+ All Categories
Home > Documents > Patterns and processes Bayesian models for...

Patterns and processes Bayesian models for...

Date post: 23-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
42
Patterns and processes Bayesian models for macroevolutionary studies Nicolas Lartillot, Raphael Poujol, Frederic Delsuc October 2011 Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 1 / 37
Transcript
Page 1: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Patterns and processes

Bayesian models formacroevolutionary studies

Nicolas Lartillot, Raphael Poujol, Frederic Delsuc

October 2011

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 1 / 37

Page 2: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Variation of the substitution rate among lineages

Possible causesgeneration-time effect

time

metabolic rate effectsselection for longevity

(reviewed in Lanfear et al, 2010)

=⇒

TREESHREWLEMUR

HUMANFLYINGLEMUR

RABBITPIKA

SCIURIDRAT

MOUSECAVIOMORPH

MOLESHREWHEDGEHOG

LLAMAPIG

HIPPOWHALE

DELPHINOIDCOW

TAPIRRHINO

HORSEPHYLLOSTOMID

FLYINGFOXPANGOLIN

DOGCAT

ARMADILLOSLOTH

ANTEATERSIRENIAN

HYRAXELEPHANT

MACROSCELIDESELEPHANTULUS

TENRECIDGOLDENMOLE

AARDVARK

0.1 subs per site

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1concatenation of 13 nuclear genes, 38 placentals

Page 3: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Variation of the substitution rate among lineages

Possible causesgeneration-time effect

time

metabolic rate effectsselection for longevity

(reviewed in Lanfear et al, 2010)

=⇒

TREESHREWLEMUR

HUMANFLYINGLEMUR

RABBITPIKA

SCIURIDRAT

MOUSECAVIOMORPH

MOLESHREWHEDGEHOG

LLAMAPIG

HIPPOWHALE

DELPHINOIDCOW

TAPIRRHINO

HORSEPHYLLOSTOMID

FLYINGFOXPANGOLIN

DOGCAT

ARMADILLOSLOTH

ANTEATERSIRENIAN

HYRAXELEPHANT

MACROSCELIDESELEPHANTULUS

TENRECIDGOLDENMOLE

AARDVARK

0.1 subs per site

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1concatenation of 13 nuclear genes, 38 placentals

Page 4: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Estimating divergence times: the relaxed clock model

!"#!$#!%#

!

l = r "t

!

"t = t2# t

1

!

rj up

!

rj &'(#'('#('&#')'#***#

&'&#'&'#('&#')'#***#

&'(#'&'#()&#')'#***#

&'(#'&'#()&#')'#***#

sequence alignment

Brownian process

xt = ln rt

xt ∼ N(x0, νt)

(Thorne et al 1998, Lepage et al 2007, Rannala and Yang 2007)

Page 5: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Estimating divergence times: the relaxed clock model

!"#!$#!%#

!

l = r "t

!

"t = t2# t

1

!

rj up

!

rj &'(#'('#('&#')'#***#

&'&#'&'#('&#')'#***#

&'(#'&'#()&#')'#***#

&'(#'&'#()&#')'#***#

sequence alignment

Sampling posterior density by MCMCparameter vector: θ = (ν, r , t ,Q)

p(D | r , t ,Q) p(r | t , ν) p(t) p(ν) p(Q)

(Thorne et al 1998, Lepage et al 2007, Rannala and Yang 2007)

Page 6: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Divergence times and substitution rates

PLATYPUSMONODELPHIDIDELPHISARMADILLOSLOTHANTEATERSIRENIANHYRAXELEPHANTAARDVARKSHEARELESHLOEARELESHTENRECIDGOLDENMOLETREESHREWSTREPSIRRHHUMANFLYINGLEMURABBITPIKASCIURIDRATMOUSECAVIOMORPHMOLESHREWHEDGEHOGLLAMAPIGHIPPOWHALEDELPHINOIDCOWTAPIRRHINOHORSEPHYLLOSTOMFLYINGFOXPANGOLINDOGCAT

0100 MyrsKT

carnivoreschiropteresperissodactyls

cetartiodactyls

eulipotyphlans

rodentslagomorphs

primates

afrotherians

xenarthransmarsupialsmonotremes

Page 7: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Correlating rates and life-history traitsRates and life-history traits

!!

!

!!!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!!!!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

5 10 15

!3.0

!2.5

!2.0

!1.5

!1.0

!0.5

0.0

rate / mass regression

log mass

log

su

bs.

rate

correcting for phylogenetic inertia (independent contrasts)adaptation to trait/rate correlations (Welch 2011).sequential method: error propagationno feedback of rate variations on life-history evolution

Page 8: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Coupling life-history and substitution rate variations

!"#!$#!%#

&'#"()#

!

" =2 #1

#1 1

$

% &

'

( )

*+,-#./00#

01*0!2#3/!4#

"()#

)2(5#

5)#

(6))#

covariance

matrix

kg

!

r 1

!

r 3

!

r 2

!

l2

= r 2"t

789#898#987#8:8#222#

787#878#987#8:8#222#

789#878#9:7#8:8#222#

789#878#9:7#8:8#222#

sequence alignment

Joint estimation (Bayesian MCMC)divergence times, covariances, rates, and life-history evolution(Lartillot and Poujol, 2011, Molecular Biology and Evolution)

Page 9: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Introduction

Generalization

substitution parametersrate of synonymous substitutionnon-synonymous / synonymous ratioequilibrium GC

codon model (Goldman Yang, Muse Gaut 1994)

life-history traitssexual maturitymassmaximum lifespanmetabolic rate

Priorsuniform or birth death on divergence timesfossil calibrations (Springer et al, 2003, Benton 2009)

Datanuclear data: 16 genes in 73 mammalsnuclear data: 115 genes in 33 mammalsmitochondrial data: cytochrome b in 100 mammals

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 7 / 37

Page 10: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results Rate, dates and traits

1. Nuclear data: correlates of synonymous rate

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

dS

dN/dS

maturity

longevity

mass

metabolic rate

dS dN/dS mat. long. mass met.

red: positive

blue: negative

light shade: not significant

strong correlations between life-history traitsdS correlates negatively with body mass, gen. time and longevityR2: life-history variations explain ∼ 35% of synonymous rate.partial correlations: longevity; generation time effect ?

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 8 / 37

Page 11: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Inferring divergence times and body size evolution

ManisAiluropodaCanisFelisPantheraEquusCeratotheriumTapirusTadaridaAntrozousMyotisArtibeusNycterisMegadermaPteropusRousettusSusBosTragelaphusHippopotamusMegapteraTursiopsLamaVicugnaSolenodonErinaceusSorexGalemysTalpaTarsiusCallithrixMacacaPongoGorillaHomoPanOtolemurLemurMicrocebusCynocephalusGaleopterusPtilocercusTupaiaCastorDipodomysPedetesMusRattusHystrixErethizonCaviaHydrochoerusMuscardinusSpermophilusTamiasOchotonaOryctolagusSylvilagusOrycteropusAmblysomusEchinopsElephantulusMacroscelidesLoxodontaProcaviaTrichechusDasypusChaetophractusEuphractusCholoepusdiCholoepushoMyrmecophagaTamandua

1

10

100

1000

10000

100000

1000000

10000000

0100 MyrsKT

Page 12: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

The evolution of body size

PLATYPUSMONODELPHISDIDELPHISARMADILLOSLOTHANTEATERSIRENIANHYRAXELEPHANTAARDVARKMACROSCELIDESELEPHANTULUSTENRECIDGOLDENMOLETREESHREWLEMURHUMANFLYINGLEMURRABBITPIKASCIURIDRATMOUSECAVIOMORPHMOLESHREWHEDGEHOGLLAMAPIGHIPPOWHALEDELPHINOIDCOWTAPIRRHINOHORSEPHYLLOSTOMIDFLYINGFOXPANGOLINDOGCAT

0100 MyrsKT

1 kg

10 kg

100 kg

1000 kg

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

Pakicetids

(Thewissen et al, 2001)

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

Hippo Whale ancestor

log10 Mass (g)p

ost.

de

nsity

coupled < KT uncoupled

Page 13: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Systematic trends

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-100 -80 -60 -40 -20 0

substitution rate

4

5

6

7

8

9

10

11

12

-100 -80 -60 -40 -20 0

body mass

Cope’s or Stanley’s ruleintra-lineage drive towards larger body sizemore frequent extinction of large-bodied mammalsneeds to be explicitely modeled (directed Brownian motion)possible impact in estimated divergence times (Welch 2008)connections with mass-dependent extinction (FitzJohn, 2010).

Page 14: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results dN/dS and the nearly neutral theory

2. Mitochondrial data: correlates of dN/dS

dS

dN/dS

maturity

mass

dS dN/dS mat. long.

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

mass

longevity

unfit

fit

coding sequence

1/N2

1/N1

positive correlation between dN/dS and body sizecompatible with a nearly-neutral interpretationvia negative correlation body size population size (N)(Ohta, 1972, Kimura, 1979, Popadin, 2007)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 12 / 37

Page 15: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Radical-conservative amino-acid replacement model

(adapted from Livington and Barton, 1993)

ω = Kr/Kc

Qab = Rab if a→ b conservative,Qab = Rab ω if a→ b radical.

Rab: a general time reversible 20x20 process.conservative = conserving volume and/or polarity (and/or charge)

Page 16: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results dN/dS and the nearly neutral theory

Mitochondrial data Kr/Kc (volume + polarity)

Kc

Kr/Kc

maturity

mass

Kc Kr/Kc mat. long. mass

longevity

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

red: positive

blue: negative

light shade: not significant

positive correlation between Kr/Kc and body sizesimilar to that observed for dN/dS (but higher R2)charge: no significant effectpolarity + volume : strongest correlation (highest R2)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 14 / 37

Page 17: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Reconstructed variations of Kr/Kc

Procavia capensisLoxodonta africanaElephas maximusDugong dugonEchinops telfairiMacroscelides proboscideusElephantulus spOrycteropus aferChrysochloris asiaticaDasypus novemcinctusTamandua tetradactylaCholoepus didactylusBradypus tridactylusTupaia belangeriNycticebus coucangLemur cattaTarsius bancanusCynocephalus variegatusHylobates larPongo pygmaeus abeliiPongo pygmaeusPan troglodytesPan paniscusHomo sapiensGorilla gorillaTrachypithecus obscurusColobus guerezaPapio hamadryasMacaca sylvanusMacaca mulattaCercopithecus aethiopsCebus albifronsOchotona princepsOchotona collarisOryctolagus cuniculusLepus europaeusSciurus vulgarisMyoxus glisNannospalax ehrenbergiVolemys kikuchiiRattus norvegicusMus musculus molossinusMus musculusJaculus jaculusThryonomys swinderianusCavia porcellusHemiechinus auritusErinaceus europaeusEchinosorex gymnuraUrotrichus talpoidesTalpa europaeaMogera woguraSorex unguiculatusEpisoriculus fumidusCrocidura russulaRhinolophus pumilusRhinolophus monocerosPteropus scapulatusPteropus dasymallusPipistrellus abramusChalinolobus tuberculatusMystacina tuberculataArtibeus jamaicensisSus scrofaLama pacosMuntiacus reevesiMuntiacus muntjakMuntiacus crinifronsCervus nippon yesoensisCervus nippon centralisOvis ariesCapra hircusBubalus bubalisBos taurusBos indicusBos grunniensHippopotamus amphibiusPhyseter catodonKogia brevicepsPhocoena phocoenaMonodon monocerosLagenorhynchus albirostrisPontoporia blainvilleiInia geoffrensisPlatanista minorHyperoodon ampullatusBerardius bairdiiCaperea marginataEschrichtius robustusMegaptera novaeangliaeBalaenoptera physalusBalaenoptera musculusBalaenoptera brydeiBalaenoptera borealisBalaenoptera bonaerensisBalaenoptera acutorostrataEubalaena japonicaEubalaena australisBalaena mysticetusManis tetradactylaEquus caballusEquus asinusTapirus terrestrisRhinoceros unicornisCeratotherium simumCanis familiarisUrsus maritimusUrsus arctosUrsus americanusPhoca vitulinaHalichoerus grypusOdobenus rosmarus rosmarusEumetopias jubatusArctocephalus forsteriHerpestes javanicusFelis catusAcinonyx jubatus

0.66 1.2 1.7

!"#$%&'#"(

!)*"#+',"-*./"(

!0%#'1*)#"(

23/.1'*.10/"(

4)#%55',"-*./"(

6',)$+"(

7"8'9'#10"(

4#%9"*)5(

:)$"#*0#"(

;<#'*0)#%"(

Page 18: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

3. Nuclear genes GC∗

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

dS

dN/dS

maturity

longevity

mass

dS dN/dS mat. long. mass gc

gc

# chrom.

# chromosomes

red: positive

blue: negative

light shade: not significant

no correlation between dN/dS and body sizenegative correlation between GC∗ and body sizepositive correlation between GC∗ and number of chromosomes

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 16 / 37

Page 19: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Biased gene conversion (BGC) during meiosis

adapted from Duret and Galtier 2009

mismatches in heteroduplex sometimes repairedmutation biased towards ATrepair pathways have evolved a bias towards GC

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 17 / 37

Page 20: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

The population genetics of GC biased geneconversion

A

T

A

T

C

G

C

G

A

T

C

G

C

G

C

G

transmitted proportions

xGC =1 + b

2

xAT =1− b

2

mismatches in heteroduplex repaired towards GCovertransmission of GC compared to AT allele in heterozygotesequivalent to positive selection in favor of GCapparent selection coefficient: b (strength of the bias)b proportional to local recombination rate (b = b0r ).

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 18 / 37

Page 21: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Biased gene conversion explains variations of GC∗

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

dS

dN/dS

maturity

longevity

mass

dS dN/dS mat. long. mass gc

gc

# chrom.

# chromosomes

red: positive

blue: negative

light shade: not significant

Negative correlation GC∗ / body sizelarger animals = smaller population = less efficient selectionalso less efficient BGC (lower GC∗)

Page 22: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Biased gene conversion explains variations of GC∗

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

dS

dN/dS

maturity

longevity

mass

dS dN/dS mat. long. mass gc

gc

# chrom.

# chromosomes

linkage maps are provisional, they are in good agreement with theregression line.

Both the regression line for all species in Fig. 1a (NC !0.85(NF/2) + 6.2; R2 ! 0.83; F < 2.91 ! 10"17, ! in Fig. 1a) andthe average NC per chromosome arm (1.06 and 1.16 in Dutrillaux(1986) and Burt and Bell (1987), respectively) suggest that there isa required minimum of one crossover per chromosome arm. If thisconclusion is true, then the minimum genetic size for chromosomearms is expected to be 50 cM. This prediction is supported by thedistribution of the genetic size of 286 chromosome arms shown inFig. 2. Few of the chromosome arms appear to be less than 50 cM,and this limit applies equally to arms from uni-armed and bi-armedchromosomes. We suggest that those chromosome arms with anapparent size of less than 50 cM result from failure to observerecombination distal to the most telomeric marker employed inmap construction.

We conclude that genome-wide recombination is directly pro-portional to the number of chromosome arms, as proposed byDutrillaux (1986). Our analysis indicates that there is a generalrequirement for at least one crossover per chromosome arm, ratherthan the classical expectation of one crossover per chromosome.Chiasma (the cytological manifestation of crossovers at meiosis I)are required to establish the physical attachment between ho-mologs that, in turn, is required to ensure that one member of eachpair of homologs segregates to opposite poles of the meioticspindle. The proportionality between recombination and the num-ber of chromosome arms and, most importantly, the observed dis-tribution of arm size in bi-armed chromosomes (Fig. 2a) indicatesthat the effect of crossovers on maintaining proper distributivesegregation is effectively suppressed at the centromere. Interest-

ingly, the centromere shows distinct patterns of repression of re-combination and interference in Drosophila, Neurospora, yeast,and human (Dobzhanky 1930; Hulten 1974; Davies et al. 1994;Mathani and Willard 1998, Kaback et al. 1999). This requirementestablishes important constraints on the minimum number ofcrossovers for any chromosome.

Perhaps the most extreme example of a requirement for onecrossover per arm is the pseudoautosomal region (PAR) of mam-malian X and Y Chromosomes (Chrs). The PAR undergoes pairingand recombination during male meiosis. Crossing-over within thePAR is critical for the fidelity of chromosome segregation (Rouyeret al. 1986; Soriano et al. 1987). This requirement exists despitethe limited physical size of this region and represents a strikingexample of independence between physical and genetic distances.In humans the location of the PARs is remarkable. The X Chr issubmetacentric with two PARs located in the terminal regions ofeach arm, and both regions undergo pairing and recombinationduring male meiosis.

Although we conclude that in mammals the majority of theinterspecific variation in mammalian recombination rate is owingto changes in FN, this conclusion does not affect the significanceof the observed correlation between EC and age to maturity re-ported by Burt and Bell (1987). We note, however, that theiranalysis was based on two assumptions. First, that only one cross-over in each bivalent is required to ensure distributive segregation.Second, crossovers in excess of one per bivalent (EC) are notrequired for fidelity of chromosome segregation but are a mecha-nism to increase variability in the progeny. Under this model, ECis expected to represent the amount of recombination in an organ-ism that is unrelated to the fidelity of chromosome segregation. In

Fig. 1. Plot of mammalian recombination frequency as a function of hap-loid number of chromosome arms (FN/2). a) Recombination estimated asnumber of chiasma (NC). Each circle represents a species: 1, Dasyuroidesbyrnei; 2, Dasyurus viverrinus; 3, Sarcophilus harrissi; 4, Smithopsis cras-sicaudata; 5, Paremeles gunnii; 6, Isoodon macrourus; 7, Dasypus novem-cinctus; 8, Oryctolagus cuniculus; 9, Cricetus cricetus; 10, Lagurus lagu-rus; 11, Meriones ungiculatus; 12, Apodemus sylvaticus; 13, Rattus nor-vegicus; 14, Mus musculus; 15, Cebuella pygmamaea; 16, Sanguinusoedipus; 17, Macaca fuscata; 18, Macaca mulatta; 19, Macaca nemes-trina; 20, Pan troglodytes; 21, Homo sapiens; 22, Homo sapiens; 23,Mandrillux sphinx; 24, Cebus capucinus; 25, Lemur fulvus; 26, Lemurfulvus collaris; 27, Lemur fulvus albocollaris; 28, Akodon arviculoides;29; Akodon arviculoides; 30, Akodon sp; 31, Akodon nigris; 32, Zygodon-tomys lasiurus; 33, Clyomys laticeps; 34; Nectomys squamipes; 35, Nec-tomys squamypes; 36, Oxymicterus sp; 37, Euryzygomalomys guiara; 38,Proechimys iheringi; 39, Mus musculus; 40, Mesocricetus auratus; 41,

Cricetulus griseus; 42, Gerbillus aureus; and 43, Taterillus gracillis. NCdata in species represented as black circles were calculated from the ECdata reported by Burt and Bell (1987) (NC ! EC + n, where n is thenumber of haploid autosomes) and the regression line is denoted as ". NCdata in species represented as gray circles are from Dutrillaux (1986), andthe regression line is denoted as #. The regression line for the combineddata is denoted as !. b) Recombination estimated as the size of the linkagemap. Each filled circle represent a species used for the regression analysis:1, cattle; 2, dog; 3, pig; 4, mouse; 5, rat; and 6, human. Open circles arespecies not included in the regression analysis (see text): 7, goat; 8, sheep;9, cat; 10, horse; and 11, baboon. The estimated size of the linkage map ofeach species is as given in the references in the text, except for the baboon,which we estimate to be 28.3 M instead of 23.7 M (Rogers et al. 2000) aftercorrecting for the fraction of the human genome covered by the markersused in their study.

F. Pardo-Manuel de Villena, C. Sapienza: Recombination and chromosome arms 319

de Villena and Sapienza, 2001

Positive correlation GC∗ / chromosome numberconversion bias proportional to recombination rate∼ 1 recombination event per chromosome arm per meiosisrecombination rate inversely proportional to chromosome sizestronger gene conversion bias in more fragmented karyotypes

Page 23: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Population-genetics derivation20ZZ CARTWRIGHT, LARTILLOT, AND THORNE—STUDYING ANCESTRAL LINEAGES 23

FIGURES

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(a) Ancestral Lineage

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(b) Ancestral Lineages Relating Three Species

FIGURE 1.

Fixation probabilityneutral case

p0 =1

2N

general case

p =2s

1− e−4Ns

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 21 / 37

Page 24: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Population-genetics derivation20ZZ CARTWRIGHT, LARTILLOT, AND THORNE—STUDYING ANCESTRAL LINEAGES 23

FIGURES

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(a) Ancestral Lineage

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(b) Ancestral Lineages Relating Three Species

FIGURE 1.

Fixation probability for biased gene conversion

neutral case

p0 =1

2N

general case

p =2b

1− e−4Nb

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 21 / 37

Page 25: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Population-genetics derivation20ZZ CARTWRIGHT, LARTILLOT, AND THORNE—STUDYING ANCESTRAL LINEAGES 23

FIGURES

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(a) Ancestral Lineage

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

(b) Ancestral Lineages Relating Three Species

FIGURE 1.

Scaled fixation probability P

P = p/p0 = 2Np =4Nb

1− e−4Nb =B

1− e−B

with B = 4Nb the scaled selection coefficient.

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 21 / 37

Page 26: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Scaled fixation probability as a function ofS = B = 4Nb

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−6 −4 −2 0 2 4 6

01

23

45

6

S

P

neutral case S = 0: P = 1deleterious S < 0: P < 1advantageous S > 0: P > 1

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 22 / 37

Page 27: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

A mechanistic phylogenetic covariance model

0BB@− µAC µAG µATµCA − µCG µCTµGA µGC − µGTµTA µTC µTG −

1CCA + B =⇒

0BBBBBBBBBBB@

− µACB

1−e−B µAGB

1−e−B µAT

µCA−B

1−eB − µCG µCT−B

1−eB

µGA−B

1−eB µGC − µGT−B

1−eB

µTA µTCB

1−e−B µTGB

1−e−B −

1CCCCCCCCCCCA

Substitution rate (low mutation approx.)Substitution rate = mutation rate x fixation probability

ρ = 2Nµpfix = µ2Npfix = µP

= µB

1− e−B

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 23 / 37

Page 28: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

A mechanistic phylogenetic covariance model

0BB@− µAC µAG µATµCA − µCG µCTµGA µGC − µGTµTA µTC µTG −

1CCA + B =⇒

0BBBBBBBBBBB@

− µACB

1−e−B µAGB

1−e−B µAT

µCA−B

1−eB − µCG µCT−B

1−eB

µGA−B

1−eB µGC − µGT−B

1−eB

µTA µTCB

1−e−B µTGB

1−e−B −

1CCCCCCCCCCCA

B = 4Ne bonly 4-fold degenerate third codon positionsmodeling joint variations of B, body mass (M) and karyotype (2n)modeling variations among genes (local recombination rates)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 23 / 37

Page 29: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Results GC landscapes and biased genes conversion

Life-history and karyotypic covariates of BGCPredicted allometric scaling of B = 4Neb

Ne ∼ MγM , (γM < 0)

b = b0rr ∼ 2n

therefore, B ∼ MγM 2nγn , (γM < 0, γn = 1).

Estimated scaling coefficients and mutation bias (λ = AT ∗/GC∗)

γM γn λ

73 taxa 17 genes -0.11∗∗ (-0.19, -0.03) 1.28∗∗ ( 0.54, 2.03) 1.38 (1.27, 1.50)33 taxa 115 genes -0.28∗ (-0.52, -0.01) 0.21 (-1.20, 1.56) 2.09 (2.04, 2.14)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 24 / 37

Page 30: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

A history of biased gene conversion in placentals

reconstruction ofB = 4Ne bB < 1: effectively neutral

B > 1: selective regime

VicugnaSusBosTursiopsMyotisPteropusEquusCanisFelisErinaceusSorexTupaiaTarsiusCallithrixMacacaPongoGorillaHomoPanMicrocebusOtolemurSpermophilusCaviaDipodomysMusRattusOchotonaOryctolagusEchinopsLoxodontaProcaviaCholoepusDasypus

1 4.6 8.2

BGC above the nearly neutral threshold (B > 1) in some taxasignificant force, deleterious effects (Galtier et al 2009, Berglund et al 2009)

Page 31: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives on biased gene conversion

BGC and recombination landscapesjoint reconstruction of GC∗ and genome rearrangementsteasing out population size, recombination rate, and repair biasmodeling overdispersion due to recombination hotspots turnover

understanding the (mal)adaptive value of BGCpopulation genetics models (modifier theory)is there a selective regulation (buffering) of BGC intensity?

Page 32: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives

Conclusionsintegrative approach for correlating substitution patterns andquantitative traitscan yield mechanistic insights about causes of molecular evolutionpotential source of information for reconstructing evolution oflife-history, population size, karyotype, and genetic systems

Perspectivesfurther into mechanistic modeling (dN/dS, BGC)including data about body size of fossil taxamodeling bursts (punctuated equilibria) and trends (Cope’s rule)including diversification models (as priors on divergence times)modeling trait-dependent speciation and extinctionmodeling correlation with discrete characters

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 27 / 37

Page 33: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives

Acknowledgments

Raphael PoujolNicole UwimanaFrédéric DelsucNicolas RodrigueHervé Philippemany others...

Software availability (coevol)www.phylobayes.org

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 28 / 37

Page 34: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives

A mechanistic phylogenetic covariance model

0BB@− µAC µAG µATµCA − µCG µCTµGA µGC − µGTµTA µTC µTG −

1CCA + B =⇒

0BBBBBBBBBBB@

− µACB

1−e−B µAGB

1−e−B µAT

µCA−B

1−eB − µCG µCT−B

1−eB

µGA−B

1−eB µGC − µGT−B

1−eB

µTA µTCB

1−e−B µTGB

1−e−B −

1CCCCCCCCCCCA

B = 4Ne bonly 4-fold degenerate third codon positionssubstitution rate = mutation rate × fixation prob. (depends on B)modeling joint variations of B, body mass (M) and karyotype (2n)modeling variations among genes (local recombination rates)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 29 / 37

Page 35: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives

Life-history and karyotypic covariates of BGCPredicted allometric scaling of B = 4Neb

Ne ∼ MγM , (γM < 0)

b = b0rr ∼ 2n

therefore, B ∼ MγM 2nγn , (γM < 0, γn = 1).

Estimated scaling coefficients and mutation bias (λ = AT ∗/GC∗)

γM γn λ

73 taxa 17 genes -0.11∗∗ (-0.19, -0.03) 1.28∗∗ ( 0.54, 2.03) 1.38 (1.27, 1.50)33 taxa 115 genes -0.28∗ (-0.52, -0.01) 0.21 (-1.20, 1.56) 2.09 (2.04, 2.14)

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 30 / 37

Page 36: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Estimated regression and Cope’s trend parameters

−0.4 −0.3 −0.2 −0.1 0.0

02

46

810

rate / mass regression slope

Delta log rate / Delta log mass

post

. den

sity

pp(β < 0) > 0.999

0.00 0.05 0.10

05

1015

2025

30

Cope's parameter

Delta log mass / Mya

post

. den

sity

paleontological estimate

pp(α > 0) > 0.99Fossil calibrationson dates (8 lower bounds, 5 upper bounds, Springer et al, 2003)on ancestral body sizes:

placental ancestor: ln m ∼ N(4.5,2) (5 g to 2 kg) (Alroy, 1996)ancestor of carnivores (< 2kg), cetartios (< 2kg) (Kemp, 2006)ancestor of primates (< 1kg), perissos (< 20kg) (Kemp, 2006)

Page 37: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

The evolution of body size (with trend)

ManisAiluropodaCanisFelisPantheraEquusCeratotheriumTapirusTadaridaAntrozousMyotisArtibeusNycterisMegadermaPteropusRousettusSusBosTragelaphusHippopotamusMegapteraTursiopsLamaVicugnaSolenodonErinaceusSorexGalemysTalpaTarsiusCallithrixMacacaPongoGorillaHomoPanOtolemurLemurMicrocebusCynocephalusGaleopterusPtilocercusTupaiaCastorDipodomysPedetesMusRattusHystrixErethizonCaviaHydrochoerusMuscardinusSpermophilusTamiasOchotonaOryctolagusSylvilagusOrycteropusAmblysomusEchinopsElephantulusMacroscelidesLoxodontaProcaviaTrichechusDasypusChaetophractusEuphractusCholoepusdiCholoepushoMyrmecophagaTamandua

1

10

100

1000

10000

100000

1000000

10000000

0100 MyrsKT

Page 38: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

The evolution of body size (without trend)

ManisAiluropodaCanisFelisPantheraEquusCeratotheriumTapirusTadaridaAntrozousMyotisArtibeusNycterisMegadermaPteropusRousettusSusBosTragelaphusHippopotamusMegapteraTursiopsLamaVicugnaSolenodonErinaceusSorexGalemysTalpaTarsiusCallithrixMacacaPongoGorillaHomoPanOtolemurLemurMicrocebusCynocephalusGaleopterusPtilocercusTupaiaCastorDipodomysPedetesMusRattusHystrixErethizonCaviaHydrochoerusMuscardinusSpermophilusTamiasOchotonaOryctolagusSylvilagusOrycteropusAmblysomusEchinopsElephantulusMacroscelidesLoxodontaProcaviaTrichechusDasypusChaetophractusEuphractusCholoepusdiCholoepushoMyrmecophagaTamandua

1

10

100

1000

10000

100000

1000000

10000000

0100 MyrsKT

Page 39: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Perspectives

Impact on divergence dates

130 120 110 100 90 80 70 60

0.00

0.02

0.04

0.06

0.08

0.10

Age of placentals

Age (Myrs)

post

. den

sity

with trend

w/o trend

KT

Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution October 2011 34 / 37

Page 40: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Absence of correlation between dN/dS and body-size

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

dS

dN/dS

maturity

longevity

mass

dS dN/dS mat. long. mass gc

gc

# chrom.

# chromosomes

unfit

fit

coding sequence

1/N2

1/N1

Possible causeinterference between purifying selection and biased geneconversionbiased gene conversion can promote fixation of deleterious alleles(Galtier et al 2009, Berglund et al 2009)

Page 41: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

Alternative interpretations of Kr/Kc

Procavia capensisLoxodonta africanaElephas maximusDugong dugonEchinops telfairiMacroscelides proboscideusElephantulus spOrycteropus aferChrysochloris asiaticaDasypus novemcinctusTamandua tetradactylaCholoepus didactylusBradypus tridactylusTupaia belangeriNycticebus coucangLemur cattaTarsius bancanusCynocephalus variegatusHylobates larPongo pygmaeus abeliiPongo pygmaeusPan troglodytesPan paniscusHomo sapiensGorilla gorillaTrachypithecus obscurusColobus guerezaPapio hamadryasMacaca sylvanusMacaca mulattaCercopithecus aethiopsCebus albifronsOchotona princepsOchotona collarisOryctolagus cuniculusLepus europaeusSciurus vulgarisMyoxus glisNannospalax ehrenbergiVolemys kikuchiiRattus norvegicusMus musculus molossinusMus musculusJaculus jaculusThryonomys swinderianusCavia porcellusHemiechinus auritusErinaceus europaeusEchinosorex gymnuraUrotrichus talpoidesTalpa europaeaMogera woguraSorex unguiculatusEpisoriculus fumidusCrocidura russulaRhinolophus pumilusRhinolophus monocerosPteropus scapulatusPteropus dasymallusPipistrellus abramusChalinolobus tuberculatusMystacina tuberculataArtibeus jamaicensisSus scrofaLama pacosMuntiacus reevesiMuntiacus muntjakMuntiacus crinifronsCervus nippon yesoensisCervus nippon centralisOvis ariesCapra hircusBubalus bubalisBos taurusBos indicusBos grunniensHippopotamus amphibiusPhyseter catodonKogia brevicepsPhocoena phocoenaMonodon monocerosLagenorhynchus albirostrisPontoporia blainvilleiInia geoffrensisPlatanista minorHyperoodon ampullatusBerardius bairdiiCaperea marginataEschrichtius robustusMegaptera novaeangliaeBalaenoptera physalusBalaenoptera musculusBalaenoptera brydeiBalaenoptera borealisBalaenoptera bonaerensisBalaenoptera acutorostrataEubalaena japonicaEubalaena australisBalaena mysticetusManis tetradactylaEquus caballusEquus asinusTapirus terrestrisRhinoceros unicornisCeratotherium simumCanis familiarisUrsus maritimusUrsus arctosUrsus americanusPhoca vitulinaHalichoerus grypusOdobenus rosmarus rosmarusEumetopias jubatusArctocephalus forsteriHerpestes javanicusFelis catusAcinonyx jubatus

0.66 1.2 1.7

!"#$%&'#"(

!)*"#+',"-*./"(

!0%#'1*)#"(

23/.1'*.10/"(

4)#%55',"-*./"(

6',)$+"(

7"8'9'#10"(

4#%9"*)5(

:)$"#*0#"(

;<#'*0)#%"(

nearly neutral interpretation (population size effect)more adaptative substitutions in larger and long living animalsadaptive and nearly-neutral substitutions differentially sensitive tomutation rate or to generation-timeperspective: making correlations with mitochondrial polymorphism

Page 42: Patterns and processes Bayesian models for ...megasun.bch.umontreal.ca/People/lartillot/trash/Lartillot_Ottawa2011.pdfPIKA SCIURID RAT MOUSE CAVIOMORPH MOLE SHREW HEDGEHOG LLAMA PIG

The evolution of body size

PLATYPUSMONODELPHISDIDELPHISARMADILLOSLOTHANTEATERSIRENIANHYRAXELEPHANTAARDVARKMACROSCELIDESELEPHANTULUSTENRECIDGOLDENMOLETREESHREWLEMURHUMANFLYINGLEMURRABBITPIKASCIURIDRATMOUSECAVIOMORPHMOLESHREWHEDGEHOGLLAMAPIGHIPPOWHALEDELPHINOIDCOWTAPIRRHINOHORSEPHYLLOSTOMIDFLYINGFOXPANGOLINDOGCAT

0100 MyrsKT

1 kg

10 kg

100 kg

1000 kg

Nicolas Lartillot (Universite de Montréal) BIN6009 10/05/2009 1 / 1

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

Hippo Whale ancestor

log10 Mass (g)p

ost.

de

nsity

coupled < KT

coupled > KT

uncoupled

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

Cow Whale ancestor

log10 Mass (g)

po

st.

de

nsity

coupled < KT

coupled > KT

uncoupled


Recommended