+ All Categories
Home > Documents > Beam Degrader Wheel for Gold Beams at NSRL 273405057 BLOCK, MOTOR TENSIONING 2 283405049 BRACKET,...

Beam Degrader Wheel for Gold Beams at NSRL 273405057 BLOCK, MOTOR TENSIONING 2 283405049 BRACKET,...

Date post: 07-Mar-2018
Category:
Upload: trankhuong
View: 218 times
Download: 4 times
Share this document with a friend
5
NSRLTN10004 1 November 2010 Beam Degrader Wheel for Gold Beams at NSRL Version 1.0 Jesse Fite, Seth Nemesure, Michael Sivertz, Adam Rusek, IHung Chiang The NSRL Binary Filter is used to measure the beam energy of heavily ionizing ions by degrading the beam in polyethylene (PE) of thicknesses up to 26 cm. The finest gradation is 0.25 mm. When we are running Gold ions at energies of 100 to 200 MeV/nucleon, the range is quite short; 2 to 7 mm in PE. In order to obtain good energy resolution, we require gradations in PE that are 0.1 mm or finer. During the NSRL Runs 10A and 10B, we made a degrader system that was mounted manually on the ion chambers used for Gold beam. These degraders are described in NSRLTN10002 . The finest step size was 0.025 mm of PE. Although this system gave a good high resolution measure of the Gold beam energy, the time required to change degraders had a severe impact on the experimental running schedule. We wanted to automate the degrader change to make more efficient use of the beam time. Several designs were considered, and the choice was made to select a pair of degrader wheels, each with 10 possible degrader settings. The “coarse” wheel included degrader thicknesses from 0 to 9 mm in 1 mm steps. The “fine” wheel also had 10 settings from 0.0 to 0.9 mm in 0.1 mm steps. This allowed us to select polyethylene degrader in any thickness from 0.1 to 9.9 mm in 0.1 mm steps. The two wheels are driven by stepper motors of the same type used in all of the NSRL applications, to simplify software control. And like the other NSRL stepper motor controllers, it is operated using a simple GUI to control the stepper motors. The user interface is shown in Figure 1. It can be adjusted by either typing a number between 0.0 and 9.9 in the window box, or by using the two sliders to select the combination of the two wheel settings that will give the desired degrader thickness. There is also a “HOME” button that will cause the two wheels to rotate until they come into contact with their microswitches. Currently there is significant inertia in the wheels causing an overrun of the home switches. Until this overrun is fixed, the user is dissuaded from using it except when the wheel orientation is completely lost. It is recommended that the “HOME” function be combined with an access to align the two wheels by hand at the 0,0 position. Access to the GUI is currently via the STARTUP Utility, start Commissioning NSRL Stepper (Rotational Filter Support). Selecting the NSRL Stepper opens a separate window for nsrlStepper. From this window, the user can pull down the
Transcript

NSRL-­‐TN-­‐10-­‐004     1  November  2010  

Beam  Degrader  Wheel  for  Gold  Beams  at  NSRL    

Version  1.0    

Jesse  Fite,  Seth  Nemesure,  Michael  Sivertz,  Adam  Rusek,  I-­‐Hung  Chiang    

 The  NSRL  Binary  Filter  is  used  to  measure  the  beam  energy  of  heavily  ionizing  ions  by  degrading  the  beam  in  polyethylene  (PE)  of  thicknesses  up  to  26  cm.    The  finest  gradation  is  0.25  mm.    When  we  are  running  Gold  ions  at  energies  of  100  to  200  MeV/nucleon,  the  range  is  quite  short;  2  to  7  mm  in  PE.    In  order  to  obtain  good  energy  resolution,  we  require  gradations  in  PE  that  are  0.1  mm  or  finer.        During  the  NSRL  Runs  10A  and  10B,  we  made  a  degrader  system  that  was  mounted  manually  on  the  ion  chambers  used  for  Gold  beam.    These  degraders  are  described  in  NSRL-­‐TN-­‐10-­‐002.    The  finest  step  size  was  0.025  mm  of  PE.    Although  this  system  gave  a  good  high  resolution  measure  of  the  Gold  beam  energy,  the  time  required  to  change  degraders  had  a  severe  impact  on  the  experimental  running  schedule.    We  wanted  to  automate  the  degrader  change  to  make  more  efficient  use  of  the  beam  time.        Several  designs  were  considered,  and  the  choice  was  made  to  select  a  pair  of  degrader  wheels,  each  with  10  possible  degrader  settings.    The  “coarse”  wheel  included  degrader  thicknesses  from  0  to  9  mm  in  1  mm  steps.    The  “fine”  wheel  also  had  10  settings  from  0.0  to  0.9  mm  in  0.1  mm  steps.    This  allowed  us  to  select  polyethylene  degrader  in  any  thickness  from  0.1  to  9.9  mm  in  0.1  mm  steps.        The  two  wheels  are  driven  by  stepper  motors  of  the  same  type  used  in  all  of  the  NSRL  applications,  to  simplify  software  control.    And  like  the  other  NSRL  stepper  motor  controllers,  it  is  operated  using  a  simple  GUI  to  control  the  stepper  motors.    The  user  interface  is  shown  in  Figure  1.    It  can  be  adjusted  by  either  typing  a  number  between  0.0  and  9.9  in  the  window  box,  or  by  using  the  two  sliders  to  select  the  combination  of  the  two  wheel  settings  that  will  give  the  desired  degrader  thickness.    There  is  also  a  “HOME”  button  that  will  cause  the  two  wheels  to  rotate  until  they  come  into  contact  with  their  microswitches.    Currently  there  is  significant  inertia  in  the  wheels  causing  an  overrun  of  the  home  switches.    Until  this  overrun  is  fixed,  the  user  is  dissuaded  from  using  it  except  when  the  wheel  orientation  is  completely  lost.    It  is  recommended  that  the  “HOME”  function  be  combined  with  an  access  to  align  the  two  wheels  by  hand  at  the  0,0  position.          Access  to  the  GUI  is  currently  via  the  STARTUP  Utility,    start    Commissioning    NSRL  Stepper  (Rotational  Filter  Support).    Selecting  the  NSRL  Stepper  opens  a  separate  window  for  nsrlStepper.    From  this  window,  the  user  can  pull  down  the    

NSRL-­‐TN-­‐10-­‐004     1  November  2010  

   Figure  1:  Graphical  User  Interface  for  the  NSRL  Gold  Beam  Degrader  Filter  Changer.    The  desired  thickness  of  degrader  can  be  selected  by  entering  a  number  between  0.0  and  9.9  mm  in  the  "Thickness"  box,  or  by  using  the  two  sliders  to  select  a  combination  of  coarse  and  fine  setting.  

“File”  menu  and  select  “Open”  and  choose  the  Filter_Changer.std  application.    This  loads  the  application  and  it  shows  “filter_chan”  under  Group.    Clicking  on  “filter_chan”  activates  the  application,  showing  two  functions  under  “Axis”,  i.e.,  Coarse  and  Fine.    Both  of  these  functions  need  to  have  a  “Device”  specified.    This  refers  to  the  stepper  motor  connection,  1  through  6.    Click  on  the  “NA”  to  get  the  pull  down  menu  offering  BAF.NSRL_STEP1  –  6.    The  filter  wheel  typically  uses  5  for  Coarse  and  6  for  Fine.    Click  on  “Status”  to  turn  the  motor  “ON”.    Verify  that  the  Speed  is  set  to  3516.0  Scale  is  set  to  2915,  Min  =  0.0,  Max  =  10.0,  Home  =  0.0,  Nudge  =  1.0,  and  Direction  =  +Integer/-­‐Integer  for  the  Coarse  Wheel  and  +Tenths/-­‐Tenths  for  the  Fine  Wheel.    When  the  set-­‐up  is  complete,  click  on  the  “filter_chan”  Group,  closing  up  the  configuration  info,  and  highlighting  the  “Wizard”  button  in  the  bottom  left  of  the  GUI.    Clicking  on  the  Wizard  button  creates  the  GUI  in  Figure  1.    

NSRL-­‐TN-­‐10-­‐004     1  November  2010  

 

 Figure  2  showing  the  degrader  wheel  in  the  (0,0)  setting.  

The  wheel  assembly  in  Figure  2  mounts  on  the  rails,  close  to  the  vacuum  window.    Stepper  motor  cables  have  been  run  in  the  overhead  cable  trays.    Two  cables  connect  to  each  of  the  wheels.    The  pairs  of  cables  are  labeled  “cm”  and  “mm”,  as  are  the  stepper  motor  connectors.    Each  of  the  degraders  has  dimensions  4”  x  4”.    Thickness  of  the  degraders  is  given  in  Table  1.    The  assembly  drawing  is  shown  in  Figure  3.  

NSRL-­‐TN-­‐10-­‐004     1  November  2010  

 Figure  3:  Assembly  drawing  of  the  degrader  wheel.  

 The  degraders  were  manufactured  out  of  thin  sheets  of  polyethylene.    Each  degrader  is  4”  x  4”  across.    All  of  the  fine  gradations  were  made  up  by  putting  together  several  sheets  of  thin  polyethylene  stock.    The  stock  sheets  were  of  thickness  0.1,  0.2  and  0.5  mm,  nominally.    These  were  combined  to  make  all  of  the  submillimeter  degraders.    The  1  and  2  mm  thick  degraders  were  made  from  1  mm  thick  stock.    All  the  thicker  degraders,  3-­‐9  mm,  were  machined  from  thicker  stock.    The  thickness  of  the  stock  was  measured  using  a  micrometer.    The  density  was  checked  by  weighing  samples  of  known  dimension  to  compute  the  average  density.    For  the  thinnest  sheets,  we  use  the  manufacturer’s  nominal  density  of  0.91  g/cm3  rather  than  our  measured  density  because  uncertainty  in  the  thickness  measurement  is  large.    In  general,  the  thin  sheets  had  densities  of  0.91  g/cm3,  while  the  thicker  polyethylene  was  0.92  g/cm3.    Using  these  values  of  density,  and  the  measured  thickness  of  each  sample,  we  derive  the  areal  density  of  each  of  the  degraders.    Also  listed  in  Table  1  is  the  uncertainty  in  the  measured  thickness,  as  computed  from  the  standard  deviation  of  thickness  measurements  at  a  minimum  of  9  points  around  the  circumference  of  the  sheet.    

7

A

8

B

C

D

6 5

7

G

E

F

NOTES:

H

8 6 5

24 3 1

A

DW

G N

OR E V

SH

TO

F

C

D

2 4 3

G

E

F

1

H

PRO/E

!"##$%&'()!!&#&')*"'+%&,)'*-&.*

SCALE:

DRAWING NUMBER:

FINISHAPPLICATION

CATEGORYQ.A.

UNLESS OTHERWISE SPECIFIED

DIMENSIONS ARE IN INCHES

USED ON DRAWING NO. QTY. PER ASS'Y.BREAK SHARP EDGES

ANGULAR TOLERANCE 1

DECIMAL TOLERANCES.X .030

.XX .015.XXX .005

ACCORDANCE WITHANSI/ASME Y14.54M-1994

BY

SUPERVISORAPPROVAL

DESIGNAPPROVAL

CHECKEDBY

ENGINEERAPPROVAL

DRAWN

INTERPRET IN GENERAL

ESIZE

SHEET OFWEIGHT:

/,*".0+.121+33456

REV.

.03 MAX. MIN. 015

7'""89):&.+.)*$".)#+#)7"')*"'2

A-3

A

A

3405

040

1

1

REVISION APPROVALS

SUPVENGDESCHKBYDATEDESCRIPTIONECN NO.REV

------INITIAL RELEASE-A

NSRLFILTER CHANGER

Filter Changer Assy.

34050400.500

J. FITE 17-Sep-10

1

BILL OF MATERIALS

REMARKSDESCRIPTIONPART NUMBERITEMNUMBERQTY

ANAHEIM AUTOMATIONHIGH TORQUE STEPPER MOTOR, NEMA 2323L310D-LW812

IT SWITCHESMICROSWITCH, SHORT LEVER16-410 / 76-122022

MC MASTER CARRSCREW,SOC.HD,.164-32X.75, SST92185A19738

MCMASTER CARRRETAINING RING, .375 DIA, E STYLE98408A13442

MCMASTER CARRSCR. SOC. BUTT. HD. .112-40 X .38 LG. SST92949A10858

MCMASTER CARRSCREW, BUTT HD, .190-24 X 50, SST92949A242620

MCMASTER CARRSCREW, SOC HD, .138-32UNC, SST92949A145716

MCMASTER CARR90945A74084

McMASTER-CARR.125-20 X 1.75 SCKT HD CAP SCREW, SST92196A54894

McMASTER-CARRBEARING, SLEEVE - BRONZE 3405054102

McMASTER-CARRBEARING, THRUST; BRONZE93490A018112

McMASTER-CARRBOLT, RND HD, 0.806-56 X 0.75 LG, SST91792A084124

McMASTER-CARRNUT, HEX, .164-32; SST91240A009138

McMASTER-CARRNUT, HEX, 0.086-56, SST91240A003144

McMASTER-CARRSCREW, BTN HD, .112-40 X .25 LG, SST92949A106154

McMASTER-CARRSCREW, HEX HD, .250-20 X 2" LG, SST92198A550166

McMASTER-CARRSCREW, SOC.HD,.190-24X.438; SST92196A241174

McMASTER-CARRSCREW,SOC.HD,.112-40X.3892185A108188

McMASTER-CARRSCREW,SOC.HD,.112-40X.5092185A110194

SDP/SIXL TIMING PULLEY, 1/5 PITCH, 1.91 PD (MOD.)3405055202

SSTSCREW,SOC.HD,.250-20 X 1.00MS16995-52214

TYCO ELECTRONICS / AMPCONN RECEPT CPC 4POS STD SER 1206061-1222

TYCO ELECTRONICS / AMPCONN RECEPT CPC 9POS STD SER 1206705-1232

BASE / SPACER, NSRL FILTER CHANGER3405042241

BASE GUIDE, NSRL3405041252

BEARING, MAIN - SPACER7814K13261

BLOCK, MOTOR TENSIONING3405057272

BRACKET, MICRO-SWITCH3405049282

GUIDE, WHEEL - ALIGNMENT3405059294

GUSSET3405043302

LOCK, BASE GUIDE3405058312

PLATE, CABLE MOUNT3405060322

SCREW, PAN HD .190-24 X 2 LG; SSTMS 51957-71332

SHAFT, MAIN3405047341

SPACER, SUPPORT PLATE3405046355

SUPPORT, BOTTOM3405044362

SUPPORT, TOP3405045372

WHEEL ASSY, FRONT3405048382

75114491.7

125

1 1

!"#$%&%'(")

3

24

25

27

28

29

30

2

35

36

37

38

8

13

17 33

15

5

6

7

23

22

16 31

19

18

12

14

20

1

9

0.250SCALE

26

34

4

10

11

A-ASECTION

-A- -A-

-A- -A-

-A-

-A-

-A-

-A-

NSRL-­‐TN-­‐10-­‐004     1  November  2010  

Table  1:  Degrader  thickness  and  density.  

Ideal Measured Standard Density Density Filter # Thickness Thickness Deviation

mm mm mm g/cm^3 g/cm^2 1 0 0.000 0.000 0.91 0.000 2 0.1 0.111 0.003 0.91 0.101 3 0.2 0.224 0.006 0.91 0.204 4 0.3 0.335 0.007 0.91 0.305 5 0.4 0.448 0.009 0.91 0.408 6 0.5 0.601 0.014 0.91 0.547 7 0.6 0.712 0.014 0.91 0.648 8 0.7 0.825 0.015 0.91 0.751 9 0.8 0.936 0.016 0.91 0.852

10 0.9 1.049 0.017 0.91 0.955 11 0 0.000 0.000 0.91 0.000 12 1 0.995 0.009 0.92 0.915 13 2 1.989 0.013 0.92 1.830 14 3 3.023 0.012 0.92 2.781 15 4 4.056 0.017 0.92 3.732 16 5 5.044 0.013 0.92 4.640 17 6 5.998 0.010 0.92 5.519 18 7 7.045 0.015 0.92 6.482 19 8 7.993 0.017 0.92 7.354 20 9 9.018 0.027 0.92 8.297

 There  are  some  anomalies  in  the  degrader  thicknesses.    Note  that  accumulating  errors  in  thickness  lead  to  a  “0.9  mm”  nominal  degrader  that  is  really  1.049  mm  thick.    Conversely  the  “1.0  mm”  nominal  degrader  is  slightly  thinner  at  0.995  mm  measured.  


Recommended