+ All Categories
Home > Documents > Part V Book-Ending Sections - Springer978-3-540-76884-5/1.pdf · 3.15 LM394:NF e vs. source...

Part V Book-Ending Sections - Springer978-3-540-76884-5/1.pdf · 3.15 LM394:NF e vs. source...

Date post: 11-Nov-2018
Category:
Upload: vohuong
View: 214 times
Download: 0 times
Share this document with a friend
23
Part V Book-Ending Sections
Transcript

Part VBook-Ending Sections

List of Figures

1.1 From groove to ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 RIAA transfer relative to 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Type 1 phono-amp – basic circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Type 2 phono-amp – basic circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Type 3 phono-amp – basic circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 VR cutting process with Anti-RIAA transfer function ARIAA( f ) . . . . . 102.2 Anti-RIAA transfer function AR( f ) (= ARIAA( f ) referenced to

0 dB/1 kHz) used to encode the signal on the VR . . . . . . . . . . . . . . . . . . . 102.3 Cartridge-amplifier chain with decoding elements to perform the

RIAA transfer function RIAA( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.4 Decoding transfer function R( f ) (= RIAA( f ) referenced to

0 dB/1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.5 Plot of all three transfers: AR( f ) + R( f ) = output( f ) . . . . . . . . . . . . . . . 112.6 MathCad calculated deviation dev( f ) [dB] versus frequency: exact

RIAA transfer minus actual transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.7 Creation of Fig. 2.8: pSpice simulation schematic to perform

a deviation plot between exact RIAA transfer (output voltage u1) andactual RIAA transfer (output voltage u2) . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 pSpice (MicroSim v8.0) simulated deviation [dB] versus frequency:exact RIAA transfer minus actual transfer . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Amplifier with equivalent noise sources eN.amp( f ) and iN.amp( f ) andsignal source u0( f ) and noise of source resistance eN.RS . . . . . . . . . . . . . 19

3.2 OP27 spectral voltage noise density3 with corner frequency fce . . . . . . . 193.3 OP27 spectral current noise density4 with corner frequency fci . . . . . . . . 203.4 Equivalent circuits for thermal noise (Johnson) in resistors . . . . . . . . . . . 213.5 Noise voltage sources sequence-connected . . . . . . . . . . . . . . . . . . . . . . . . 223.6 Noise voltage sources parallel-connected . . . . . . . . . . . . . . . . . . . . . . . . . . 223.7 Noise current sources parallel-connected . . . . . . . . . . . . . . . . . . . . . . . . . . 233.8 Noise current sources sequence-connected . . . . . . . . . . . . . . . . . . . . . . . . . 24

329

330 List of Figures

3.9 Paralleling of n active devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.10 Sequence of two amplifying devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.11 Real life situation of a sequence of two amplifying stages or of two

separate amps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.12 Noise figures of the low-noise transistor 2SC2546 NF vs. source

resistance and collector current10 at three different frequencies . . . . . . . . 293.13 OP27: NFe vs. source resistance RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.14 OP27: total noise vs. source resistance5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.15 LM394: NFe vs. source resistance and collector current6 . . . . . . . . . . . . . 323.16 SSM2210: total noise vs. source resistance7 . . . . . . . . . . . . . . . . . . . . . . . 323.17 Resistor spectral noise voltage density (R = 100 k, DC-voltage across

R = 100 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.18 General BJT noise model for the audio band . . . . . . . . . . . . . . . . . . . . . . . 373.19 a) BJT noise model with equivalent noise sources, b) simplified model . 373.20 2SC2546 noise voltage eN.T vs. collector current IC . . . . . . . . . . . . . . . . . 393.21 2SC2546 noise current iN.T vs. collector current IC . . . . . . . . . . . . . . . . . . 393.22 BJT plus source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.23 Low-noise BJT (stage 1) to improve noise performance of the

following amp (stage 2): a as a stand alone stage, b inside the overallnegative feedback loop of that op-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.24 Long-tailed pair of 2 low-noise BJTs (stage 1) to improve noiseperformance of the following amp (stage 2), situated inside the overallnegative feedback loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.25 T/S approach for a low-noise CE BJT stage . . . . . . . . . . . . . . . . . . . . . . . . 483.26 Transistor 1st stage in CE configuration with voltage and current

feedback à la Douglas Self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.27 Noise model of a BJT in a CE configured gain stage . . . . . . . . . . . . . . . . 513.28 McCormick rbb′ measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.29 Equivalent input noise voltage of 2SK170 . . . . . . . . . . . . . . . . . . . . . . . . . 563.30 NF for 2SK170 versus source resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 573.31 NF for 2SK170 versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.32 JFET: a Small-signal noise model, b simplified version . . . . . . . . . . . . . 583.33 Forward transfer admittance of a low-noise JFET 2SK1708 . . . . . . . . . . 583.34 NFe of 2SC2546 at IC = 100 µA (= NFe.2sc1 = – the top-plot at 10 R)

NFe of 2SC2546 at IC = 10 µA (= NFe.2sc2 = – thebottom-plot at 10 R)

NFe of 2SK170 at ID = 10 µA (= NFe.2sk = – the mid-plotat 10 R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.35 JFET gain stage in CS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.36 JFET gain stage with all relevant capacitances . . . . . . . . . . . . . . . . . . . . . 653.37 Equivalent circuit of Fig. 3.36 including its Miller capacitance . . . . . . . . 653.38 Cascoded JFET input stage a and alternative for R3 b . . . . . . . . . . . . . . . 673.39 Draft for a lowest-noise all-FET MM phono-amp . . . . . . . . . . . . . . . . . . . 703.40 Simplified audio band equivalent noise source model for a triode . . . . . . 713.41 Triode gain stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

List of Figures 331

3.42 Triode gain stage of Fig. 3.41 with all relevant noise sources andvoltage dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.43 Principal SRPP circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.44 NFe vs. R0 of the gain stage of Fig. 3.41 – un-bypassed (u) and

bypassed (b) version – referenced to an input voltage of 5 mVrms/1 kHz 833.45 SNne vs. R0 of the gain stage of Fig. 3.41 – un-bypassed (u) and

bypassed (b) version – referenced to an input voltage of 5 mVrms/1 kHz 833.46 Quad 24P distortion measurement46 for the MM input showing noise

floor and distortion artefacts ≥2 kHz as well as heavy mains influenceup to 2 kHz at 50 Hz, 150 Hz, 250 Hz, etc. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.47 Like Fig. 3.4647 for the MC input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.48 OP-amp in a series (non-inverting) configuration . . . . . . . . . . . . . . . . . . . 873.49 OP-amp in a shunt (inverting) configuration with virtual earth at point A 873.50 Op-amp series configuration with all meaningful noise sources . . . . . . . 883.51 Op-amp shunt configuration with all meaningful noise sources . . . . . . . . 903.52 NFe of series (solid trace) and shunt (dotted trace) op-amp configuration 913.53 SNne of series (solid trace) and shunt (dotted trace) op-amp

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923.54 OP-amp equivalent noise voltage situation in a shunt configured

op-amp in a and its evolution for R2 = 0 R in b . . . . . . . . . . . . . . . . . . . . . 933.55 Non-inverting op-amp gain stage with single ended input, with gain

setting impedances R1 & R2 and input resistance Rin . . . . . . . . . . . . . . . . 943.56 Op-amp configured as a in-amp in balanced mode with gain setting

impedances R3 & R4 and input resistances R1 resp. R2 on each input . . . 943.57 In-amp configured as a balanced gain stage with only one gain setting

resistor RG and input resistances R1 resp. R2 on each input. Outputphase can be set by transposing the source leads . . . . . . . . . . . . . . . . . . . . 94

3.58 In-amp configured as a single ended gain stage with one gain settingresistor RG and input resistance R1. Output phase is inverted. With R1

at the (+) input and ground at the (−) input the output phase will benon-inverted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.59 In-amp noise model with two different input sources . . . . . . . . . . . . . . . . 953.60 Simplified in-amp noise model for two equal input sources = input

configuration version 1 (rt2 =√

2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973.61 Noise model of a in-amp with floating (balanced) input source =

input configuration version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983.62 Noise model of a in-amp with un-balanced input source = input

configuration version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.63 Typical in-amp gain stage with floating input load and grounded

biasing input resistors R1, R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.64 In-amp gain stage with grounded input source . . . . . . . . . . . . . . . . . . . . . . 1003.65 NF of circuits of Figs. 3.63 . . . 3.64 with gain of 1000 . . . . . . . . . . . . . . 1013.66 SN of circuits of Figs. 3.63 . . . 3.64 with gain of 1000 . . . . . . . . . . . . . . . 1013.67 NF of circuits of Figs. 3.63 . . . 3.64 with gain of 10 . . . . . . . . . . . . . . . . 1013.68 SN of circuits of Figs. 3.63 . . . 3.64 with gain of 10 . . . . . . . . . . . . . . . . . 101

332 List of Figures

3.69 Basic in-amp IC topology type 1 (special audio in-amp)9 . . . . . . . . . . . . 1023.70 Basic in-amp IC topology type 2 (instrumentation amp)10 . . . . . . . . . . . . 1033.71 Draft design of a lowest-noise MC phono-amp with balanced input . . . . 1043.72 NFe for the in-amp draft design (THAT 300: dotted, THAT 320: solid) . 1053.73 SNne for the in-amp draft design (THAT 300: dotted, THAT 320: solid) . 1053.74 Step-up transformer for MC cartridge purposes connected to a MM

phono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063.75 Frequency (left) and phase response (right) of a high-quality step-up

transformer with a turns ratio of 1:1263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073.76 Impedance transfer with a transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083.77 Ideal amp1 input situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083.78 Equivalent circuit for amp1’s input situation = re-designed Fig. 3.77

step 2a: Rin transferred to the input side of the trafostep 2b: R0 and u0 transferred to the output side of the trafo . . . . . . . . . . 109

3.79 Real situation of a source u0 connected to amp1 via transformer Tr1;step 1: situation with ideal transformer Tr1 plus it’s coil resistancesRp and Rs; step 2: transfer into an equivalent circuit . . . . . . . . . . . . . . . . . 110

3.80 Total equivalent noise voltage density vs. R0 at the input of Tr1

(created with Eq. (3.282)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133.81 Signal-to-Noise-ratio SNariaa(R0) vs. R0 in B20 k with reference

to the nominal input voltage ein.nom = 0.5 mVrms/1 kHz of thetransformer-amp1-chain (created with Eq. (3.288)) . . . . . . . . . . . . . . . . . 113

3.82 SN-result deltas of the two approaches 1&2 for transformer coupledamp inputs with changing input load R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.83 Input load Rin.tot of amp1 vs. R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163.84 Ropt vs. IC for various hFE values:

• Ropt1(IC) for hFE = 800 (2SC2546F, rbb′ = 13 R74)• Ropt2(IC) for hFE = 600 (2SC2546E, rbb′ = 13 R74)• Ropt3(IC) for hFE = 154 (2SC2546D, rbb′ = 13 R74)• Ropt4(IC) for hFE = 63 (1/4 THAT 320, rbb′ + ree′ = 27 R)(created with Eqs. (3.69), (3.70), (3.75)) . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.85 SNariaa.n vs. IC for various hFE values; n follows the values for hFE inFig. 3.84 (created with Eq. (3.56)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.86 SNariaa.40 vs. R1 of Fig. 3.74• SNariaa.40(10 R) = −78.734 dB• SNariaa.40(130 R) = −78.637 dB• SNariaa.40(499 R) = −78.350 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.87 SNariaa.40(Rin) and SNariaa.10(Rin) vs. Rin . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223.88 Ge.loss.40(Rin) and Gloss.10(Rin) vs. Rin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223.89 Zin(Rin) vs. Rin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233.90 MC cartridge output voltage U1(Rin) vs. Rin with Zin as load . . . . . . . . . . 1233.91 Typical 3rd octave scanned spectral noise distribution of a signal-free

groove of a Cu master = MOTHER (created 7th of June, 1982 byTeldec, see also Figs. 3.96 . . . 3.97) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

List of Figures 333

3.92 Noise voltage density of a V15V cartridge attached to the inputimpedance network of a phono-amp (Fig. 3.97) . . . . . . . . . . . . . . . . . . . . 136

3.93 Final 3rd octave SN of the Fig. 3.91 MOTHER Cu layer SNne.Cu.20k.ex

with noise figure NFe.amp.1 = 1.332 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1373.94 Equivalent noise voltage density of the Fig. 3.91 MOTHER Cu layer

(root of line 32). The plot for NFe.amp2 looks the same . . . . . . . . . . . . . . . 1383.95 Traces of the sum of two A-weighted SNs for Cu and vinyl records –

worst case scenario for Neumann’s measurement phono-amp PUE74 with NFe.amp1 = 1.332 dB and with different A-weighted SNs(SNariaa.amp.nom at the x-ordinate) referenced to a nominal 5 mVrms

input voltage at 1 kHz. Left ordinate gives resulting SNs of the sum ofa SN of the x-ordinate plus one of the dBA-values given in Table 3.10 . 140

3.96 Teldec DMM measurement set-up with all meaningful noise sources . . . 1413.97 Zin( f ) of the above shown figure (R0 + L0 = V15V) . . . . . . . . . . . . . . . . 1413.98 Neumann PUE 74 Pick-Up Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1443.99 Neumann PUE 74 circuit of input (1st) stage and guard driver . . . . . . . . 1453.100 Frequency response of PUE 74 (all pots in middle position) . . . . . . . . . . 146

4.1 Basic situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514.2 Impedance measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514.3 V15V MR – Impedance and phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524.4 Phase of constant R1 and L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524.5 3rd octave band measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534.6 MM cartridge equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544.7 Measurement arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554.8 Impedance of input network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564.9 Phase of input network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564.10 Measurement amplifier including all meaningful noise sources . . . . . . . . 1584.11 2SC2546 contours of constant noise figure at 10 Hz . . . . . . . . . . . . . . . . . 1594.12 2SC2546 contours of constant noise figure at 120 Hz . . . . . . . . . . . . . . . . 1594.13 2SC2546 contours of constant noise figure at 1 kHz . . . . . . . . . . . . . . . . . 1604.14 RIAA transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634.15 A-filter transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644.16 Circuit of measurement pre-amp and power supply for AMP and

impedance measurement block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1664.17 Impedance measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674.18 AMP circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1 = Figure 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1725.2 = Figure 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1725.3 Noise voltage density of input voltage dividers . . . . . . . . . . . . . . . . . . . . . 1735.4 Total input noise voltage density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745.5 Noise voltage density of MM cartridge V15V . . . . . . . . . . . . . . . . . . . . . . 1745.6 = Figure 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1755.7 = Figure 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

334 List of Figures

6.1 S-filter with hp cut-off frequency 355 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . 1866.2a Transformer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896.2b Equivalent transformer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896.3a MC phono-amp formed by a step-up transformer plus BUVO MM

phono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1916.3b Alternative for C3 of Fig. 6.2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1926.3c In-case power-supply-unit for Fig. 6.3a, b circuits . . . . . . . . . . . . . . . . . . 1926.4 Solid-state NPN-BJT MC RIAA phono-amp . . . . . . . . . . . . . . . . . . . . . . . 1956.5 Test circuit for input capacitor C2 of Fig. 6.4 . . . . . . . . . . . . . . . . . . . . . . . 1966.6 Separate power-supply-unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1986.7 Power-supply-unit inside the solid-state MC phono-amp case . . . . . . . . . 1996.8 Input noise voltage density of MC solid-state phono-amp with

SSM2210 input transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2026.9 Input noise voltage density of transformer driven input of BUVO MM

phono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.1 Equivalent circuit of the DOSE design(with all meaningful noise sources) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.2 Equivalent circuit of the DOSE design connected to a MM phono-amp(with all meaningful noise sources) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.3 Equivalent circuit of the DOSE ppa connected to the BUVOphono-amp (with all meaningful noise sources) . . . . . . . . . . . . . . . . . . . . 217

7.4 General components arrangement of the transformer driven BUVOMC phono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.5 General components arrangement of the solid-state driven BUVO MCphono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.6 Equivalent noise model of the solid-state driven BUVO MCphono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.7 Impedance of the input network Z1(f) of the BUVO solid-state design . 2227.8 Input impedance Z1b(f) of the BUVO solid-state design . . . . . . . . . . . . . 2227.9 RIAA transfer of the BUVO solid-state MC phono-amp . . . . . . . . . . . . . 2237.10 Equivalent input noise voltage density of the BUVO solid-state

phono-amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2247.11 Equivalent circuit of the Nordholt/van Vierzen design

(with all meaningful noise sources) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.1 Total split of RIAA( f ) into three sections designed for a passivecomponents solution separated by active amplifying stages . . . . . . . . . . . 228

8.2 No split of RIAA( f ) with a fully active feedback mode solution . . . . . . 2288.3 Passive RIAA( f ) 1-step-solution type (Aub) . . . . . . . . . . . . . . . . . . . . . . . 2298.4 Passive RIAA( f ) 1-step-solution type (Bub) . . . . . . . . . . . . . . . . . . . . . . . 2298.5 1-step passive RIAA transfer network (type (Aub)) between gain stage

V1 with output impedance = Rout1 = R1A and gain stage V2 with inputimpedance = (R3 = Rin2) || (C2B = Cin2) . . . . . . . . . . . . . . . . . . . . . . . . . . 230

List of Figures 335

8.6 1-step passive RIAA transfer network (type (Bub)) between gain stageV1 with output impedance = Rout1 = R1A and gain stage V2 with inputimpedance = (R3 = Rin2) || (C3 = Cin2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.7 Graph showing the trace of the deviation D( f ) between the idealRIAA transfer function (= R0( f )) and a calculated one (= G0( f ))referenced to 0 dB/1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.8 RIAA equalization with an ideal 2-step passive transfer network type(ABub) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.9 RIAA equalization with a 2-step passive transfer network type (ABub)in a real circuit environment with resistive output impedances R1A,R2A, resistive input impedances and biasing resistors R4, R5 and gainstage input capacitances C3, C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.10 Phono-amp with 2-step active-passive RIAA equalization . . . . . . . . . . . . 2398.11 Type (Cub) feedback network of a 1st gain stage for 318 µs/3180 µs

equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2398.12 Type (Dub) feedback network of a 1st gain stage for 318 µs/3180 µs

equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2408.13 Basic 1-stage active RIAA network configuration in a) series

(= non-inverting) mode and b) shunt (= inverting) mode . . . . . . . . . . . . 2428.14 Type (Eub) RIAA network feedback path configuration . . . . . . . . . . . . . . 2428.15 Type (Fub −A) RIAA network feedback path configuration . . . . . . . . . . . 2428.16 Type (Fub −B) RIAA network feedback path configuration . . . . . . . . . . . 2438.17 With succ-apps determined deviation D( f ) from the exact RIAA

transfer of the RIAA network of the BUVO MC phono-amp of Fig. 6.4 2468.18 Plot of the 0 dB/1 kHz referenced RIAA transfer of the BUVO MC

phono-amp that shows the f4 corner frequency . . . . . . . . . . . . . . . . . . . . . 2468.19 Deviation D(g) from the exact RIAA transfer . . . . . . . . . . . . . . . . . . . . . . 2478.20 Plot of a 0 dB/1 kHz referenced RIAA transfer of a MM phono-amp

that shows the f4 corner frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2488.21 With succ-apps determined deviation D( f ) from the exact RIAA

transfer of a RIAA network of a MM phono-amp . . . . . . . . . . . . . . . . . . . 2488.22 Type (ABb) RIAA network step 1 (75 µs): change from an un-balanced

to a balanced configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2508.23 Type (ABb) RIAA network step 2 (318 µs/3180 µs): change from an

un-balanced to a balanced configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 2508.24 Type (Cb or Db) RIAA network (active 318 µs/3180 µs + passive

75 µs): change from an un-balanced to a semi balanced configurationwith in-amp topology type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.25 Type (Cb or Db) RIAA network (active 318 µs/3180 µs + passive75 µs): change from an un-balanced to a balanced configuration within-amp topology type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

9.1 = Figure 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2569.2 BUVO (red) and JLH (black-dotted) deviations . . . . . . . . . . . . . . . . . . . . 2579.3 = Figure 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

336 List of Figures

9.4 BUVO (red) and JLH (black-dotted) deviations . . . . . . . . . . . . . . . . . . . . 2599.5 = Figure 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609.6 Deviation after succ-apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619.7 = Figure 8.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2629.8 Deviation after succ-apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2639.9 = Figure 8.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649.10 = Figure 8.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2669.11 = Figures 8.13 + 8.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2689.12 = Figure 8.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2699.13 = Figure 8.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2699.14 = Figures 8.13 + 8.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2709.15 = Figure 8.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2719.16 = Figure 8.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2719.17 = Figures 8.13 + 8.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2729.18 = Figure 8.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749.19 = Figure 8.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2749.20 = Figure 8.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.1 Overview of measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28010.2 FFT analysis of the noise voltage of the CLIO card with balanced

input shorted, averaging set to 50 and SNne.clio.b = −99.66 dBV . . . . . . . 28110.3 Test Terminal for the CLIO HR2000 ISA PC-card . . . . . . . . . . . . . . . . . . 28210.4 Test Terminal frequency (left ordinate – dBV) and phase (right

ordinate – Deg) responses for two different balanced inputconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

10.5 Frequency (red – upper trace – − 0.5 dBV) and phase response(blue – lower trace – 0.0 Deg) of the CLIO PC-card via anun-balanced and direct coupled input (without measurement amp) . . . . . 284

11.1 Measurement amps11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28611.2 Rectifier, log-converter, S-filter and output stages . . . . . . . . . . . . . . . . . . . 28711.3 Power supply unit for measurement equipment . . . . . . . . . . . . . . . . . . . . . 28811.4 Spectral noise voltage density of measurement amp with gain

set to +106.02 dB, input shorted, average 50, via balanced andpotential-free connection (see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

12.1 Filter bank with 20 kHz band-pass, 30 Hz low-pass, NAB and CCIRA-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

12.2 Circuitry details of the Fig. 12.1 filter bank12 . . . . . . . . . . . . . . . . . . . . . . 29312.3 Frequency responses of all measurement filters:

red trace at +6 dBV: no filterblue trace at 0 dBV: 20 Hz – 20 kHz bpviolet trace at −6 dBV: S-filter −355 Hz hpyellow trace at −6 dBV: 30 Hz lpgreen trace at 0 dBV/1 kHz: NAB/ANSI A-weighting filter . . . . . . . . . . 294

List of Figures 337

12.4 A-weighting filters:blue trace at 0 dBV/1 kHz: NAB/ANSIred trace at 0 dBV/1 kHz: CCIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

12.5a Details of the RIAA decoder circuit (part of insertion module 5) . . . . . . 29612.5b Details of the RIAA encoder (Anti RIAA) circuit (part of insertion

module 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29712.6 Frequency and phase responses of RIAA decoder and encoder:

red trace at 0 dBV/1 kHz: decoder outputblue trace at −46 dBV/1 kHz: encoder with MM outputyellow trace at −46 dBV/1 kHz: sum of decoder + encoder outputviolet trace at 0◦/1 kHz: phase response of sum of decoder +MM-encoder output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

12.7 Frequency and phase responses of RIAA decoder and encoder:red trace at 0 dBV/1 kHz: decoder outputblue trace at −66 dBV/1 kHz: encoder with MC output10

yellow trace at −66 dBV/1 kHz: sum of decoder + encoder outputviolet trace at 0◦/1 kHz: phase response of sum of decoder +MC-encoder output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

13.1 General diagram of the RIAA Phono-Amp Engine . . . . . . . . . . . . . . . . . . 30613.2 Front and rear view of the RIAA Phono-Amp Engine . . . . . . . . . . . . . . . 307

14.1 Module 1 wiring of input and output connectors . . . . . . . . . . . . . . . . . . . . 30914.2 Module 1 output stage with trafo driven un-balanced – balanced

conversion and delay circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

15.1 Module 2 phono-amp stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

16.1 Module 3 (Source Selector) circuit diagram(without relay driver circuits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

16.2 Module 3 phono-amp section draft design . . . . . . . . . . . . . . . . . . . . . . . . . 31616.3 (top) and (bottom) Relay drivers and soft start circuitries . . . . . . . . . . . . . 317

17.1 F + P of the Fig. 15.1 module 2 BJT input MC phono-amp viaun-balanced output and module 3 un-balanced input/un-balancedoutput3 dB corner frequencies: Phase at 20 Hz: +2.9◦ → fc.hp = 1 Hz

Phase at 20 kHz: −4.2◦ → fc.lp = 272 kHz . . . 32017.2 F + P of the Fig. 15.1 module 2 BJT input MC phono-amp via

balanced trafo output and module 3 balanced input and balancedoutput3 dB corner frequencies: Phase at 20 Hz: +3.5◦ → fc.hp = 1.2 Hz

Phase at 20 kHz: −6.5◦ → fc.lp = 176 kHz . . . 320

338 List of Figures

17.3 F + P of the Fig. 14.1/6.3a module 1 balanced trafo input MCphono-amp via un-balanced output and module 3 un-balancedinput/un-balanced output3 dB corner frequencies: Phase at 20 Hz: +16.0◦ → fc.hp = 5.7 Hz

Phase at 20 kHz: −24.1◦ → fc.lp = 44.7 kHz . 32117.4 F + P of the Fig. 14.1/6.3a module 1 balanced trafo input MC

phono-amp via balanced trafo output and module 3 balancedinput/balanced output3 dB corner frequencies: Phase at 20 Hz: +16.2◦ → fc.hp = 5.8 Hz

Phase at 20 kHz: −26.7◦ → fc.lp = 39.8 kHz . 32117.5 F + P of the Fig. 14.1/6.3a module 1 MM input phono-amp via

un-balanced output and module 3 un-balanced input/un-balancedoutput3 dB corner frequencies: Phase at 20 Hz: +4.4◦ → fc.hp = 1.5 Hz

Phase at 20 kHz: −8.8◦ → fc.lp = 129 kHz . . . 32217.6 F + P of the Fig. 14.1/6.3a module 1 MM input phono-amp via

balanced trafo output and module 3 balanced input/balanced output3 dB corner frequencies: Phase at 20 Hz: +6.1◦ → fc.hp = 2.1 Hz

Phase at 20 kHz: −10.7◦ → fc.lp = 106 kHz . . 32217.7 Spectral noise voltage density of module 1 balanced trafo MC

phono-amp input with 43 R load measured via module 3 un-balancedinput/balanced output and gain of +6 dB . . . . . . . . . . . . . . . . . . . . . . . . . 323

17.8 Three different spectral noise voltage density traces of module 1BJT MM phono-amp input with 1 k load measured via module 3un-balanced input/balanced output and gain of +6 dB . . . . . . . . . . . . . . . 323

17.9 Three different spectral noise voltage density traces of module 2BJT MC phono-amp input with 43 R load measured via module 3un-balanced input/balanced output and gain of +6 dB . . . . . . . . . . . . . . . 324

List of Tables

2.1 Selected frequencies and calculated (Eq. 2.6) transfer amplitudesof R( f ) with reference to 0 dB/1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Noise contribution of the 2nd stage of any amp . . . . . . . . . . . . . . . . . . . 423.2 Gain requirements for a transistor 1st stage with noise contribution

of an OP27 op-amp as the 2nd stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.3 Selection of low-noise BJTs with all relevant eN and iN data to

select the right device for MC purposes . . . . . . . . . . . . . . . . . . . . . . . . . 453.4 Selection of low-noise BJTs with all relevant NF data to select the

right device for MC purposes (best, 2nd and 3rd: bold) . . . . . . . . . . . . 463.5 Selection of low-noise BJTs with all relevant eN, iN and NF data to

select the right device for MM purposes (best, 2nd and 3rd: bold) . . . 473.6 Selection of low-noise pentodes, pentodes as triodes and triodes for

phono-amp purposes (∗ equal values for E88CC) . . . . . . . . . . . . . . . . . 753.7 SN measurement requirements for Cu MOTHERS . . . . . . . . . . . . . . . . 1273.8a Calculation of Cu master SNs for Fig. 3.91 . . . . . . . . . . . . . . . . . . . . . . 1283.8b Calculation of Cu master SNs for Fig. 3.91 . . . . . . . . . . . . . . . . . . . . . . 1303.8c Calculation of Cu master SNs for Fig. 3.91 . . . . . . . . . . . . . . . . . . . . . . 1323.9 SN results for various bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343.10 Maximal SNs for various types of records . . . . . . . . . . . . . . . . . . . . . . . 1393.11 Selection of MM phono-amps and their SNs (* = 13) . . . . . . . . . . . . . 1423.12 Selection of MC phono-amps and their SNs14 . . . . . . . . . . . . . . . . . . . . 143

4.1 Manufacturer data vs. measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 1504.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.1 Calculated SNs in [dB] of various MC phono-amp solutions withinput load = 43 R (except Linn Linto, column G), input referencevoltage 0.5 mVrms, frequency band B20 k . . . . . . . . . . . . . . . . . . . . . . . . 188

339

340 List of Tables

6.2 Calculation and measurement results in dB (rounded to 1 digit afterthe dec. point) for various input devices with reference to an inputload of 43 R, an input voltage of 0.5 mVrms/1 kHz and B20 k . . . . . . . . 194

8.1 Calculation results for a type (Aub) 1-step passive RIAA networkthat is located between two gain stages with gains >1 and differentinput impedances (R3||C2B) of the 2nd stage . . . . . . . . . . . . . . . . . . . . . 235

8.2 Calculation results for a type (Aub) 1-step passive RIAAnetwork that is located between two gain stages with gains>1 with different values for C1 and a fixed input impedance(R3 = 475 k)||(C2B = 100 p) of the 2nd stage . . . . . . . . . . . . . . . . . . . . 235

Constants, Abbreviations, Symbols

A A-weighting (special noise measurement filter)a valve anode or plateAC alternating currentampx amplifier xb balanced (suffix)B BJT baseB bandwidth (in general)B1 bandwidth of 1 HzB20 k bandwidth of 20 Hz . . . 20 kHz (19,980 Hz)BJT bipolar junction transistorbp band-pass filterbv big volumeC BJT collectorC capacitance or capacitorc valve cathodeca contribution allowedCCIR Commité Consultatif International des Radicommunicationsc1 proportional factor for RIAA network type (E) calculationsD FET draindB decibelDC direct currentdiff. difference, differentD/S Douglas Self (author)d.u.t. device under testE BJT emittere AC voltagee 20× log(xyz) (suffix)EW Electronics World (magazine)EW&WW Electronics World & Wireless World (older version of EW)ex excess noise voltage (suffix)ex excluding rumble (suffix)

341

342 Constants, Abbreviations, Symbols

f frequencyF frequency responseFET Field Effect TransistorG FET gateGx gain of stage xg valve gridhFE BJT current gainHU Hight Unit (of 19′′ case)HP Width Unit (of 19′′ case)hp high-pass filterHz HertzI DC currenti AC currentid idealJFET junction field effect transistorK Kelvin [K]k 1.38065 VAsK−1 (Boltzmann’s constant)L inductanceLP Long play vinyl recordlp low-pass filterlv low volumeMC moving coil (cartridge)M/C Motchenbacher/Connelly (authors)MCD Mathcadmcd MathcadMM moving magnet (cartridge)MS measurement systemMSR Maxi single vinyl recordN noisen noisen secondary trafo turns divided by primary turns, thus, tr becomes 1 : nNAB National Association of Radio and Television Broadcasters

(ex NARTB = a US organisation)NF noise factorNFe noise figure (20log(NF))nom nominalP potentiometerP phase responsep pentode (suffix)ppa pre-pre-amppar parallelPSU power supply unitq 1.6022×10−19 As (electron charge)R resistance or resistor (equivalent unit symbol for ohm [Ω])rbb′ BJT base spreading resistance

Constants, Abbreviations, Symbols 343

RIAA Radio Industry Association of America, a standard setting USorganisation

re realref. reference, referencedrN valve (tube) equivalent noise resistancert rootr1 proportional factor for RIAA network type (E) calculationsS Source of a FETS S-filter (special noise measurement hp-filter)Sx switch xs secondsec secondseq sequence or sequentialser serialSN signal-to-noise-ratioSNa SN after A-weightingSNariaa SN after RIAA equalization and A-weightingSNne SN non-equalized and non-weightedSNriaa SN after RIAA equalizationSNsriaa SN after RIAA equalization and S-weightingsol. solutionSR Single vinyl recordsucc-app(s) successive approximation(s)T room temperature 300 Kt triode (suffix)tr transformer turns ratio (e.g.: 3:11)trafo transformerT/S Tietze/Schenk (authors)TT test terminalTx time constant xub un-balanced (suffix)VDC DC voltageVcc DC supply voltage positiveVee DC supply voltage negativeVR vinyl recordVx amplifying stage or device xW white noise region (suffix)WW Wireless World (oldest version of EW magazine)Z impedance formed of different components (R and/or C and/or L)|| parallel

Index

Symbols

µA723 197, 3111/ f -noise 19, 59, 922N2905A 1972N3055 1972N4403 1932SC2546E 29, 38, 124, 158 ff2SJ74 562SK170 56 ff2SK289 673rd octave 1263rd octave band measurement 153

Numbers

5532 187 ff5534 186 ff7308 299

A

absolute room temperature 183active solution 241 ffactive-passive solution 238 ffAD536 155, 279 ffAD797 123, 314Adam, Wilfried 54, 155, 291admittances 156AEG-Telefunken 75A-filter transfer function 164AMP 155, 165amp 3amplifier noise model 18AN-104 135, 149, 157AN-222 159, 160AN-346 240

ANSI 291anti-aliasing filter 291anti-RIAA transfer 9, 11, 279, 295anti-RIAA transfer function 10, 135argument 157A-weighting 112A-weighting filter CCIR 279 ffA-weighting filter NAB 279 ffA-weighting filters 182, 183

B

balanced 86balanced (b) solutions 250balanced cable connections 299balanced in/balanced out 251balanced in/un-balanced out 251base spreading resistance 36, 54, 159 ffBateman, Cyril 200Baxandall, P. J. 159BC212B 135, 144benchmark 182BFW16A 124, 193BJT 36, 119BJT noise model 36BNC 168, 305Boltzmann’s constant 21, 157, 183Brüggemann, Albert 85, 126, 324BUF603 297BUVO 187

C

Cale, JJ 324cartridge equivalent model 154cartridge loading capacitor 168cascoded 66

345

346 Index

cathode input resistance 76CCIR 291, 295CE gain stage noise model 51CE stage 48Chebyshev 155, 292cinch 305Clapton, Eric 324CLIO 40 279CLIO 6.5, 6.55 151, 155, 279 ffCLIO AD converter 291Connelly, J. A. 17contribution allowed 42 ffcooling 169correction factor 140CS gain stage 63 ffCu 126Cu master 128 ffcutting technologies 125

D

Dael, J. W. van 164, 245degrees 157Denon DL-103 3, 121, 181, 197Deutsche Grammophon Gesellschaft 5, 168deviation 13, 233, 246 ffDMM (technology) 125, 140, 141, 325DOSE 186draft design 104

E

E188CC 299Early voltage 69ELC-131 D 155Elector Electronics 81, 151, 155ELMA 311Emerick, Geoff 299engine diagram 304Epcos 200equivalent transformer circuit 110, 189example calculations 52, 70, 76, 89, 91, 99,

100, 111excess noise 34, 52experience electronics 187

F

fab 4 (The Beatles) 299FETs 55 ffFFT 190, 281, 319 fffilter bank 291 fffischer electronic 305flicker noise 19

formulae method 247 ffFrederiksen, Th. M. 86, 291Friedemann 324full speed 324

G

gain loss of the transformer 109 ffGevel, Marcel van 150, 154, 161groove 3

H

half speed 324headers 314heaters 85HM 412 155Hood, John Linsley 229HP 331A 155hum 83 ff, 298, 305, 319

I

IEC 11, 182, 314impedance measurement 151impedance network 156impedance transfer 108in-amp 93 ffin-amp IC circuitry topologies 102 ffin-amp IC topology type 1 102in-amp IC topology type 2 103in-amp noise model 95 ffin-amp type 2 topology 251INA103 102inductance 154, 181insertion loss 234 ff

J

J113A 144J37 (Studer tape recorder) 299JAES 7Jensen 187 ffJensen Transformers 107JFET noise model 58JFETs 55, 119, 120JLH 229Johnson noise 21Jones, Morgan 81JT-346-AX 123 ffJT-346-AXT 314JT-347-AXT 124jumpers 314

K

Kay, Sharon x

Index 347

Kruithof, J. A. 164, 245

L

L-Com 305lacquer (technology) 125LF356 144Linn Linto 182 ffLM 317/337 197LM394 32, 161, 193logarithmic converter 285 fflow-noise BJTs 45 fflow-noise measurement pre-amplifier 154low-noise valves 74low-noise vinyl records 324lowest-noise in-amp 104LT1028 155, 285Lundahl 187

M

M44G 150, 168magnitude 156manufacturer’s data 150Massey, Howard 299MAT02 44, 124, 193MathCad 149 ffMC cartridge 3, 181MC cartridge noise 182 ffMC phono-amp 304MC phono-amp noise 182 ffMcCormick, Tom 55MCD 149 ffmeasurement amp 158, 165, 279, 285measurement filters 279microphones 299Miller capacitance 64Miller-C 122, 230 ff, 236 ffMM cartridge 3, 149 ffMM cartridge data 150MM cartridge noise 154 ffMM phono-amp 190, 304module 1 304, 309, 321 ffmodule 2 304, 311, 320, 324module 3 304, 313Mogami 193Motchenbacher, C. D. 17MOTHER 126, 136Mu-metal 86mutual conductance 38, 68

N

NAB 291, 295

NAB-A-Filter 155Neumann 127Neumann phono-amp PUE 74 135Neumann PUE 74 144, 169Neumann VMS-80/DMM 127Neutrik 193noise contribution 42, 314noise current 18, 59noise current sources parallel-connected 23noise current sources series-connected 23noise factor 28, 43noise figure 28, 60, 61noise figure approach 112noise gain 92noise index 34noise measurement system 279noise model 79noise resistance 72noise spectrum 85noise voltage 18, 59, 72, 73noise voltage approach 111noise voltage densities 201noise voltage sources parallel-connected 23noise voltage sources series-connected 22Nordholt, E. H. 7Nyquist 21, 183

O

Okham’s Razor 49, 154op-amp noise model 88, 90op-amps 86OP27 19 ff, 31, 89, 91, 197OPA604 151, 296OPA627 313, 314optimal source resistance 30, 62, 116Ortofon RMA-297 127Ortofon Rondo 197Ortofon Samba 123overload 236

P

Panasonic (FC/25 V) 197paralleling 24passive solution 228 ffPauler, Günter 126, 325peak velocity 168phase angle 156phase measurement 151phono-amps 6 ff, 140 ffPikatron 187 ffpotential-free 299power supply 192, 197, 289, 304, 311

348 Index

pre-amp 3, 313pre-pre-amp 3primary 110pSpice 13, 153PSU 1 . . . 3 304PSU-4 305purpose 3

Q

Quad 84

R

radians 157RCA 305rectifier 285 ffreduced mutual conductance 63relay control 318resistor noise 21results 167, 196, 200, 235, 303, 319RIAA 5RIAA decoder 295RIAA encoder 295RIAA equalization 155, 165RIAA networks 227RIAA phono-amp engine 303 ffRIAA time constant 227RIAA transfer 5, 9, 11, 183, 190, 193, 197,

227, 279, 295 ffRIAA transfer function 10, 163, 227Ricker, Stan 324RTA 190

S

Schenk, C. 17secondary 110Self, Douglas 17, 184 ff, 196sensitivity 168sequence 26Sergeant Pepper’s 299series configuration 87series mode 245S-filter 185 ff, 285, 294Sheingold, D. H. 86, 161Sherwin, Jim 149, 157shot noise 291shunt configuration 87shunt mode 243Shure V15V MR 3, 5, 314Signal-to-Noise Ratio 33SME 3012 127Smith, L. 86, 161

SN by simple means 183SN calculations 162SN-factors 184solid-state approach 193SON 126sound 197, 200, 324Sowter 187 ffspectral noise voltage density 290, 323 ffSRPP 66, 81 ff, 236SSM-2017 103, 313 ffSSM-2210 32, 105, 193stereoplay 84 ffStockfisch Records 126, 325stray-C 230 ffStuder 299succ-apps method 245 ffsum of two SNs 139

T

Talema toroidal transformer 197tape recorder 299Taylor, E. F. 190Taylor, F. 294Teldec 126, 140Telefunken 71, 135 fftemperature 169test circuit for the i/p capacitance 196test record 5, 168test terminal 282THAT 300 104THAT 320 104Tietze, U. 17transfer factor 138transformer driven MC phono-amp 190 fftransformer equations 108 fftransformer noise model 108 fftransformer solution 187transformers 106 ffTSD15 (EMT) 127Tube CAD Journal 82tubes 71turns ratio 106Twin-BNC 193, 305

U

U87 (microphone) 299un-balanced (ub) solutions 228 ff

V

V15II 127V15III 150

Index 349

V15IV 150

V15V 136

valve noise model 71

valve power supplies 83

valves 71, 119

VALVO 75

velocity 125, 181

Vierzen, van, R. M. 7

vinyl record 3, 125 ff

vinyl record noise 126 ff

Vitelec 305

VMS-80/DMM 127

W

Walker, H. P. 149, 243weighted SN 69weighting filters 33Whitlock, Bill 299Williams, A. 294WIMA MKP4/10 200wiring 193wobble speed 298worst case 139

X

XLR 305

Epilogue

In the early 60ies of last century I went to a school in Hamburg – located not faraway from the Reeperbahn. I never forget my first 1962 visits to the Top Ten andStar Club discotheques. In those days they where the centres of Rock Music inGermany. The Beatles at the Star Club became my favourite band and with thatpush into the modern music world I started buying records and did what every rockmusic fan did in those days: saving money by copying hit-parades on valve driventape recorders from stations like AFN (American Forces Network) and BFN (BritishForces Network – today BFBS).

The rock music virus never got lost. To finance my electronic studies at Darm-stadt’s Technische Universität (University of Technology) I worked 4 years as a DJat a discotheque in Mannheim. Very big and powerful KT88 driven power amps andShure M44-G MM cartridges on SME tonearms fixed on Thorens turntables pro-duced a top sound. A strong competition among Mannheim’s two top discothequesforced us to an ongoing search for improvements of the sound equipment as wellas of record selection. This became the beginning of my interest in noise. Not onlyelectronic made noise: any kind of thermal noise. It was the universe’s backgroundnoise that triggered my intention to study the mathematical background of Einstein’stheories.

Unfortunately or fortunately – who knows, finally all my studies led to an in-dustry career path that I couldn’t foresee in those days: managing companies thatproduce solutions on the electronics, telecommunications, IT and media sectors. Faraway from my interests in noise. But, during the last 15 years I worked as an InterimManager, managing more than a dozen of different companies and organisations inGermany, Switzerland and Austria.

At last, between the different interim management assignments I found enoughtime to dive deeper into the amplifier noise question. In the companies I had tomanage I always met employees with a great interest in music production and re-production. Very fruitful discussions on these issues could be carried out. The ideato write a book on noise in phono-amps was born as a result of these discussions. Itwas clear to most of my discussion partners that the vinyl record and the valve drivenamp would never die. But someone should collect – on one spot – all the (engineer’s

351

352 17 Epilogue

nightmare producing) phono-amp noise mechanics know-how that threatens to getlost by total digitalization. From valve to most modern IC – but not too complicateand from a math point of view easy to follow. That’s what I tried to accomplish withthis book for practical men and women – after 5 years of developing and buildingup nearly all presented electronic circuits.

Today, I live in a region of southern Germany that could be called the centre of topquality automobile and parts production in Europe. It’s the home base of MercedesBenz, Porsche and Bosch. More and more, these companies were confronted withthe type of customer that owns one or several vintage cars of one of these famous carbrands. The know-how to repair or even totally rebuild these cars after crashes etc.must be kept over an extremely long period of time. That’s why it was not a surprisethat, not long ago, quite new education courses were started to “produce” graduateswith perfect old-timer know-how.

I guess, with growing sales revenues of vintage electronics and the die out ofthe ones who knew how to handle it, the time is not far away that we will alsoneed fresh graduates who understand not only valve and other old-time audio andvideo technologies. An equally big problem can be found in the first generations ofcomputer storage equipment. It’s really time to do the right thing! Coming out endof 2008 my next writing project will be a book on triode driven valve pre-amps.


Recommended