+ All Categories
Home > Documents > Partial Fraction Decomposition

Partial Fraction Decomposition

Date post: 22-Feb-2016
Category:
Upload: leigh
View: 41 times
Download: 0 times
Share this document with a friend
Description:
Partial Fraction Decomposition. I ntegrating rational functions. Integrate the following function…. Now what if we disguise this equation a bit by combining……. If we are given this equation initially : We are going to have to do some expansion in order - PowerPoint PPT Presentation
27
Partial Fraction Decomposition Integrating rational functions.
Transcript
Page 1: Partial Fraction Decomposition

Partial Fraction Decomposition

Integrating rational functions.

Page 2: Partial Fraction Decomposition

Integrate the following function…..

∫ 1𝑥−3 −

1𝑥−2 𝑑𝑥

Page 3: Partial Fraction Decomposition

Now what if we disguise this equation a bit by combining……

∫ 1𝑥−3 −

1𝑥−2 𝑑𝑥=∫ 1 (𝑥−2 )−1 (𝑥−3 )

(𝑥−3)(𝑥−2)𝑑𝑥∫ 𝑥−2−𝑥+3

𝑥2−5 𝑥+6𝑑𝑥=∫ 1

𝑥2−5𝑥+6𝑑𝑥

If we are given this equation initially:

We are going to have to do some expansion in orderto put it into a form that is easy to integrate.This process is called PARTIAL FRACTION DECOMPOSITION.

∫ 1𝑥2−5 𝑥+6

𝑑𝑥

Page 4: Partial Fraction Decomposition

1𝑥2−5 𝑥+6

=𝐴 (𝑥−2 )+𝐵 (𝑥−3 )

(𝑥−3 ) (𝑥+2 )

Page 5: Partial Fraction Decomposition

¿

Page 6: Partial Fraction Decomposition

The method of Partial Fraction Decomposition ALWAYS works when you are integrating a rational function.

Rational Function = Ratio of polynomials

You will decompose/expand the rational function so it can be easily integrated.

Page 7: Partial Fraction Decomposition

4𝑥2−1

=𝐴

𝑥+1 +𝐵

𝑥−1

4=𝐴 (𝑥−1 )+𝐵(𝑥+1)Let 𝐴=−2Let 𝐵=2

∫( −𝟐𝒙+𝟏+ 𝟐𝒙−𝟏 )𝒅𝒙

∫ 𝟏𝒙𝟐−𝟏

𝒅𝒙=−𝟐𝐥𝐧 (𝒙+𝟏 )+𝟐𝐥𝐧 (𝒙−𝟏 )+𝑪

∫ 4𝑥2−1

𝑑𝑥

2𝐵=4 −2 𝐴=4

Page 8: Partial Fraction Decomposition

74 𝑥2−9

=𝐴

2 𝑥+3 +𝐵

2 𝑥−3

7=𝐴 (2𝑥−3 )+𝐵(2𝑥+3)

Let 7=6𝐵𝐵=76

Let 7=−6 𝐴𝐴=− 76

14 𝑥2−9

=−7 /62 𝑥+3 +

7 /62 𝑥−3

− 712 ln(2 𝑥+3 )+ 712 ln

(2 𝑥−3 )+𝐶

∫ 74 𝑥2−9

𝑑𝑥

∫ −7 /62 𝑥+3 +

7 /62 𝑥−3 𝑑𝑥

*Integrate using U-Substitution

Page 9: Partial Fraction Decomposition

∫ 5 𝑥−15𝑥2−𝑥−12

𝑑𝑥5 𝑥−15𝑥2−𝑥−12

=𝐴

𝑥−4 +𝐵𝑥+3

5 𝑥−15=𝐴 (𝑥+3 )+𝐵(𝑥−4)Let 5 (−3 )−15=𝐵(−7)Let 5 (4 )−15=𝐴(7)

𝐴=57 𝐵=

307

∫ 5 𝑥−15𝑥2−𝑥−12

𝑑𝑥=∫ 5 /7𝑥−4 +

30/7𝑥+3 𝑑𝑥

𝟓𝟕 𝐥𝐧 (𝒙−𝟒 )+𝟑𝟎𝟕 𝐥𝐧 (𝒙+𝟑 )+𝑪

Page 10: Partial Fraction Decomposition

∫ 3 𝑥−8𝑥2−4 𝑥−5

𝑑𝑥

3𝑥−8𝑥2−4 𝑥−5

=𝐴

𝑥−5+𝐵𝑥+1

3 𝑥−8=𝐴 (𝑥+1 )+𝐵 (𝑥−5 )

Let

3 (−1 )−8=𝐵 (−6 ) ∴𝐵=116 3 (5 )−8=𝐴 (6 )∴ 𝐴=

76

∫ 3 𝑥−8𝑥2−4 𝑥−5

𝑑𝑥=∫76

𝑥−5 +

116𝑥+1

𝑑𝑥

76 ln

(𝑥−5 )+ 116 ln(𝑥+1 )+𝐶

Let

Page 11: Partial Fraction Decomposition

rules• Remember is just

• If , then

• When thinking about your natural log rules, use and to guide you.

Page 12: Partial Fraction Decomposition

Which of the following are true?

or

or

Page 13: Partial Fraction Decomposition

Which of the following are true?

or

or

Page 14: Partial Fraction Decomposition

HomeworkSection 8.5 P. 559 (7-11)

Section 5.6P. 378 (45, 59)

Section 5.7P. 385 (3, 4, 7)

Partial Fraction Decomposition

Derivating Arctangent

Integrating Arctangent

Page 15: Partial Fraction Decomposition

𝑑𝑦𝑑𝑥=

6 𝑥2−8 𝑥−4(𝑥2−4 ) (𝑥−1 )

6 𝑥2−8 𝑥−4(𝑥2−4 ) (𝑥−1 )

=𝐴

𝑥+2+

𝐵𝑥−2 +

𝐶𝑥−1

(𝑥2−4 ) (𝑥−1 )=(𝑥+2)(𝑥−2)(𝑥−1)

𝟔 𝒙𝟐−𝟖 𝒙−𝟒=𝑨 (𝒙−𝟐 ) (𝒙−𝟏 )+𝑩 (𝒙+𝟐 ) (𝒙−𝟏 )+𝑪(𝒙+𝟐)(𝒙 −𝟐)

Page 16: Partial Fraction Decomposition

Let 6 (−2 )2−8 (−2 )−4=𝐴(−4)(−3)36=12 𝐴∴ 𝐴=3

Let 6 (2 )2−8 (2 )−4=𝐵(4)(1)

4=4𝐵∴𝐵=1

Let 6 (1 )2−8−4=𝐶 (3)(−1)

−6=−3𝐶∴𝐶=2

6 𝑥2−8 𝑥−4(𝑥2−4 ) (𝑥−1 )

=3

𝑥+2+1

𝑥−2 +2

𝑥−1

Page 17: Partial Fraction Decomposition

3 ln (𝑥+2 )+ ln (𝑥−2 )+2 ln (𝑥−1 )+𝐶

Page 18: Partial Fraction Decomposition

In all of our examples thus far, the degree of the numerator has been less than the degree of the denominator.

If it is the case that the degree of the numerator is greater than or equal to the degree of the denominator, you must reduce using “polynomial” long division.

The next few slides will help you to review this technique…….

Page 19: Partial Fraction Decomposition

Long “Polynomial” Division Review

𝒙𝟐−𝟗 𝒙−𝟏𝟎𝒙+𝟏

𝒙+𝟏√𝒙𝟐−𝟗 𝒙−𝟏𝟎

Page 20: Partial Fraction Decomposition

𝑥2+9 𝑥+14𝑥+7

𝒙+𝟕√𝒙𝟐+𝟗 𝒙+𝟏𝟒

Page 21: Partial Fraction Decomposition

3𝑥3−5 𝑥2+10𝑥−33 𝑥+1

𝟑 𝒙+𝟏√𝟑 𝒙𝟑−𝟓 𝒙𝟐+𝟏𝟎𝒙−𝟑

Page 22: Partial Fraction Decomposition

∫ 3 𝑥3−5𝑥2+10 𝑥−33𝑥+1

dx

∫𝑥2−2𝑥+4− 73 𝑥+1 𝑑𝑥

𝟏𝟑 𝒙𝟑−𝒙𝟐+𝟒 𝒙−𝟕𝟑 𝐥𝐧 (𝟑𝒙+𝟏 )+𝑪

Page 23: Partial Fraction Decomposition

Since no we must𝒙Put .𝟎𝒙2𝑥3−9 𝑥2+15

2𝑥−5

Page 24: Partial Fraction Decomposition

∫ 2 𝑥3−9𝑥2+152𝑥−5 𝑑𝑥

∫(𝑥2−2𝑥−5− 102𝑥−5 )𝑑𝑥

Page 25: Partial Fraction Decomposition

4 𝑥4+3𝑥3+2𝑥+1𝑥2+𝑥+2

Since no we mustPut

Page 26: Partial Fraction Decomposition

End of Lesson

Homework:Partial Fraction Decomp. Worksheet (14, 15)

Orange Book Section 6.5 P. 369 (5, 7, 8, 15-21 odd)

Page 27: Partial Fraction Decomposition

Steps to Integrating by PFD1. If degree of numerator is greater than or equal

to degree of denominator, then use long division to reduce.

2. Write out or setup the equation as a sum of fractions with unknown numerators.

3. Solve for the unknown numerators.

4. Integrate the resulting equation.


Recommended