+ All Categories
Home > Documents > Passive Energy Dissipation Systems - M. C. Constantinou

Passive Energy Dissipation Systems - M. C. Constantinou

Date post: 03-Jun-2018
Category:
Upload: edy-galvis
View: 214 times
Download: 0 times
Share this document with a friend

of 321

Transcript
  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    1/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    2/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    3/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    4/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    5/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    6/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    7/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    8/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    9/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    10/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    11/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    12/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    13/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    14/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    15/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    16/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    17/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    18/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    19/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    20/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    21/321

    E E E E Ek s h d = + + +

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    22/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    23/321

    With MetallicYielding EDS

    Without EDS

    With Friction EDS

    Without EDS

    With Viscoelastic EDS

    Without EDS

    Slope Dependent on

    Frequency andDeformation

    Lateral Deformation Lateral Deformation

    Lateral Deformation

    LateralBase

    Shear

    LateralBas

    e

    Shear

    LateralBas

    e

    Shear

    Friction Force

    Figure 1.1 Effect of Energy Dissipation Systems on Force-Deformation Curves of

    a Structure

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    24/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    25/321

    Passive ControlSystem

    StructureExcitation Response

    Figure 1.2 Elements of a Passive Control System

    Controller

    Power Source

    Active ControlSystem

    Sensors Sensors

    Excitation Structure Response

    Figure 1.3 Elements of an Active Control System

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    26/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    27/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    28/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    29/321

    Force

    Force

    Displacement Displacement

    Metallic YieldingDevice

    Friction Device

    Fo Fo

    Xo Xo

    Figure 2.1 Idealized Force-Displacement Loops of Hysteretic Energy Dissipation Devices

    Force

    Force

    Displacement Displacement

    F = c' xXXo o o

    o

    o

    K = k' + c'

    K'

    * 2 2 2

    F

    Viscoelastic Solidor Fluid Device

    Viscous FluidDevice

    Figure 2.2 Idealized Force-Displacement Loops of Viscoelastic Energy Dissipation Devices

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    30/321

    Force

    Force

    Displacement Displacement

    Dynamic

    Static

    Fluid RestoringForce/Damping Device

    Frictional-Spring Devicewith Recentering Capability

    Figure 2.3 Idealized Force-Displacement Loops of Other Energy Dissipating Devices

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    31/321

    F

    F

    F

    V

    V

    V

    V

    V

    Without Energy Dissipation System

    With Energy Dissipation System

    Energy DissipationDevice

    Viscoelastic EDS

    Hysteretic EDS

    R

    R

    R

    R

    R

    3

    2

    1

    V = Fi

    Figure 2.4 Pushover Curves and Force-Displacement Hysteresis Loops of an ElasticStructure Without and With Energy Dissipation Systems

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    32/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    33/321

    Figure 2.5 Pushover Curves and Force-Displacement Hysteresis Loops of a Yielding StructureHaving Proper Plastic Hinge Formation Without and With Energy Dissipation Systems

    Without Energy Dissipation System

    With Energy Dissipation System

    Plastic Hinge

    Energy DissipationDevice

    Viscoelastic EDS

    Hysteretic EDS

    F

    F

    F

    V

    V V

    V = F

    3

    2

    1

    i

    R

    R

    R R

    R

    V V

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    34/321

    10% Added Damping

    30% Added Damping

    20% Added Damping

    Velocity Domain (Long-Period Range)

    1.0

    0.8

    0.6

    0.4

    0.2

    0.00.0 0.1 0.2 0.3

    Damping Ratio of Structure WithoutEnergy Dissipation System

    DisplacementResponseR

    atio

    (ResponsewithAddedEDS/Responsew

    /outEDS)

    Figure 2.6 Response Reduction of Structure with Added Damping of 10, 20 or 30% ofCritical

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    35/321

    R

    R

    R R

    R

    F

    F

    F

    3

    2

    1

    Plastic Hinge

    Energy DissipationDevice

    Without Energy Dissipation System

    With Energy Dissipation System

    V = F i

    V

    V

    V

    Viscoelastic EDS

    Hysteretic EDS

    Figure 2.7 Pushover Curves and Force-Displacement Hysteresis Loops of a YieldingStructure Having Improper Plastic Hinge Formation Without and With Energy DissipationSystems

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    36/321

    F k x c x= +' ' ( ) ( )

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    37/321

    kk

    k

    W

    L

    4

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    38/321

    Figure 2.8 Definition of Relative Displacement and Angle of Inclination of Energy DissipationDevice

    L 1

    2

    1

    2mk

    Tk2

    i i2

    i

    = = K

    k

    j j rjj

    k i ii

    c

    m=

    1

    2

    2 2

    2

    ' cos

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    39/321

    k

    j2

    j rj2

    j

    k

    =

    cos

    K

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    40/321

    k G A

    hc

    G A

    h

    G

    G

    b b' ' , ' "

    , "

    '= = =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    41/321

    4

    4

    3

    3

    2

    2

    1

    1

    0

    0

    0

    0

    0

    1

    1

    1

    2

    2

    2

    3

    3

    3

    4

    4

    4

    5

    5

    5

    Temp.= 21 C

    Temp.= 32 C

    o

    o

    k' = G' h

    Ab

    = 0.05

    = 0.05

    = 0.05

    = 0.05

    = 0.2

    = 0.2

    = 0.2

    = 0.2

    = 0.05

    = 0.05

    = 0.2

    = 0.2

    o

    o

    o

    o

    o

    o

    o

    o

    o

    o

    o

    o

    c' = G"Ah

    b

    =G'G" = c'

    k'

    Frequency (Hz)

    LossFactor

    G"(MPa)

    G'(MPa

    )

    1.5

    1.0

    0.5

    Figure 2.9 Properties of a Viscoelastic Solid Energy Dissipation Device

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    42/321

    M

    m

    m

    k

    i iki

    i iki

    =

    2

    2

    V M S S k k ak ik ik k dk = =,

    ki ik i

    i

    i iki

    m S

    m

    =

    2

    =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    43/321

    Table 2.1 Factor for Modification of Response

    Figure 2.10 Modification of Elastic Response Spectrum for Damping Different than 5% ofCritical

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    44/321

    S f f S a pa= +1 22

    f f11

    21

    2 2= = cos tan ( ) sin tan ( ) ,

    Figure 2.11 Response Spectra of Maximum and Pseudo Acceleration

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    45/321

    W F x f d o o=4

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    46/321

    W c xd o= ' 2

    F c x xva= sgn( )

    W c x F xd v o1

    o o= =+

    =

    +

    +4 2

    12

    2

    2

    & = &

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    47/321

    F c

    k

    dF

    dtc uv

    bv+ =

    k c

    c cv v' , '( ) ( )

    =

    + =

    +

    2

    2 2 2 21 1

    =

    Figure 2.12 Viscous Fluid Damper Installed on Top of Chevron Brace in aStructure

    Viscous Fluid Damper

    C = 4 kNs/mmv

    Steel Brace(A=5000 mm )2

    =59o

    4.30 m

    3.60m L=

    3.9m

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    48/321

    =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    49/321

    Figure 2.13 Gravity and Additional Axial Load in Interior Column of 9-Story Model Structurewith Friction Energy Dissipation Devices

    78in 60in 78in

    2.4

    2.4

    3.1

    4.9

    5.0

    4.8

    4.8

    4.9

    1.24 k

    1.24 k

    1.60 k

    2.54 k

    2.59 k

    2.48 k

    2.48 k

    2.54 k

    W4x

    13

    36 in (TYP)

    48 in

    12.75kips

    29.46kips

    GravityOnly

    Total

    46 (TYP)o

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    50/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    51/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    52/321

    Figure 2.14 Illustration of Simplified Nonlinear Method of Analysis

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    53/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    54/321

    =

    Figure 2.15 Analyzed SDOF Inelastic System with Linear Viscous Energy DissipationSystem

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    55/321

    = =

    Table 2.2 Motions Used in Analysis and Scale Factors

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    56/321

    Figure 2.17 Average Damped Response Spectra of Scaled Motions

    Figure 2.16 Response Spectra of Scaled Motions used in Analysis

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    57/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    58/321

    T D

    Aeff =

    2

    1

    2

    eff

    y y eff

    eli

    A D AD

    AD

    T

    T=

    + +

    2

    Figure 2.18 Average Maximum Velocity Spectra of Scaled Motions and Pseudo-VelocitySpectra for Damping Ratio of 0.1, 0.2 and 0.5 in the Long-Period Range

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    59/321

    Table 2.3 Results of Analysis on Peak Displacements for System with = 0.5 secand = 0.15

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    60/321

    Table 2.4 Results of Analysis on Peak Displacements for System with = 1.0 secand = 0.15

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    61/321

    Table 2.5 Results of Analysis on Peak Displacements for System with = 0.5 secand = 0.25

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    62/321

    Table 2.6 Results of Analysis on Peak Displacements for System with = 1.0 sec

    and = 0.25

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    63/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    64/321

    Table 2.7 Results of Analysis and Prediction of Simplified Method, Case ofSystem with = 1.0 sec and = 0.15

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    65/321

    = & &

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    66/321

    = = =

    Figure 2.19 Average Response Spectra of Scaled Motions in the Short-Period Range andfor High Damping

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    67/321

    = =

    Figure 2.20 Example Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    68/321

    Figure 2.21 Pushover Curves of Example Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    69/321

    Table 2.8 Modal Properties of Example Building in VariousStages of Pushover Analysis by the Modal Pattern

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    70/321

    Table 2.9 Modal Properties of Example Building in Various Stagesof Pushover Analysis by the Uniform Pattern

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    71/321

    eff

    y yq A D AD

    AD=

    2

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    72/321

    = =

    Figure 2.22 Overlying of Spectral Capacity Curve and Design Demand Spectrum for ResponseCalculation in Fundamental Mode, Case of Modal Pattern

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    73/321

    Table 2.10 Response of Example Structure for Modal Pattern of Lateral Loads

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    74/321

    Figu

    re2.23

    IllustrationofForcesActin

    gonExampleStructureforModal

    PatternofLateralLoadsandActio

    nsinSelectedMember

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    75/321

    Table 2.11 Response of Example Structure for Uniform Pattern of LateralLoads

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    76/321

    +

    Figure 2.24 Calculated First Story Shear-Drift Loops in Nonlinear Dynamic Analysis of ExampleBuilding

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    77/321

    Table 2.12 Comparison of Results of Nonlinear Dynamic and Simplified NonlinearMethods of Analysis

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    78/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    79/321

    Figure 2.25 Comparison of Distribution of Shear Force with Height in 8-story Structure with

    Hysteretic and Linear Viscous Isolation Systems. Seismic Input Representative of Seismic Zone4, Soil type per 1994 UBC

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    80/321

    Figure 2.26 Force-Velocity Relation of Reduced-Scale Prototype Fluid Damper of San BernardinoCounty Medical Center Replacement Project

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    81/321

    Figure 2.27 Level 2 Bridge Design Spectra for Japan (Ground Condition 1 = Stiff Soil; GroundCondition 3 = Deep Alluvium Soil)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    82/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    83/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    84/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    85/321

    Table 3.1 Passive Energy Dissipation Systems

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    86/321

    x t x to( ) sin=

    Figure 3.1 Idealizations for Passively Damped SDOF Structures (M, K, C)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    87/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    88/321

    Figure 3.3 Metallic Damper Geometries

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    89/321

    Figure 3.4 Stress-strain Response of Structural Steel

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    90/321

    F k x k x F B

    Fo o

    o

    n

    =

    B k x F B

    Fo

    o

    n

    =

    Figure 3.5 Force-displacement Response of X-shaped Plate Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    91/321

    Figure 3.6 &&Ozdemir Rate-independent Model

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    92/321

    Figure 3.7 Two Surface Force-Displacement Model

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    93/321

    Table 3.2 Uniaxial Two-Surface Device Model

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    94/321

    Figure 3.8 Representative Friction Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    95/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    96/321

    t n=

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    97/321

    Figure 3.9 Hysteresis Loops of Limited Slip Bolted Joints

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    98/321

    Table 3.3 Elastic-Perfectly Plastic Device Model

    Table 3.4 Hysteric Device Model with Symmetric

    Bearing Stops

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    99/321

    Figure 3.10 Coulomb Friction Element

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    100/321

    ( ) ( ) ( )

    ( )( )t G t

    Gt= +'

    "

    =

    Figure 3.11 Idealized Force-displacement Response of Viscoelastic Devices

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    101/321

    ( ) ( ) ( ) d ( ) ( )t G t G t o

    t= ++

    0

    ( ) ( ) ( )ot

    t G t d =

    Figure 3.12 Typical Viscoelastic Solid Damper Configuration

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    102/321

    G t GG G

    t te

    g e

    o

    ( )= +

    +1 /

    Figure 3.13 Stress Relaxation Tests at Different Strain Rates

    G G G G t t e g e o o'( ) cos = + +

    1

    2

    G G G t tg e o o" sin = +

    1

    2

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    103/321

    Figure 3.14 Comparison of Storage and Loss Moduli Between Simulation and Test

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    104/321

    = =

    =

    G G T T vs

    G G T T vs

    G t G T T vs t /

    0 0

    0 0 0

    0 0 0

    0

    a b

    log + =a b

    F t k x t c t = +' '

    x

    kAG

    cAG

    ''

    '"

    = =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    105/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    106/321

    Figure 3.16 Viscoelastic Fluid Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    107/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    108/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    109/321

    G Ti T

    i To

    o

    o

    v* ,

    =

    +1

    Figure 3.17 Dynamic Modulus for Polybutane Fluid

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    110/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    111/321

    =

    F Cdx

    dto=t

    t

    F tdF t

    dtC

    dx t

    dto+ =

    Figure 3.19 Force-displacement Response of Orificed Fluid Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    112/321

    Figure 3.20 Comparison of Experimental and Analytically-derived Values for Orificed Fluid Damperat Room Temperature

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    113/321

    F F x x k x

    F k x Z F x

    o o

    o d

    = + +

    + +

    1 exp sgn

    sgn min

    x Z x Z Z xZ xy

    + + = 2 0

    Figure 3.21 Pressurized Fluid Restoring Device

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    114/321

    FF x xx

    F x xxd

    dp p

    dm m

    = >

    + < > + < >= < + > < >

    1

    < > < > =< > =&& & &

    C y f g y m zy12

    1 1< > = < + > < >& & &&&( )

    < >&

    < + > & && & < >

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    124/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    125/321

    =

    =

    = =

    = =

    Figure 3.32 Amplification Factor as a Function of

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    126/321

    opt=

    +1

    1

    R= +1 2

    opt=

    +3

    8 1

    RA B

    C Dj

    j j= +

    +

    2 2

    2 2

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    127/321

    < >

    +

    +

    +

    +

    &&

    +

    +

    &&

    &&

    +

    +

    &&

    && &&

    &&

    +

    +

    +

    +

    +

    < >

    +

    +

    < >

    Table 3.5 Optimum Absorber Parameters Attached to Undamped SDOF Structure

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    128/321

    Table 3.6 Values of Aj

    and Bj

    for Various Excitations and Response Parameters

    &&

    &&

    &

    &&

    &&

    &&

    +

    && && +

    &

    &&

    && &&

    &&

    +

    &&

    +

    +

    &&

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    129/321

    C a s= 2 2 2 2 2 2

    1 4

    D s= + 2 1 22 2 2 2

    , ,xt h u+ + = 0

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    130/321

    u uu g h

    3u

    1h

    v2

    1 2hb

    C u x 0

    ,t ,x ,x

    2

    ,xxt

    1/ 2

    b

    + +

    +

    + +

    + =

    &&

    &&

    =

    Figure 3.33 Tuned Liquid Damper Geometric Definition

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    131/321

    ( ) ( )

    ( ) k1/ 2

    22

    2

    2k 1gh

    L1

    1

    62k 1

    h

    L=

    Figure 3.34 Free Surface Time Histories Near Lowest Resonance

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    132/321

    Figure 3.35 Free Surface Time Histories Near Lowest Resonance

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    133/321

    Figure 3.36 Tuned Liquid Damper Surface Elevation Extrema and Base Shear Force Response

    Figure 3.37 Tuned Liquid Damper Force-displacement Response

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    134/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    135/321

    && & &&x Cx Kx x x p+ + + = + +g &&

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    136/321

    x x Cx Kx= + +&& &

    $ && $ & $ $ &&x Cx Kx x p+ + = +g

    $ = + $C C C= +

    $K K K= +

    $ $ $

    $ $ $ $

    $ $K 0

    =o2

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    137/321

    i j $ =

    =

    01

    for i j

    for i j

    i j $K =

    =

    0 for i jfor i joi

    2

    $ $

    x y=

    && $ & &&y C y y y p+ + = + o g2

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    138/321

    && $ &&y xg g= $

    $ $ $C K= + 0 1

    $C = + 0 12o

    $

    $ $ $ $C M K

    =

    j 1j 0

    N 1 j

    $

    $C =2o

    && & &&y y y y p= + = +2 2 o o g

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    139/321

    y y y y qi i oi i oi i gi i= + = +2 2

    qi= i

    p

    g x x C x K x x p 0t t t t t t gt t

    = + + + =$ && $ & $ $ &&

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    140/321

    +

    g x x C x

    K x x p 0

    t t t t t t t t

    t t t t t t t t

    + + + +

    + + + +

    = +

    + + =

    $&& $ &

    $ $ &&

    g

    +

    ( )x x x xt t t t t t t+ += + + 2

    & &

    & & && &&x x x xt t t t t t t+ += + +

    2

    ( )g x K x f t t t t t t t t + + + += =

    0

    ( )

    $ $K K Ct t t t t t 2

    2

    t

    4

    t

    + + += + +

    $ &&

    $ $

    $ $ & $ &&

    f Mx p

    M C x

    M C x Mx

    t t t t t

    t t t

    t t t t

    t t

    t

    + + +

    +

    +

    = +

    + +

    + +

    +

    g

    +

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    141/321

    K x f(n)t+ t

    (n)

    t t = +

    K g

    x(n)t t

    (n)

    t+ t+ =

    f g x(n)t t

    nt+ t+ =

    ( )

    ( ) ( )x x xn 1t t

    nt t

    ++ += +

    x xt t n

    t t++

    += 1 +

    x x( )1t t t+

    =

    K( )nt t+

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    142/321

    = =

    && & &&x Cx Kx f x p+ + + = +g

    f =

    + +

    n F n F

    n F n F

    n F n F

    n F

    1 1 2 2

    2 2 3 3

    j j j 1 j 1

    N N

    M

    M

    FdF

    dtC

    dx

    dt

    dx

    dtj

    j

    j

    j j+ =

    0

    2 1cos

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    143/321

    && K x x p = +g

    ( ) ( )

    K C K = + + + i

    x f=

    ~ ~ ~F

    i C

    ix xj

    jj j= +

    0

    2

    11

    cos

    Bz Az f &+ =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    144/321

    z

    x

    x

    f

    =

    &

    B

    0 0

    0 0

    0 0

    =

    A

    C K

    0 0D 0

    =

    f

    x p

    0

    0

    g

    =

    +

    &&

    ( )A B z 0+ =

    oi i=

    oi i oi= /

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    145/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    146/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    147/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    148/321

    Figure 4.1 Force-displacement Relationship for Elastic-Perfectly Plastic Element

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    149/321

    = +

    m

    k k

    Figure 4.2 SDOF Response to 1940 El Centro (N-S Component)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    150/321

    &&

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    151/321

    Figure 4.3 Load-displacement Response of Limited Slip Bolted Joints

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    152/321

    Figure 4.4 Refined Model for X-braced Friction Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    153/321

    Figure 4.5 Experimental Hysteresis Loops for X-braced Friction Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    154/321

    Figure 4.6 Slotted Bolted Connection

    Figure 4.7 Typical Load Deformation Diagram for Slotted Bolted Connections

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    155/321

    Figure 4.8 Cyclic Response of Slotted Bolted Connections

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    156/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    157/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    158/321

    Figure 4.10 Experimental Data for EDR

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    159/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    160/321

    Figure 4.11 Response of Sumitomo Dampers in Nine-Story Frame for El Centro 0.712g Input

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    161/321

    Figure 4.12 Overall Response Comparison in Nine-story Frame for El Centro 0.712g Input

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    162/321

    Figure 4.13 EDR Response in Three-story Test Frame for Zacatula Ground Motion

    Figure 4.14 Cumulative Energy Time History for EDR Damped Three-story Test Frame

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    163/321

    Figure 4.15 Numerical Results of LSB Joint for El Centro Ground Motion

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    164/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    165/321

    = =

    Figure 4.16 Numerical Response of SDOF Structure with EDR

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    166/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    167/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    168/321

    = = =

    Figure 4.18 Effect of Ambient Temperature on Natural Frequency and Damping Ratio

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    169/321

    Table 4.1 Summary of Dynamic Response Reduction Percentage under 0.12g White

    Noise Excitation

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    170/321

    Figure 4.19 Roof Displacement Time Histories

    Figure 4.20 Displacement Time History at Roof

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    171/321

    Table 4.2 Summary of Dynamic Response under 0.60g El Centro and HachinoheEarthquake Motions

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    172/321

    Figure 4.21 Response Envelopes: - - - - - -with Dampers, without Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    173/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    174/321

    Figure 4.23 Force-deformation Curves under 0.2g Taft Earthquake

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    175/321

    x = k + c x

    ( &

    =

    Figure 4.24 Contribution of Energy Terms

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    176/321

    ii v

    i

    E

    E=

    E Ev i i i i i= =

    K K K

    ii i i

    i i

    =+

    K

    K K

    = +

    i i i

    i i

    K

    K K

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    177/321

    i i i

    i i=

    +

    K K

    i

    i i

    i

    =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    178/321

    & & =

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    179/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    180/321

    Figure 4.26 Damper Configurations for Three-story Structure

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    181/321

    Figure 4.27 Acceleration, Story Shear and Interstory Drift Profiles of 3-story Structure

    Table 4.4 Properties of Three-story Structure

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    182/321

    Figure 4.28 Comparison of Response Profiles for Two Different Levels of the Same Earthquake

    Figure 4.29 Comparison of Experimental and Analytical Results

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    183/321

    Figure 4.30 Displacement Response Histories

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    184/321

    Figure 4.31 Acceleration Response Histories

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    185/321

    Figure 4.32 Comparison of Forces in Structural Components at First Floor

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    186/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    187/321

    Figure 4.34 and as Functions of

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    188/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    189/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    190/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    191/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    192/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    193/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    194/321

    &&

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    195/321

    Figure 4.35 Large Strain Behavior of Nitinol

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    196/321

    Figure 4.36 Superelastic Behavior

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    197/321

    Figure 4.37 Torsional Bar Design

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    198/321

    Figure 4.38 Maximum Floor Response (0.06g El Centro)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    199/321

    Figure 4.39 Maximum Floor Response (0.06g Quebec)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    200/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    201/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    202/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    203/321

    Figure 5.1 Izazaga #38-40 Building, Mexico City

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    204/321

    Figure 5.3 Cardiology Hospital Building with Exterior Buttresses and ADAS

    Damper

    Figure 5.2 Brace-Damper Assembly in Izazaga #38-40 Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    205/321

    Figure 5.4 IMSS Reforma Building, Mexico City

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    206/321

    Figure 5.5 Brace-Damper IMSS Reforma Building Retrofit Scheme from Outside

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    207/321

    Table 5.1 Calculated Earthquake Response for IMSS Reforma Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    208/321

    Figure 5.7 Structural Analysis Model for Wells Fargo Bank Building

    Figure 5.6 Wells Fargo Bank Building Retrofit Details

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    209/321

    Figure 5.8 Comparison of Computed Results for Wells Fargo Bank Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    210/321

    Figure 5.9 Pall Friction Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    211/321

    Figure 5.10 McConnel Library at Concordia

    University in Montreal

    Figure 5.11 Exposed Friction Damper in McConnel Library Galleria

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    212/321

    Figure 5.12 View of Canadian Space Agency Complex

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    213/321

    Figure 5.13 Ground Floor Plan of Main Building in Canadian Space Agency

    Figure 5.14 Exterior View of Ecole Polyvalante, Sorel

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    214/321

    Figure 5.15 North View of Casino de Montreal

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    215/321

    Figure 5.16 Damper Installation in the World Trade Center, New York

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    216/321

    Figure 5.17 The Columbia SeaFirstBuilding, Seattle

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    217/321

    Figure 5.18 Plan View and Details of Wind Resisting System for ColumbiaSeaFirst Building

    Figure 5.19 Damper Installation in the Columbia SeaFirst Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    218/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    219/321

    Figure 5.22 Location of VE Dampers in Santa Clara County Building

    Figure 5.21 Santa Clara County Building,San Jose

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    220/321

    Figure 5.24 Building 116, Naval Supply Facility, San Diego

    Figure 5.23 Damper Configuration in Santa Clara County Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    221/321

    Figure 5.25 Elevation and Plan of Building 116

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    222/321

    Figure 5.26 Damper Configuration in Building 116

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    223/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    224/321

    Figure 5.29 Damper-Base Isolator System Assembly for San Bernardino Medical Center

    Figure 5.30 Dimensions of Viscous Fluid Damper for San Bernardino Medical Center

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    225/321

    Figure 5.31 Pacific Bell North Area Operations Center, Sacramento, under Construction

    Figure 5.32 Damper Installation in the Pacific Bell North Area Operations Center

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    226/321

    Figure 5.33 Woodland Hotel, Woodland, California

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    227/321

    Figure 5.34 Viscous Damping Wall Locations in SUT-Building, ShizukaCity, Japan

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    228/321

    Figure 5.35 Water Tank TMD at Centerpoint Tower, Sydney, Australia

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    229/321

    Figure 5.37 TMD in Citicorp Center

    Figure 5.36 Citicorp Center, New York

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    230/321

    Table 5.2 Tuned Mass Dampers in John Hancock Tower, Boston and Citicorp Center,New York

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    231/321

    Figure 5.38 Dual TMD System in John Hancock Tower, Boston

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    232/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    233/321

    Table 5.3 TMD and Structural Parameters, Chiba Port Tower

    Figure 5.40 RMS Accelerations Without and With TMD, Chiba Port Tower

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    234/321

    Figure 5.41 TMD on Funade Bridge Tower, Osaka

    Figure 5.42 Damped Free Vibrations Without and With TMD, Funade Bridge

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    235/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    236/321

    Figure 5.44 Installation of Vessels in TLD Room in Tower

    Figure 5.43 TLD Vessel, Tokyo Airport Tower

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    237/321

    Figure 5.45 Temporal Variation of RMS Acceleration and Damping Ratio of Tower

    Figure 5.46 Comparisons of RMS Acceleration Responses of TIAT with/

    without TLD (x-direction, across-wind)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    238/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    239/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    240/321

    B1

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    241/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    242/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    243/321

    Figure 7.1 A Semi-Active Mass Damper

    Figure 7.2 Schematic of Semi-Active Device

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    244/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    245/321

    Figure 7.3 Sendagaya INTES Building

    Figure 7.4 Top View of AMD

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    246/321

    Figure 7.6 Response Time Histories (March 29, 1993)

    Figure 7.5 Elevation of AMD

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    247/321

    Figure 7.7 Response Fourier Spectra (March 29, 1993)

    Figure 7.8 Hankyu Chayamachi Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    248/321

    Figure 7.9 Layout of HMD

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    249/321

    Figure 7.11 Principle of DUOX System

    Figure 7.10 Acceleration Fourier Spectra

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    250/321

    Figure 7.12 Composition of DUOX System

    Figure 7.13 Pendulum-type HMD

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    251/321

    Figure 7.14 Multistage Pendulum Mass Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    252/321

    Figure 7.15 A Semi-Active Fluid Viscous Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    253/321

    Figure 7.16 Experimental Values of Peak Force vs. Peak Velocity

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    254/321

    Figure 7.17 Test Results for Two-Stage Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    255/321

    Figure 7.18 Base Shear-Drift Loops for High Damping Passive Case and Base Shear ControlCase

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    256/321

    Figure 7.20 A Semi-active Variable Stiffness System

    Figure 7.19 Comparison of Peak Response Profiles for Three-Story Structure

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    257/321

    Figure 7.21 KaTRI No. 21 Building

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    258/321

    Figure 7.22 AVS System Configuration

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    259/321

    Figure 7.23 AVD Device Configuration

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    260/321

    Figure 7.24 Schematic of a Semi-Active Fluid Damper

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    261/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    262/321

    Figure 7.26 Transfer Functions for a Continuous Two-Span Bridge with: (a) No Control, (b)Passive Damper, (c) Bistate Control

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    263/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    264/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    265/321

    Table A.1 Metallic Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    266/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    267/321

    Table A.2 Friction Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    268/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    269/321

    Table A.2 Friction Dampers (continued)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    270/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    271/321

    Table A.3 Viscoelastic Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    272/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    273/321

    Table A.4 Viscoelastic Fluid Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    274/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    275/321

    Table A.4 Viscoelastic Fluid Dampers (continued)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    276/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    277/321

    Table A.4 Viscoelastic Fluid Dampers (continued)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    278/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    279/321

    Table A.5 Tuned Mass Dampers

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    280/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    281/321

    __________

    Table B.1 Active and Semi-active Systems Installed in Buildings in Japan

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    282/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    283/321

    Table B.1 Active and Semi-active Systems Installed in Buildings in Japan (continued)

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    284/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    285/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    286/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    287/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    288/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    289/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    290/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    291/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    292/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    293/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    294/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    295/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    296/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    297/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    298/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    299/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    300/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    301/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    302/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    303/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    304/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    305/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    306/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    307/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    308/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    309/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    310/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    311/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    312/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    313/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    314/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    315/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    316/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    317/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    318/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    319/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    320/321

  • 8/12/2019 Passive Energy Dissipation Systems - M. C. Constantinou

    321/321


Recommended