+ All Categories
Home > Documents > Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal...

Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal...

Date post: 17-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
28
Partial high current solutions WIRELAID The technology and technical application
Transcript
Page 1: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Partial high current solutions WIRELAID

The technology and technical application

Page 2: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Agenda

05.11.2013 www.we-online.de Seite 2

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 3: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Introduction

Power (3-200A) Signal (SMD, fine line)

Benefit

05.11.2013 www.we-online.de Seite 3

Requirements of the market:

Page 4: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Introduction

The priciple

Use of embedded copper wires to realise high current tracks

Combination of power and signal processing electronics

Competitive alternative to PCBs with thick copper technology or

parallel arrangement of additional layers

The technics

The copper wires are fixed onto the under side (treatment) of the copper foil using resistance welding

After lamination the process, wires are embedded by prepregs into a multilayer PCB

WIRELAID copper foil forms external layer and is structured with standard PCB processes

Therefore external layer are SMD-capable

05.11.2013 www.we-online.de Seite 4

Page 5: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Production process

05.11.2013 www.we-online.de Seite 5

1 • Welding first point

2 • Wire is cut to length

3 • Second welding point

4 • Turning the „WIRELAID foil“

5 • Lamination process

6 • Embedding wires

7 • Wirelaid Multilayer

Page 6: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Production process

05.11.2013 www.we-online.de Seite 6

1 • Anschweißen des ersten Punktes

2 • Ziehen und Ablängen des Drahtes

3 • Schweißung des zweiten Punktes

4 • Wenden der bestückten Folie

5 • Verpressen der Folie

6 • Einbetten der Drähte

7 • Fertiger Multilayer

Page 7: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Types of wires

05.11.2013 www.we-online.de Seite 7

Flat wire

_____________

F08 0,8 x 0,25mm²

Cross-sectional-area : 0,2mm²

F14 1,4 x 0,35mm² Cross-sectional-area : 0,5mm²

Page 8: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

3 dimensional way of installation

Wirelaid 3D

05.11.2013 www.we-online.de Seite 8

Depth-milled slot

Suited for complicated installation space

Partial thick copper with “hinge” character

Bending radius <1mm

Page 9: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

WIRELAID vs. Standard

05.11.2013 www.we-online.de Seite 9

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 10: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

WIRELAID vs. Standard

WIRELAID Cross-sectional

area

track width Wirelaid

(35µm base Cu)

Track width standard

(35µm base Cu)

Reduction

F14 0,5mm² 1,9mm 8,9mm 78,7%

05.11.2013 www.we-online.de Seite 10

0,63mm² Requirements: 20A at 20K allowed temperature rise

WIRELAID use:

Reduction of

78,7%

8,9mm

1,9mm

4,5mm

Page 11: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Poll

1. Guess how many amps two wires (F14) can carry with maximum temperature rise

of 20K?

1. 12A

2. 23A

3. 38A

05.11.2013 www.we-online.de Seite 11

Page 12: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Design Guide

05.11.2013 www.we-online.de Seite 12

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 13: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Ampacity

05.11.2013 www.we-online.de Seite 13

Wires welded under the internal layer rise of temperature (ΔT in °C)

Strom [A] 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 60 62 64 66 68 70 72 74 76 78 80 82 84

Draht Leiterbreite [mm]

1x300 0.9 8 13 19 28 40 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2x300 1.8 3 6 8 12 16 21 25 31 38 45 52 62 . . . . . . . . . . . . . . . . . . . . . . . . . .

1x800 1.4 3 6 9 13 18 22 28 35 42 50 59 . . . . . . . . . . . . . . . . . . . . . . . . . . .

2x800 3.1 2 2 4 5 7 9 11 13 16 19 23 27 32 36 41 46 52 58 64 . . . . . . . . . . . . . . . . . . .

3x800 4.8 1 1 2 3 4 6 7 9 10 12 14 17 19 21 24 27 30 34 38 41 46 50 55 59 64 . . . . . . . . . . . . .

4x800 6.5 0 1 2 2 3 4 5 6 7 9 10 12 13 15 18 20 22 25 28 31 34 37 40 43 47 51 55 58 61 . . . . . . . . .

1x1400 2.0 2 2 3 5 5 7 9 11 13 16 19 22 26 30 34 38 43 48 53 59 65 . . . . . . . . . . . . . . . . .

2x1400 4.3 0 1 1 2 3 4 5 6 8 9 11 12 14 16 18 20 22 25 28 30 33 37 40 43 47 51 54 59 63 . . . . . . . . .

3x1400 6.6 0 0 1 1 2 2 2 3 3 4 5 6 8 10 12 13 15 16 18 20 22 24 25 27 29 31 34 36 38 41 44 47 50 54 58 62 66 .

4x1400 8.9 0 0 0 1 1 1 2 2 3 4 4 5 6 7 9 10 11 12 14 15 17 19 21 22 24 26 27 29 31 34 36 36 37 42 47 49 51 54

Strom [A] 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 60 62 64 66 68 70 72 74 76 78 80 82 84

Draht Leiterbreite [mm]

1x300 0.9 12 21 31 46 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2x300 1.8 5 9 13 17 24 30 39 47 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1x800 1.4 6 9 14 19 25 32 41 50 61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2x800 3.1 2 4 6 8 11 14 17 20 24 28 34 40 46 52 59 67 . . . . . . . . . . . . . . . . . . . . . .

3x800 4.8 1 2 3 4 6 8 10 12 15 18 21 24 28 32 35 39 45 50 55 60 66 . . . . . . . . . . . . . . . . .

4x800 6.5 0 1 2 3 4 5 7 9 11 13 15 17 19 23 26 30 33 37 41 45 50 53 59 65 . . . . . . . . . . . . . .

1x1400 2.0 2 3 5 7 8 10 12 14 17 21 25 29 34 40 45 50 57 64 . . . . . . . . . . . . . . . . . . . .

2x1400 4.3 0 1 1 2 4 5 7 8 10 12 13 16 18 22 24 27 30 34 37 43 46 50 56 61 65 . . . . . . . . . . . . .

3x1400 6.6 0 0 1 2 3 3 4 5 6 7 9 10 12 14 16 18 20 22 24 26 29 31 35 39 43 46 50 53 57 62 66 . . . . . . .

4x1400 8.9 0 0 0 0 1 1 2 3 4 5 6 7 8 10 12 14 17 19 21 23 25 27 30 32 35 37 40 43 46 49 53 57 60 64 . . . .

Copper thickness conductor 70µm

35µm

38

20 2 x F14 4,3mm

4,3mm

Page 14: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Wirelaid sample

05.11.2013 www.we-online.de Seite 14

clearance – view on

embedded wires

depth-milled bendable area

Power

electronics

Signal

processing

electronics

cross-sectional area of

embedded wires

Page 15: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Example of use

05.11.2013 www.we-online.de Seite 15

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 16: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Frequently asked questions by customers

Mr Jürgen Westenkirchner

– Business Development – Sales – Technical Customer Support

FAQ about WIRELAID technology – experience from everyday professional life

1. Hot Spots aon angled wirelaid tracks

2. Connection of Wirelaid layers

3. Layouting Wirelaid layers

05.11.2013 www.we-online.de Seite 16

Page 17: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Frequently asked questions by customers

Hot Spots aon angled wirelaid tracks

Increased current density

Dinstance between wires according to design rules

Problem investigation

– Thermal analysis

– Explanation:

• Power derating on ohmic resistance

– P = I² x R, increased current density S

– Solution: No hot spots thriugh local high thermal capacity

Relation:

05.11.2013 www.we-online.de Seite 17

I [A] = 9,1 [mm²] 0,68 * ΔT [K]0,43

Page 18: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Frequently asked questions by customers

Connection of Wirelaid layers

– No „through wire connection“

– Distance between wires according to design guide

– Connection through pad after wire`s end

– The more vias the better the thermal management

Problem investigation

– Similar to angled wires, but with a higher local thermal capacity with the help of cable,

pressfits, etc

» in correlation with the conductivity and the emissivity (radiation, Cu

0,76))

– Leads to temperatur increment

05.11.2013 www.we-online.de Seite 18

Page 19: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Frequently asked questions by customers

Layout

For implementing the WIRELAID technology in your PCB build-up, use an additional help layer

showing the relevant wires (width and length) in Gerber format

The combination of “bottom” and “wirelaid_bottom” represents the “Wirelaid copper foil” in the

shown build-up

05.11.2013 www.we-online.de Seite 19

bottom

wirelaid_bottom

(Help layer)

top

Page 20: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Example of use a)

Permanent current load 70 A

Allowed temperature 80C°

05.11.2013 www.we-online.de Seite 20

before: 8 layer build-up, 6 inner layer 105µm Cu

after: 4 layer with embedded wires (highlighted) under one layer

Advantages in cost by reduced amount of layers and thickness of copper foil

Page 21: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Example of use b)

Permanent current load 50 A

Allowed temperature 80C°

05.11.2013 www.we-online.de Seite 21

Before: 3 PCBs, 6 layers with 70µm

After: 1 PCB , 6 layers with 70µm + Wirelaid 3D

Advantages in cost through production , solder process and omission of connectors

Page 22: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Markets and target groups

05.11.2013 www.we-online.de Seite 22

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 23: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Applications

Automotive

05.11.2013 www.we-online.de Seite 23

Automotive

Motor electr..

Gear box electr.

Comfort electr.

Sensor and monitoring

system

Energy supply

Hybrid techology

Page 24: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Applications

Industrial electronics

05.11.2013 www.we-online.de Seite 24

Industrial electronics

Con-/inverter

Motor drive

Power supply

Switching power supply

Voltage distribution

Thyristor activation

control system

Sensor systems

Page 25: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Perspective - Powerflex

Embedded wires into depth-milled „Semiflex-area“

Combination of Wirelaid 3D and Semiflex

– Transfer of signals through Semiflex area

– Transfer of currents through Wirelaid 3D

05.11.2013 www.we-online.de Seite 25

Page 26: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Advantages of Wirelaid

05.11.2013 www.we-online.de Seite 26

Introduction

WIRELAID versus

Standard

Design Guide

Example of use

Markets and target groups

Advantages of WIRELAID

Page 27: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

Vorteile der Technologie

High currents without thick copper technology

– High currents within small areas

– Combination of power and signal processing electronics on one single layer

– Partial power management

– Thinner copper layers possible

Cost reduction

– Economical use of PCB area

– Reduction of layers

– Reduced efforts with soldering process

– Omission of connectors

Reliability

– Electrical connection without cable or connector

– Improvement of heat dissipation

Reduced system costs

05.11.2013 www.we-online.de Seite 27

Page 28: Partial high current solutions WIRELAID · Seite 13 05.11.2013 Wires welded under the internal layer rise of temperature (ΔT in °C) Strom [A] Î 8 10 12 14 16 18 20 22 24 26 28

05.11.2013 www.we-online.de Seite 28

I appreciate your attention.


Recommended