+ All Categories
Home > Documents > Pascal Naidon Microscopic origin and universality classes of the three-body parameter Shimpei Endo...

Pascal Naidon Microscopic origin and universality classes of the three-body parameter Shimpei Endo...

Date post: 16-Dec-2015
Category:
Upload: blaine-dollins
View: 219 times
Download: 2 times
Share this document with a friend
Popular Tags:
17
Pascal Naidon Microscopic origin and universality classes of the three-body parameter Shimpei Endo Masahito Ueda The University of Tokyo
Transcript

Pascal Naidon

Microscopic origin and universality classes of the three-body parameter

Shimpei Endo

Masahito Ueda

The University of Tokyo

3 particles (bosons or distinguishable) with

resonant two-body interactions

β€’ single-channel two-body interaction

β€’ no three-body interaction

Zero-range condition with

Efimov attraction

R

x

𝑅2=23(π‘₯2+𝑦2+𝑧 2)Hyperradius

The Efimov effect (1970)

y

z

1/π‘Ž

𝐸

The Efimov 3-body parameter

Th

ree-b

od

y

para

mete

r

Parameters describing particles at low energyScattering length a

π‘Ž

1/π‘Žβˆ’

-

dimertrimer

Ξ›βˆ’1 3-body parameter

(2-body parameter)

Zero-range condition with

Efimov attraction

R

x

𝑅2=23(π‘₯2+𝑦2+𝑧 2)Hyperradius

The Efimov effect (1970)

y

z

1/π‘Ž

𝐸

The Efimov 3-body parameter

Th

ree-b

od

y

para

mete

r

Parameters describing particles at low energyScattering length a

π‘Ž

1/π‘Žβˆ’

-

dimertrimer

Ξ›βˆ’1 3-body parameter

(2-body parameter)

22.72

Microscopic determination?

Universality for atoms

r

short-range details

βˆ’1

π‘Ÿ6 van der Waals

Two-body potential

Effective three-body potential

Hyperradius R

short-range details

βˆ’1

𝑅2 Efimov

trip

let s

catt

. len

gth

4He

7Li

6Li

39K23Na

87Rb

85Rb

133Csno universality of the scattering length

π‘Žβˆ’[π‘Ž

0]

π‘Žβˆ’β‰ˆ βˆ’10π‘Ÿ π‘£π‘‘π‘Š

universality of the 3-body parameter

Three-body with van der Waals interactionsPhys. Rev. Lett. 108 263001 (2012)J. Wang, J. D’Incao, B. Esry, C. Greene

π‘Žβˆ’β‰ˆ βˆ’11π‘Ÿ π‘£π‘‘π‘ŠThree-body repulsion

at

Efimov

Lennard-Jones potentials supporting n = 1, 2, 3, ...10 s-wave bound states

Hyperradius R

Interpretation: two-body correlation

πœ“π‘˜  =sin(π‘˜π‘Ÿ ΒΏβˆ’π›Ώπ‘˜)ΒΏ

Asymptotic behaviour

Two-body correlation

πœ“π‘˜

𝑉 (π‘Ÿ )

Resonance

πœ“π‘˜

𝑉 (π‘Ÿ )

Interatomic separation r

Strong depletion

∼ 12π‘Ÿπ‘’=∫

0

∞

(πœ“ 0 (π‘Ÿ )2 βˆ’πœ“ 0 (π‘Ÿ )2 )π‘‘π‘Ÿπ‘Ÿ0 β‰ˆπ‘Ÿ π‘£π‘‘π‘Š

Interpretation: two-body correlation

squeezed

equilateral

elongated

Excluded configurations

induced deformation Efimov

Kinetic energy

cost due to

deformation

deformation

π‘Ÿ0

Exc

lud

ed

configura

tions

Confirmation 1: pair correlation model

FModel = FEfimov x j(r12) j(r23) j(r31) (product of pair

correlations)(hyperangular wave function)

3-body potential

π‘ˆ (𝑅 )= πœ†π‘…2

+βˆ«π‘‘cosπœƒ 𝑑𝛼|πœ•Ξ¦πœ•π‘…|

2

Hyperradius R []

Ene

rgy

E [

] Pair model(for Lennard-Jones two-body interactions)

Exact

Efimov attraction

Reproduces the low-energy 2-body physicsβ€’ Scattering lengthβ€’ Effective rangeβ€’ Last bound stateβ€’ ….

Confirmation 2: separable model

𝑉=πœ‰|πœ’ ⟩ ⟨ πœ’βˆ¨ΒΏParameterised to reproduce exactly the two-body correlation at zero energy.

1/π‘Žβˆ’

-

πœ’ (π‘ž)=1βˆ’π‘žβˆ«0

∞

(πœ“ 0 (π‘Ÿ ) βˆ’πœ“ 0(π‘Ÿ ))sinπ‘žπ‘Ÿ π‘‘π‘Ÿ

πœ‰=4πœ‹ ( 1π‘Ž

βˆ’2πœ‹βˆ«0

∞

|πœ’ (π‘ž )|2π‘‘π‘ž)

βˆ’1

Hyperradius R

Inte

gra

ted

pro

babili

ty

Hyperradius R

Energ

y

Confirmation 2: separable model

𝑉=πœ‰|πœ’ ⟩ ⟨ πœ’βˆ¨ΒΏParameterised to reproduce exactly the two-body correlation at zero energy.

π‘Žβˆ’

π‘Ÿπ‘£π‘‘π‘Š π‘Žβˆ’=βˆ’10.86 (1)π‘Ÿ π‘£π‘‘π‘Š

n

Exact

Pair model

Separable model

Confirmation 2: separable model

𝑉=πœ‰|πœ’ ⟩ ⟨ πœ’βˆ¨ΒΏParameterised to reproduce exactly the two-body correlation at zero energy.

S. Moszkowski, S. Fleck, A. Krikeb, L. TheuΓΏl, J.-M.Richard, and K. Varga, Phys. Rev. A 62 , 032504 (2000).

Other potentials

Potential

Yukawa -5.73 0.414

Exponential -10.7 0.216

Gaussian -4.27 0.486

Morse () -12.3 0.180

Morse () -16.4 0.131

PΓΆschl-Teller () -6.02 0.367

-6.55

-11.0

-4.47

-12.6

-16.3

-6.23

0.204

-0.366

0.472

0.173

0.128

0.350

Separable model

Exact calculations

at most 10% deviation

Summary

two-body correlation

three-body deformation

three-body repulsion

three-body parameter

universal

universal effective range

effective range

Two-body correlation universality classes

Power-law tails Faster than Power-law tails

Interparticle distance ()

Pro

bab

ility

densi

ty

0.0 1.0 2.0 3.0 4.0

Van der Waals

βˆβˆ’1

π‘Ÿ 𝑛 (𝑛>3)

Step function correlation limit

Universal correlationπœ“ 0 (π‘Ÿ )=Ξ“ (π‘›βˆ’1

π‘›βˆ’2 ) (π‘Ÿ /π‘Ÿπ‘›)1/2 𝐽 1/(π‘›βˆ’ 2)(2 (π‘Ÿ /π‘Ÿ 𝑛)βˆ’(π‘›βˆ’ 2)/2)

Separable model

Number of two-body bound states

Bin

din

g w

ave n

um

ber

at

unit

ari

ty3-body parameter in units of the two-body effective range

Atomic physics

Nuclear physics

?

(= size of two-body correlation)

πœ…=βˆ’0.2190 (1 )( π‘Ÿ 𝑒

2 )βˆ’1

πœ…=βˆ’0.261 (1 )( π‘Ÿπ‘’2 )βˆ’1

πœ…=βˆ’0.364 (1 )( π‘Ÿπ‘’2 )βˆ’ 1

P. Naidon, S. Endo, M. Ueda, PRL 112, 105301 (2014)

P. Naidon, S. Endo, M. Ueda, PRA 90, 022106 (2014)

Summary

The 3-body parameter is (mostly) determined by the low-energy 2-body correlation.Reason: 2-body correlation induces a deformation of the 3-body system.Consequences: the 3-body parameterβ€’ is on the order of the effective range.β€’ has different universal values for distinct classes

of interaction

Obrigado pela sua attenção!


Recommended