100$

    150$

    !100$ !50$ 0$ 50$ 100$ 150$ 200$

    Tran

    sverse(T

    50&35(([

    o F](

    Longitudinal(T50&35(([oF](

    Plate(Upper(Bound(T(T)50&35(=(0.65(x(T(L)50&35(+(62(

    Forging:(A508G2(Forging:(A508G3(Plate:(A533BG1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5G3([1.1(3b):(+20F](Mean(of(Data(2(Sigma(Upper(Bound(of(Data(

    !100$

    !50$

    0$

    50$

    100$

    150$

    !100$ !50$ 0$ 50$ 100$ 150$ 200$

    Tran

    sverse(T

    50&35(([

    o F](

    Longitudinal(T50&35(([oF](

    Forging(Upper(Bound(T(T)50&35(=(0.70(x(T(L)50&35(+(115(

    Forging:(A508F2(Forging:(A508F3(Plate:(A533BF1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5F3([1.1(3b):(+20F](Mean(of(Data(2(Sigma(Upper(Bound(of(Data(

    Slide  #14  

  • PosiFon  1.1(3)[a],  +20  oF  DistribuFon  of  EsFmaFon  Errors  

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    -60# -40# -20# 0# 20# 40# 60# 80#

    Cumula&

    ve)Proba

    bility)

    Transverse)4)Longitudinal)T50&35))[oF])

    66%)of)data)non4conserva&vely)predicted)by)BTP)543)

    Forging:)A50842)

    Forging:)A50843)

    Plate:)A533B41)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)543)[1.1(3b):)+20F])

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    -60# -40# -20# 0# 20# 40# 60# 80# 100# 120# 140#

    Cumula&

    ve)Proba

    bility)

    Transverse)4)Longitudinal)T50&35))[oF])

    57%)of)data)non4conserva&vely)predicted)by)BTP)543)

    Forging:)A50842)

    Forging:)A50843)

    Plate:)A533B41)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)543)[1.1(3b):)+20F])

    Slide  #15  

  • PosiFon  1.2  

    EquaFon  

    USE  based  on  mean  tanh  curve  

    !"# ! = 0.65!×!!"# !

    QuotaFon  For  the  beltline  region  of  reactor  vessels,  the  upper  shelf  toughness  must  account  for  the  effects  of  neutron  radia4on.  Reactor  vessel  beltline  materials  must  have  Charpy  upper  shelf  energy,  in  the  transverse  direc4on  for  base  material  and  along  the  weld  for  weld  material  according  to  the  ASME  Code,  of  no  less  than  102  J  (75  h-‐lbs)  ini4ally  and  must  maintain  Charpy  upper  shelf  energy  throughout  the  life  of  the  vessel  of  no  less  than  68  J  (50  h-‐lbs).    

    If  Charpy  upper  shelf  energy  values  were  not  obtained,  conserva4ve  es4mates  should  be  made  using  results  of  tests  on  specimens  from  the  first  surveillance  capsule  removed.    

    If  tests  were  only  made  on  longitudinal  specimens,  the  values  should  be  reduced  to  65%  of  the  longitudinal  values  to  es4mate  the  transverse  proper4es.    

    Slide  #16  

  • PosiFon  1.2,  65%  Comparison  to  Data  

    0"

    50"

    100"

    150"

    200"

    0" 50" 100" 150" 200"

    Tran

    sverse(USE(([-.lb](

    Longitudinal(USE(([-.lb](

    Plate(Lower(Bound:((USE(T)(=(0.5937(x(USE(L)(.(3.157(

    Forging:(A508.2(Forging:(A508.3(Plate:(A533B.1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5.3([1.2:(65%](Mean(of(Data(2(Sigma(Lower(Bound(of(Data(

    0"

    50"

    100"

    150"

    200"

    0" 50" 100" 150" 200"

    Tran

    sverse(USE(([-.lb](

    Longitudinal(USE(([-.lb](

    Forging(Lower(Bound:((USE(T)(=(1.435(x(USE(L)(.(135.6(Forging:(A508.2(Forging:(A508.3(Plate:(A533B.1(Plate:(A302B(Plate:(A302B(Mod)(BTP(5.3([1.2:(65%](Mean(of(Data(2(Sigma(Lower(Bound(of(Data(

    Slide  #17  

  • PosiFon  1.2,  65%  DistribuFon  of  EsFmaFon  Errors  

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2#

    Cumula&

    ve)Proba

    bility)

    Transverse)USE)/)Longitudinal)USE)

    13%)of)data)non?conserva&vely)predicted)by)BTP)5?3)

    Forging:)A508?2)

    Forging:)A508?3)

    Plate:)A533B?1)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)5?3)[1.2:)65%])

    0.0#

    0.1#

    0.2#

    0.3#

    0.4#

    0.5#

    0.6#

    0.7#

    0.8#

    0.9#

    1.0#

    0.0# 0.1# 0.2# 0.3# 0.4# 0.5# 0.6# 0.7# 0.8# 0.9# 1.0#

    Cumula&

    ve)Proba

    bility)

    Transverse)USE)/)Longitudinal)USE)

    33%)of)data)non>conserva&vely)predicted)by)BTP)5>3)

    Forging:)A508>2)

    Forging:)A508>3)

    Plate:)A533B>1)

    Plate:)A302B)

    Plate:)A302B(Mod))

    All)

    BTP)5>3)[1.2:)65%])

    Slide  #18  

  • Proposed  Adjustments  

    !60$

    !30$

    0$

    30$

    60$

    90$

    120$

    150$

    !50$ 0$ 50$ 100$ 150$ 200$

    Adjustmen

    t*(ad

    di.o

    n)*to

    *make*es.m

    ate*a*2σ

    *bou

    nd**

    [oF]*

    Current*T(T)50&35*Es.mate**[oF]*

    BTP*5A3*Posi.on*1.1(3a)*[65%]:*Plates*

    BTP*5A3*Posi.on*1.1(3b)*[+20F]:*Plates*

    BTP*5A3*Posi.on*1.1(3a)*[65%]:*Forgings*

    BTP*5A3*Posi.on*1.1(3b)*[+20F]:*Forgings*

    !50$

    !40$

    !30$

    !20$

    !10$

    0$

    10$

    0$ 25$ 50$ 75$ 100$ 125$ 150$

    Adjustm

    ent*(add

    i.on

    )*to*

    make*BT

    P*es.mate*a*2σ

    *lower*bou

    nd**[;

  • •  All  BTP  posi4ons  non-‐conserva4ve,  in  varying  degrees  –  Depends  on  method  &  product  form  

    •  Analysis  provides  adjustment  factors  to  support  on-‐going  plant-‐specific  impact  assessments  

    •  Only  Posi4ons  1.1(3)  &  1.2  discussed  here  –  Seen  in  plant  applica4ons  –  Report  will  discuss  all  Posi4ons  

    •  Consider  any  impact  of  informa4on  shared  by  industry  on  these  results  

    •  Expect  to  issue  BTP  report  publically  in  about  a  month  

    •  A  report  on  similar  “GE  Method”  will  also  be  issued,  may  be  non-‐public  

    Summary  

    0%#

    20%#

    40%#

    60%#

    80%#

    100%#

    1.1(1&

    2)'

    1.1(3a)'

    1.1(3b

    )'

    1.1(4a)'

    1.1(4b

    )'

    1.2'

    %'of'D

    ata'Non

    3Con

    serva9

    vely'

    Pred

    icted'

    BTP'5.3'Posi9on'

    Plate'Forging'

    65%  

    65%  

    +20oF  

    Slide  #20  


Recommended