+ All Categories
Home > Documents > PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask...

PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask...

Date post: 14-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
13
PC Laboratory – Raman Spectroscopy Schedule: Week of September 5-9: Student presentations Week of September 19-23:Student experiments Learning goals: (1) Hands-on experience with setting up a spectrometer. (2) Individual measurement and analysis of spectroscopic data. (3) Training of presentation, scientific data analysis, and report writing.
Transcript
Page 1: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

PC Laboratory – Raman Spectroscopy

Schedule:Week of September 5-9: Student presentationsWeek of September 19-23:Student experiments

Learning goals: (1) Hands-on experience with setting up a spectrometer.(2) Individual measurement and analysis of spectroscopic data.(3) Training of presentation, scientific data analysis, and report writing.

Page 2: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

Spectroscopic measurements

X‐Ray crystal diffraction (Röntgen, Laue, Bragg, Watson‐Crick, …)

Nuclear Magnetic Resonance Spectroscopy(Bloch, Purcell, Ernst, Wüthrich)

Ultrafast Spectroscopy(Eigen, Zewail)

Most of what we know about molecules is derived from spectroscopic or spectrometric measurements!

Page 3: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

Spectroscopy: looking at matter

Light can be dispersed, e.g. with a prism.

When molecules absorb or emit some light frequencies, the dispersed Spectrum shows corresponding bands.

Pictures from Astro-Canada Website

Page 4: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

4Molecular Spectroscopy Overview

electronic / nuclear spinsin mag. field

rotationsvibrations

electronic transitions

inner‐shell spectroscopy

ionization

The energy scale of molecular transitions

Photons with an energy exceeding 7‐10 eV ionize matter and can be used for ionizing spectroscopy. Photons with much larger energy (and wavelength down to be picometer range) are used for diffraction experiments.

‐ ‐

‐‐

‐ ‐

‐‐

Fermicoupling

Paulirule

Fermicoupling

H He- e-

wavelength

MHz GHz THz PHz EHz

mkm mm m nmradiowaves infrared ultravioletmicrowaves X‐ray

frequencycm-1 eV

J/mol

Eh(log scale)

Page 5: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

5Infrared Spectroscopy

electronic / nuclear spinsin mag. field

rotationsvibrations

electronic transitions

inner‐shell spectroscopy

ionization

‐ ‐

‐‐

‐ ‐

‐‐

Fermicoupling

Paulirule

Fermicoupling

H He- e-

wavelength

MHz GHz THz PHz EHz

mkm mm m nmradiowaves infrared ultravioletmicrowaves X‐ray

frequencycm-1 eV

J/mol

Eh(log scale)

= 3–30 m; = 14–100 THz; E = 6–40 kJ/mol; E =60-400 meV; ῶ = 500–3500 cm-1; ~

Infrared spectroscopy investigates the vibrational structure of molecules by observing the interaction with electromagnetic radiation (light) in the near infrared wavelength region (typically 180‐800 nm).

Page 6: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

6

E

h

Einitial

Efinal

phot

on e

nerg

y

quantized state energies of a molecule

Energy

Absorption spectrum of the molecule

Absorption Spectroscopy

Molecules and atoms have quantized energetic states. Only photons with an energy that corresponds to the energy difference between two molecular states can be absorbed or emitted.

sample

In absorption spectroscopy, photons of an incoming light beam are absorbed.

Iout < IinIin

Page 7: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

7Infrared spectroscopy

Light source

sample

dispersive element

wavenlengthselection mask

detectordata acquisition and analysis

+

Charged particles and dipoles feel a periodic force in the electric field of light and their vibrational motion can be exited. Only molecular bonds with dipoles can be excited, they are IR‐active vibrational modes.

The interaction with molecular dipoles is exploited in vibrational spectroscopy to identify the characteristic frequencies of molecular vibrations.Scheme of a simple IR spectrometer:

E‐fie

ld

time / spaceoscillating force

Page 8: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

8

Some photon important photon properties:Relation between photon energy E and frequency  : E = h∙(with the Planck constant h = 6.626∙10-34 Js)Relation between photon frequency  and wavelength : c = ∙(with the speed of light c = 2.998 ∙108 m/s)The inverse wavelength   is often used as pseudo‐energy unit:(    is called wavenumber and is given in the unit cm-1)

)/(/1~ hcE ~~

Absorption Spectroscopy

Page 9: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

9

In Raman spectroscopy, photons are not absorbed, but scattered. 

Raman Spectroscopy

Ener

gy

Raman spectrum

EinitialEfinal

photon energy

exci

tatio

n ph

oton

Ram

an photon

0

Ram

an s

hift

0

incident light

scatt

ered l

ight The photon can gain or loose some energy 

upon scattering. The energy difference between incoming and outgoing photon must be equal to the energy difference between two molecular states.

Page 10: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

The electric field of light can induce a dipole moment even if the molecule has no intrinsic dipole moment. Interaction of the light field with the induced dipole moment excites the molecule in Raman spectroscopy.

10Raman spectroscopy

+E‐fie

ld

time / space(2) oscillating force

+

(1) induce dipole

The Raman interaction is weak and a very high light intensity is required to observe Raman effects.

Page 11: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

11Raman Spectroscopy

532 nm laserdichroic532 nm mirror

microscope objective

sample cuvette

filter(s)

Spectrometer

lens

glass fiberLasers can be focused to very high intensities and allow to observe Raman signals. 

You will set up a Raman experiment and identify an unknown compound by its Raman spectrum.

Page 12: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

12Raman Spectroscopy

Resources:

• The lab course guidelines• IR correlation table• Reference Raman spectra• Teaching assistant 이종찬

[email protected]

Relativ

e Sign

al (%

)

100

0

Wavenumber (cm‐1)4000 3000 2000 1500 500 01000

Reference spectrum for Nitrobenzene

Page 13: PC Laboratory –Raman Spectroscopy - CRASY · dispersive element wavenlength selection mask detector data acquisition and analysis ‐ + Charged particles and dipoles feel a periodic

Report

Please use the ACS template and follow the ACS guidelines.Important: • Legible figures (font size, layout, colors)

• Precise description of the experiment(Can somebody else reproduce your work based on your description?)

• Present your own results (scientific honesty)• Cite the literature• Keep it short


Recommended