+ All Categories
Home > Documents > part_v_4

part_v_4

Date post: 03-Apr-2018
Category:
Upload: kiflom-birhane
View: 219 times
Download: 0 times
Share this document with a friend

of 29

Transcript
  • 7/29/2019 part_v_4

    1/29

  • 7/29/2019 part_v_4

    2/29

  • 7/29/2019 part_v_4

    3/29

  • 7/29/2019 part_v_4

    4/29

    u/

    ( )f

    ( )f

    ( ) : h

    0.40

    0.35

    0.30

    0.25

    0.20

    0.15

    0.10UndrainedStrengthR

    atio,c

    `vc

    Triaxial Compression TC : q

    Triaxial Extension TE : q

    Direct Simple Shear DSS

    TC

    DSS

    TE

    0 10 20 30 40 50 60 70 80 90 100Plasticity Index, Ip(%)

    Undrained Strength Anisotropy fromCK U Tests on Normallyo

    Consolidated Clays and Slits

    Adapted from Ladd (1991)

    Ks=

    cu

    cu

    s

    1.0

    0.8

    0.6

    0.4

    0.2

    (H)

    (V)

    Note : K lower for triaxial thanfor plane strain due to influenceof increasing b, i.e from b =0(TC) to b =1 (TE)

    0 20 40 60 80 100Plasticity Index, P.I. (%)

    TETC

    PSEPSC

    Stress History Reference

    vc > 1.5 - 2 x vmTable 1 Fig. 22,MIT and NGI

    vc

    vm

    vo

    vo

    =

    =1.15 - 1.8/

    and Berre andBjerrum, (1973)

    Data on Undrained Strength Ratio Anisotropic of L ow OCRCohesive Soils Cu =Su

    Adapted from Ladd et al. (1977)

  • 7/29/2019 part_v_4

    5/29

  • 7/29/2019 part_v_4

    6/29

  • 7/29/2019 part_v_4

    7/29

  • 7/29/2019 part_v_4

    8/29

  • 7/29/2019 part_v_4

    9/29

  • 7/29/2019 part_v_4

    10/29

    CorrectionFactor,

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    Cu( ) = u ( )

    Bj ( )

    Bj ( )

    l ( )

    ( )

    Fl ( )( )

    ^

    ^

    l

    Field x C Vane

    errum s 1972Recommended Curve

    ETS

    EABPL

    FRT

    errum 1972

    Mil igan 1972

    Ladd & Foott 1974

    aate & Preber 1974LaRochelle et al. 1974

    Layered & Varved C ays

    0 20 40 60 80 100 120Plasticity Index, PI (%)

    Field vane correction factor vs. plasticity index derived fromembankment failures (Ladd, 1975).

  • 7/29/2019 part_v_4

    11/29

  • 7/29/2019 part_v_4

    12/29

  • 7/29/2019 part_v_4

    13/29

  • 7/29/2019 part_v_4

    14/29

  • 7/29/2019 part_v_4

    15/29

  • 7/29/2019 part_v_4

    16/29

  • 7/29/2019 part_v_4

    17/29

    1.8

    0.4

    0.2

    7SHANSEP CKoUDSS Data (Cu ~Su)

    (%) (%)

    ( ) (

    ( )

    1

    Bangkok Clay

    AtchafalayaClay

    AGS CH Clay

    Boston BlueClay

    1.

    2.

    3.

    4.

    5.

    6.

    2

    3

    5

    6

    4

    Soil no. PI LL

    1. 6534

    2. 6541

    3. 9575

    4. 7141

    5. 4121

    6.^ 65393512

    Unpublished data by MIT 1974

    ^ "Clay" & "Silt" layers

    Maine Organic

    Conn. Valley

    Varved Clay

    61.6

    1.4

    21 2 4 6 8 10

    OCR =`vm

    /`vc

    Undrained strength ratio vs OCR from CKoU direct simple shear tests on six clays(Ladd and Edgers, 1972). 1

    Soils 1 to 5

    Soil 6

    See Fig. 25 for identificationof soil numbers

    Adapted from Ladd et al. (1977) son, 9thICSMFE 1 2 4 6 8 10OCR =vm/vc

    Relative increase in undrained strength ratio with OCR

    from CKoU direct simple shear tests (replot of data in

    Fig. 25)Adapted from Ladd et al. (1977) son, 9thICSMFE

    2.0

    TC

    Sym m

    0.78

    0.78

    0.82

    DSS

    TE

    Note: cu=qfcu=hfor DSSa

    Test

    for TC & TE

    2.0

    TC

    OC mNC

    0.865

    0.695

    0.82

    DSS

    TE

    b

    Test

    51.2

    1.0

    (cu/vc)NormallyConsolidated

    cu

    /`vc

    cu

    /`vc

    Overconsolidated

    40.8

    0.6

    3

    )

    1.51.5

    1.0 1.00.8

    Peakcu/'vc0.8

    0.60.6

    0.4 0.4

    0.30.3

    f

    (%)

    0.2 0.230

    20

    10

    0

    15

    10

    5

    01 2 4 6 8 10 1.0 1.5 2.0 2.5 3.0 4.0

    OCR =p' / ' OCR =p' / 'vc vc

    OCR vs. Undrained Strength Ratio and Shear Strain at Failure fromCKoUTests: (a) AGS Plastic Marine Clay via SHANSEP and (b) J ames Bay SensitiveMarine Clay via Recompression [B-6 Data from Le-febvre et al. (1983)]

    Adapted from Ladd (1991)

  • 7/29/2019 part_v_4

    18/29

  • 7/29/2019 part_v_4

    19/29

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    q/`p

    ' 'vo p=60 kPa, =145 - 150 kPa

    Ip=16%, IL =1.3

    Intact

    vcLaboratory

    pIn Situ

    0.34

    0.80

    1.33

    Destructured

    AT z =6.3m

    0 1 2 3 4 5 6 7 8

    Axial Strain, a(%)

    (a) Normalized Stress-strain Data From CkoUC Tests0.5

    0.4

    0.3

    0.2

    0.1

    0

    Kc=0.55

    R

    TC esp atinsit R

    intactyielden e

    'p

    q/

    vc p/

    ' =35

    'p

    DestructuredYield Envelope

    Large StrainTCat insituOC

    u OC velop

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    p /'p

    vc p pLAB IN SITU : Peak qr(TC)/

    AT IN SITU OCR :

    NORMALLY CONSOLIDATED :

    Triaxial Compression (TC)

    Triaxial Extension (TE)

    TC and TE (Destructured)

    (b) Normalized Effective Stress Paths and Yield EnvelopsAdapted from Jamiolkowski et al. (1985)

  • 7/29/2019 part_v_4

    20/29

    CK0U Testing Program

    oU

    n S m n S m(2) (3) (4) (5) (6) (7) (8) (9)(1)

    9^

    ^

    (%)

    CKReconsolidation Technique

    Shansep

    COV COV

    RecompressionTest

    TC 13 0.2800.142

    0.200

    0.180

    0.6810.830

    0.775

    0.660

    4.5%7.1%

    6.5%

    7.4%

    23 0.2980.144

    0.6760.978

    11.0%

    6.9%17

    14 ^

    13

    TEDSSCrust

    Deep

    ^For in situ OCR 1.5

    n =no. of testsCOV =Coef. of variation

    Table 1. Normalized Undrained Strength Parameters from

    0

    a c

    j

    (

    )

    h/`

    f

    u /'

    TC

    DSSTE

    Test SB EB

    Upper Clay

    Shansep DSS

    Lower Clay

    TE

    DSS

    TC

    Upper Clay

    Lower Clay

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    80

    60

    40

    20

    -20

    -40

    ProectElevationfeet

    DirectSimpleShear

    vc

    For Stress - Strain Behavior,Recompressionhas a "stiffer" response, i.e.

    >Lower , especially for TE &at higher OCR

    >Higher E 50 at OCR >2,especially for TE

    vc

    0.1 0.2 0.3 1 2 3 4 5 6 7 8 9 10Shansep NC su/`

    OCRvc

    b d

    1/`

    ( )

    c

    e

    TE

    TETC

    TC

    1.0 1.0

    0.9 0.9

    0.8 0.8

    0.7 0.7

    0.6 0.6

    0.5 0.5

    0.4 0.4

    0.3 0.3

    0.2 0.2

    0.1 0.1

    Triaxialq

    vc

    TC

    TE

    SHANSEP

    TC

    TE

    Recompression

    Shansep TX Recompression TX

    For Values of S & m, Recomprescompared to SHANSEP Leads

    >TC - Slightly higher S & sam>TE - Same S & much higher

    1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10OCR OCR

    Normalized Undrained Strength Data from SHANSEP and Recompression CK0U Tests

    Comparison of SHANSEP and Recompression CKoU Tests on Natural BostonBlue Clay (Ladd et al. 1998, ASCE GSP 91, 1-24)

  • 7/29/2019 part_v_4

    21/29

  • 7/29/2019 part_v_4

    22/29

  • 7/29/2019 part_v_4

    23/29

    SFV =0.165, m =0.96

    1.00.8

    0.6

    0.4

    0.2

    SFV =0.74, m =0.83

    5.0

    2.0

    1.0

    0.1

    Boston Blue

    Clay

    0.5

    Fore RiverOrganic Clay

    1 2 4 6 8 1 2 4 6 8

    Overconsolidation Ratio, OCR

    SFV =0.16, m =1.18 B - 2SFV =0.20, m =0.93 SFV =0.17, m =1.35 B - 6

    1.0

    Connecticut Valley

    Varved Clay

    1.0

    0.8 0.8

    0.6 0.6

    0.4 0.4

    B - 2

    B - 6

    James BayMarine Clay

    FieldVaneStreng

    th,

    Cu

    (FV)/`vo

    0.8

    MeanofScatteredData

    0.20.2

    0.1 0.11 2 4 6 8 1 2 4 6 8

    Overconsolidation Ratio, OCR

    Undrained Strength Ratio vs. OCR from Field Vane Tests[Lacasse et al. (1978) ] ;

    (a) Boston Blue Clay, I-95 Saugus ; MA(b) Connecticut Valley Varved Clay, Amherst, MA ;(c) Organic Clay with Shells, Fore River, ME;(d) James Bay B-2 and B-6 Marine Clays

    [Ladd et al. (1983)].

    Adpated from Jamiolkowski et al. (1985) SOA 11th ICSMFE

  • 7/29/2019 part_v_4

    24/29

  • 7/29/2019 part_v_4

    25/29

    Image removed due to copyright reasons. Please see: Ladd (1991).

    0.40

    0.35

    0.30

    0.25

    0.20

    0.15

    Note: Linear Regression Lines for Clay Data

    *

    *

    *

    **

    *

    **

    *

    Source of Strength DataA- Line

    Field cu/p: Larsson (1980)

    Lab CKoU ave/vcLab CKoUDssh/vc: MIT*

    cu/p

    h/vc

    ave/vc

    AboveBelow

    :Table 4

    0 10 20 30 40 50 60 70 80 90Plasticity Index, Ip(%)

    Comparison of field and laboratory undrained strength ratios for nonvarved sedimentary soils(OCR =1 for laboratoryCKoU testing)

    Adapted from Ladd (1991)

    UndrainedStrengthRatio

  • 7/29/2019 part_v_4

    26/29

  • 7/29/2019 part_v_4

    27/29

  • 7/29/2019 part_v_4

    28/29

    Undrained Shear Strength, Su(TSF)

    0 0.3 0.6 0.9 1.2 1.6 1.8

    Data Along CA/T SB Alignment(Haley & Aldrich)(Sta. =100 ft)

    0

    j

    (H)

    4+-

    -

    1+-

    ~~

    +2

    s= =

    c`=

    u

    80

    60

    40

    20

    70

    50

    30

    60

    40

    ProectElevation

    Sta. 87

    Sta. 71

    Sta. 95

    OCR

    1.1

    5

    Crust,Incr.OCR

    SHANSEP0.20, m 0.8

    UUC

    CIUC, vo

    Design S

    about Design Su

    80

    ( )

    ( )u

    u

    u

    ( )

    +-

    c

    `=2

    3`=c

    s =0.20, m =0.80

    s =0.18, m =0.70Ave. S

    Ave. S

    Design S

    s =0.29, m =0.68

    TriaxialCompression

    1SD

    UUC,

    Conventional Tests

    vo

    voCIUC,

    UUC Scattered about DesignSu

    UUC generally muchlower than Design S

    u

    CIUC >>Design SuUUC highly scattered

    Data from CAIT SpecialTest Program (Ladd et al. 199

    60UUC =Design SuWithin Cru

    UUC >Design Su

    Note: UUC and CIUC on hig

    quality FP 3" samples with20 mudded hole

    0

    -20

    GSEI=+110

    ProjectE

    levation(feet)

    0 0.5 1.0 1.5 2.0 2.5 3.0Undrained Shear Strength, Su(KSF)

    Comparison of Undrained Strengths from Conventional Triaxial Tests with

    SHANSEP su Profiles at SB Test SiteComparison of Conventional Vs. SHANSEP su Data: BBC

  • 7/29/2019 part_v_4

    29/29