+ All Categories
Home > Documents > References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains...

References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains...

Date post: 08-Mar-2018
Category:
Upload: hoangkiet
View: 220 times
Download: 2 times
Share this document with a friend
22
References [1} ACI (American Concrete Institute) (1988) Simplified version of the recommended practice for evaluation of strength test results. ACI Mat. J. 85-M33, 272-279. [2] Allgower, E., Bohmer, K., and Golubitsky M. eds. (1992) Bifurca- tion and Symmetry. International Series of Numerical Mathematics, Vol. 104. Birkhiiuser, Basel. [3} Antman, S.S. (1995) Nonlinear Problems of Elasticity. Applied Mathematical Sciences, Vol. 107. Springer-Verlag, New York. [4} Arbocz, J. and Abramovich, H. (1979) The Initial Imperfection Data Bank at the Delft University of Technology, Part 1. Report LR-290. Department of Aerospace Engineering, Delft University of Technology. [5} Arbocz, J. and Hoi, J.M.A.M. (1991) Collapse of axially compressed cylindrical shells with random imperfections. AIAA J. 29(12), 2247- 2256. [6] Archambault, G., Rouleau, A., Daigneault, R., and Flamand, R. (1993) Progressive failure of rock masses by a self-similar anasto- mosing process of rupture at all scales and its scale effect on their shear strength. In: Scale Effects in Rock Masses, Vol. 93, edited by A. Pinto da Cunha, pp. 133-141. Balkema, Rotterdam. [7] Asaoka, A. and Nakano, M. (1996) Deformation of triaxial clay specimen during undrained compression. Private communication. [8} Asaoka, A. and Noda, T. (1995) Imperfection-sensitive bifurca- tion of Cam-clay under plane strain compression with undrained boundaries. Soils Foundations 35(1), 83-100.
Transcript
Page 1: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References

[1} ACI (American Concrete Institute) (1988) Simplified version of the recommended practice for evaluation of strength test results. ACI Mat. J. 85-M33, 272-279.

[2] Allgower, E., Bohmer, K., and Golubitsky M. eds. (1992) Bifurca­tion and Symmetry. International Series of Numerical Mathematics, Vol. 104. Birkhiiuser, Basel.

[3} Antman, S.S. (1995) Nonlinear Problems of Elasticity. Applied Mathematical Sciences, Vol. 107. Springer-Verlag, New York.

[4} Arbocz, J. and Abramovich, H. (1979) The Initial Imperfection Data Bank at the Delft University of Technology, Part 1. Report LR-290. Department of Aerospace Engineering, Delft University of Technology.

[5} Arbocz, J. and Hoi, J.M.A.M. (1991) Collapse of axially compressed cylindrical shells with random imperfections. AIAA J. 29(12), 2247-2256.

[6] Archambault, G., Rouleau, A., Daigneault, R., and Flamand, R. (1993) Progressive failure of rock masses by a self-similar anasto­mosing process of rupture at all scales and its scale effect on their shear strength. In: Scale Effects in Rock Masses, Vol. 93, edited by A. Pinto da Cunha, pp. 133-141. Balkema, Rotterdam.

[7] Asaoka, A. and Nakano, M. (1996) Deformation of triaxial clay specimen during undrained compression. Private communication.

[8} Asaoka, A. and Noda, T. (1995) Imperfection-sensitive bifurca­tion of Cam-clay under plane strain compression with undrained boundaries. Soils Foundations 35(1), 83-100.

Page 2: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 393

(9] Augusti, G., Barratta, A., and Casciati, F. (1984) Probabilistic Methods in Structural Engineering. Chapman and Hall, New York.

[10] Bai, Y. and Dodd, B. (1992) Adiabatic Shear Localization­Occurrence, Theories and Applications. Pergamon Press, Oxford, UK.

[11] Bakker, P.G. (1991) Bifurcations in Flow Patterns-Some Appli­cations of the Qualitative Theory of Differential Equations in Fluid Dynamics. Nonlinear Topics in the Mathematical Sciences, Vol. 2. Kluwer Academic, Dordrecht.

[12] Ba.Zant, Z.P. and Cedolin, L. (1991) Stability of Structures. Oxford University Press, New York.

[13] Ba.Zant, Z.P. and J. Planas (1998) Fracture and Size Effect in Concrete and Other Quasibrittle Materials. New Directions in Civil Engineering, Vol. 8. CRC Press, Boca Raton, FL.

[14] Ben-Haim, Y. and Elishakoff, I. (1990) Convex Models of Uncer­tainty in Applied Mechanics. Studies in Applied Mechanics, Vol. 25. Elsevier, Amsterdam.

[15] Bolotin, V.V. (1958) Statistical Methods in the Nonlinear Theory of Elastic Shells. Izvestija Academii Nauk SSSR. Otdeleni Tekhnich­eskikh Nauk, Vol. 3 (English translation, NASA TTF-85, 1962, 1-16).

(16] Bolotin, V.V. (1969) Statistical Methods in Structural Mechanics. Holden-Day Series in Mathematical Physics, Vol. 7. Holden-Day, San Francisco.

(17] Bolotin, V.V. (1984) Random Vibrations of Elastic Systems. Mechanics of Elastic Stability, Vol. 7. Martinus Nijhoff, The Hague.

[18] Bossavit, A. (1986) Symmetry, groups, and boundary value problems-A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215.

[19] Boyce, W.E. (1961) Buckling of a column with random initial displacements. J. Aero. Sci. 28, 308-320.

(20] Budiansky, B. (1974) Theory of buckling and post-buckling behav­ior of elastic structures. In: Advances in Applied Mechanics, Vol. 14, edited by C.-S. Yih, pp. 1-65. Academic Press, New York.

[21] Burke, M.A. and Nix, W.D. (1979) A numerical study of necking in the plane tension test. Internat. J. Solids Structures 15, 379-393,

[22] Cernica, J.N. (1995) Geotechnical Engineering: Soil Mechanics. Wiley, New York.

(23] Chadam, J., Golubitsky, M., Langford, W., and Wetton, B. eds. (1996) Pattern Formation: Symmetry Methods and Applications. Fields Institute Communications, Vol. 5. American Mathematical Society, Providence, Rl.

[24] Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Clarendon Press, London.

Page 3: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

394 References

(25] Chen, H.-C. and Sameh, A.H. (1989) A matrix decomposition method for orthotropic elasticity problems. SIAM J. Matrix Anal. Appl. 10(1), 39-64.

(26] Chossat, P. (1994) Dynamics, Bifurcation and Symmetry-New Trends and New Tools. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 437. Kluwer Academic, Dordrecht.

(27] Chossat, P. and Iooss, G. (1994) The Couette-Taylor Problem. Applied Mathematical Sciences, Vol. 102. Springer-Verlag, New York.

(28] Chow, S. and Hale, J.K. (1982) Methods of Bifurcation The­ory. Grundlehren der mathematischen Wissenschaften, Vol. 251. Springer-Verlag, New York.

(29] Chow, S., Hale, J.K., and Mallet-Panet, J. (1975) Applications of generic bifurcations. I. Arch. Rational Mech. Anal. 59, 159-188.

[30] Chow, S., Hale, J.K., and Mallet-Panet, J. (1976) Applications of generic bifurcations. II. Arch. Rational Mech. Anal. 62, 209-235.

[31] Craig, R.F. (1997) Soil Mechanics, 6th ed. E & FN Spon, an imprint of Chapman & Hall, London.

[32] Crawford, J.D. and Knobloch, E. (1991) Symmetry and symmetry­breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Mech. 23, 341-387.

[33] Crisfield, M.A. (1991) Non-linear Finite Element Analysis of Solids and Structures, Vol. 1. Wiley, Chichester, UK.

[34] Curtis, C.W. and Reiner, I. (1962) Representation Theory of Finite Groups and Associative Algebras. Wiley Classic Library, Vol. 45. Wiley (Interscience), New York.

[35] Davis, G.H. (1984) Structural Geology of Rocks & Regions. Wiley, Singapore.

[36] de Borst, R. (1988) Bifurcation in finite element models with non­associated flow law. Internat. J. Numer. Analyt. Methods Geomech. 12, 99-116.

[37] Dellnitz, M. and Werner, B. (1989) Computational methods for bifurcation problems with symmetries-with special attention to steady state and Hopf bifurcation points. J. Comput. Appl. Math. 26, 97-123.

(38] Desrues, J., Lanier, J., and Stutz, P. (1985) Localization of the deformation in tests on sand samples. Engrg. Fracture Mech. 21(4), 909-921.

(39] Dinkevich, S. (1984) The spectral method of calculation of symmet­ric structures of finite size. Trans. Canad. Soc. Mech. Engrg. 8(4), 185-194.

[40] Dinkevich, S. (1991) Finite symmetric systems and their analysis. Internat. J. Solids Structures 27(10), 1215-1253.

Page 4: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 395

(41] Drazin, P.G. and Reid, W.H. (1981) Hydrodynamic Stability. Cambridge University Press, Cambridge, UK.

(42] Duszek-Perzyna, M.K. and Perzyna, P. (1993) Adiabatic shear band localization in elastic-plastic single crystals. Internat. J. Solids Structures 30(1), 61-89.

(43] Elishakoff, I. (1979) Buckling of a stochastically imperfect finite column on a nonlinear elastic foundation. J. Appl. Mech. 46(2), 411-416.

(44] Elishakoff, I. (1983) Probabilistic Methods in the Theory of Structures. Wiley (Interscience), New York.

(45] Elishakoff, I. and Arbocz, J. (1982) Reliability of axially compressed cylindrical shells with random axisymmetric imperfections. Internat. J. Solids Structures 18(7), 563-585.

(46] Elishakoff, 1., Li, Y.W., and Starnes Jr., J.H. (1996) Imperfection sensitivity due to the elastic moduli in the Roorda-Koiter frame. Chaos, Solitons, & Fractals 1(8), 1179-1186.

(47] Elishakoff, I., Li, Y.W., and Starnes Jr., J.H. (2001) Non-Classical Problems in the Theory of Elastic Stability. Cambridge University Press, Cambridge, UK.

(48] Elishakoff, 1., Lin, Y.K., and Zhu, L.P. (1994) Probabilistic and Con­vex Modelling of Acoustically Excited Structures. Studies in Applied Mechanics, Vol. 39. Elsevier, Amsterdam.

[49] Elishakoff, 1., van Manen, S., Vermeulen, P.G., and Arbocz, J. (1987) First-order second-moment analysis of the buckling of shells with random initial imperfections. AIAA J. 25(8), 1113-1117.

(50] El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw-Hill, London.

[51] Fujii, H., Mimura, M., and Nishiura, Y. (1982) A picture of the global bifurcation diagram in ecological interacting and diffusing systems. Phys. D 5(1), 1-42.

[52] Fujii, H. and Yamaguti, M. (1980) Structure of singularities and its numerical realization in nonlinear elasticity. J. Math. Kyoto Univ. 20(3), 489-590.

[53] Galambos, J. (1978, 1987) The Asymptotic Theory of Extreme Or­der Statistics, 1st ed., Wiley, New York; 2nd ed., R.E. Krieger, Malabar, FL.

(54] Gatermann, K. and Hohmann, A. (1991) Symbolic exploitation of symmetry in numerical path-following. Impact Comput. Sci. Engrg. 3, 330-365.

(55] Gatermann, K. and Werner, B. (1994) Group theoretical mode in­teractions with different symmetries. Internat. J. Bifurcation Chaos 4(1), 177-191.

[56] Godoy, L.A. (2000) Theory of Elastic Stability-Analysis and Sensitivity. Taylor & Francis, Philadelphia, PA.

Page 5: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

396 References

[57] Golubitsky, M. and Schaeffer, D. G. (1985) Singularities and Groups in Bifurcation Theory, Vol. 1. Applied Mathematical Sciences, Vol. 51. Springer-Verlag, New York.

[58] Golubitsky, M., Stewart, 1., and Schaeffer, D.G. (1988) Singularities and Groups in Bifurcation Theory, Vol. 2. Applied Mathematical Sciences, Vol. 69. Springer-Verlag, New York.

[59] Goto, S. (1986) Strength and deformation characteristics of gran­ular materials in triaxial tests. Doctor Thesis. Department of Civil Engineering, University of Tokyo.

[60] Goto, S. and Tatsuoka, F. (1988) Effect of end conditions on triaxial compressive strength for cohesionless soil. Advanced Triaxial Testing Soil Rock, ASTM STP 977, 692-705.

[61] Govaerts, W.J.F. (2000) Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, PA.

[62] Grosvenor, N.E. (1963) Specimen proportions-Key to better compressive tests. Mining Engrg. 15(1), 31-33.

[63] Hale, J. and Ko«;ak, H. (1991) Dynamics and Bifurcations. Texts in Applied Mathematics, Vol. 3. Springer-Verlag, New York.

[64] Hamermesh, M. (1962) Group Theory and Its Application to Phys­ical Problems. Addison-Wesley Series in Physics. Addison-Wesley, Reading, MA.

[65] Healey, T.J. (1985) Symmetry, bifurcation, and computational methods in nonlinear structural mechanics. Ph.D Thesis. University of Illinois.

[66] Healey, T.J. (1988) A group theoretic approach to computational bifurcation problems with symmetry. Comput. Methods Appl. Mech. Engrg. 67, 257-295.

[67] Healey, T.J. and Treacy, J.A. (1991) Exact block diagonalization of large eigenvalue problems for structures with symmetry. Intemat. J. Numer. Methods Engrg. 31, 265-285.

[68] Hill, R. (1958) A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 16, 236-240.

[69] Hill, R. and Hutchinson, J.W. (1975) Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids 23, 239-264.

[70] Ho, D. (1974) Buckling load of non-linear systems with multiple eigenvalues. Intemat. J. Solids Structures 10, 1315-1330.

[71] Hui, D. (1986) Imperfection sensitivity of axially compressed lam­inated flat plate due to bending-stretching coupling. Intemat. J. Solids Structures 22(1), 13-22.

[72] Hui, D. and Chen, Y.H. (1987) Imperfection-sensitivity of cylindri­cal panels under compression using Koiter's improved postbuckling theory. Intemat. J. Solids Structures 23(7), 969-982.

[73] Hunt, G.W. (1977) Imperfection-sensitivity of semi-symmetric branching. Proc. Roy. Soc. London Ser. A 357, 193-211.

Page 6: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 397

[74] Hunt, G.W., Bolt, H.M., and Thompson, J.M.T. (1989) Structural localization phenomena and the dynamical phase-space analogy. Proc. Roy. Soc. London Ser. A 425, 245-267.

[75] Hunt, G.W. and Wadee, M.K. (1991) Comparative Lagrangian for­mulations for localized buckling. Proc. Roy. Soc. London Ser. A 434, 485-502.

[76] Hutchinson, J.W. and Koiter, W.T. (1970) Postbuckling theory. Appl. Mech. Rev. 23(12), 1353-1366.

[77] Hutchinson, J.W. and Miles, J.P. (1974) Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension. J. Mech. Phys. Solids 22, 61-71.

[78] Ikeda, K., Chida, T., and Yanagisawa, E. (1997) Imperfection sen­sitive strength variation of soil specimens. J. Mech. Phys. Solids 45(2), 293-315.

[79] Ikeda, K. and Goto, S. (1993) Imperfection sensitivity for size effect of granular materials. Soils Foundations 33(2), 157-170.

[80] Ikeda, K., Maruyama, K., Ishida, H., and Kagawa, S. (1997) Bifur­cation in compressive behavior of concrete. ACI Materials J. 94(6), 484-491.

[81] Ikeda, K., Murakami, S., Saiki, 1., Sano, 1., and Oguma, N. (2001) Image simulation of uniform materials subjected to recursive bifurcation. Intemat. J. Engrg. Sci. 39(17), 1963-1999.

[82] Ikeda, K. and Murota, K. (1990) Critical initial imperfection of structures. Intemat. J. Solids Structures 26(8), 865-886.

[83] Ikeda, K. and Murota, K. (1990) Computation of critical initial im­perfection of truss structures. J. Engrg. Mech. Div. ASCE 116(10), 2101-2117.

[84] Ikeda, K. and Murota, K. (1991) Bifurcation analysis of symmet­ric structures using block-diagonalization. Comput. Methods Appl. Mech. Engrg. 86(2), 215-243.

[85] Ikeda, K. and Murota, K. (1991) Random initial imperfections of structures. Intemat. J. Solids Structures 28(8), 1003-1021.

[86] Ikeda, K. and Murota, K. (1993) Statistics of normally distributed initial imperfections. Intemat. J. Solids Structures 30(18), 2445-2467.

[87] Ikeda, K. and Murota, K. (1996) Bifurcation as sources of uncertainty in soil shearing behavior. Soils Foundations 36(1), 73-84.

[88] Ikeda, K. and Murota, K. (1997) Recursive bifurcation as sources of complexity in soil shearing behavior. Soils Foundations 37(3), 17-29.

[89] Ikeda, K. and Murota, K. (1999) Systematic description of imper­fect bifurcation behavior of symmetric systems. Intemat. J. Solids Structures 36, 1561-1596.

Page 7: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

398 References

[90) Ikeda, K., Murota, K., and Elishakoff, I. (1996) Reliability of struc­tures subject to normally distributed initial imperfections. Comput. & Structures 59(3), 463-469.

(91) Ikeda, K., Murota, K., and Fujii, H. (1991) Bifurcation hierarchy of symmetric structures. Internat. J. Solids Structures 27(12), 1551-1573.

(92) Ikeda, K., Murota, K., and Nakano, M. (1994) Echelon modes in uniform materials. Internat. J. Solids Structures 31(19), 2709-2733.

(93} Ikeda, K., Murota, K., Yamakawa, Y., and Yanagisawa, E. (1997) Mode switching and recursive bifurcation in granular materials. J. Mech. Phys. Solids 45(11-12), 1929-1953.

(94) Ikeda, K., Nishino, F., Hartono, W., and Torii, K. (1988) Bifurca­tion behavior of an axisymmetric elastic space truss. Proc. JSCE, Structural Engrg.jEarthquake Engrg. 392(I-9), 231-234.

(95) Ikeda, K., Oide, K., and Terada, K. (2002) Imperfection sensitive strength variation at hilltop bifurcation point. Internat. J. Engrg. Sci., to appear.

(96) Ikeda, K., Okazawa, S., Terada, K., Noguchi, H., and Usami, T. (2001) Recursive bifurcation of tensile steel specimens. Internat. J. Engrg. Sci. 39(17), 1913-1934.

(97) Ikeda, K., Providencia, P., and Hunt, G.W. (1993) Multiple equilib­ria for unlinked and weakly-linked cellular forms. Internat. J. Solids Structures 30(3), 371-384.

(98) Iooss, G. (1986} Secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries. J. Fluid Mech. 173, 273-288.

(99} Iooss, G. and Adelmeyer, M. (1998) Topics in Bifurcation The­ory and Applications, 2nd ed. Advanced Series Nonlinear Dynamics, Vol. 3. World Scientific, Singapore.

(100) Iooss, G. and Joseph, D.D. (1990) Elementary Stability and Bi­furcation Theory, 2nd ed. Undergraduate Texts in Mathematics. Springer-Verlag, New York.

[101) Jacobson, N. (1989) Basic Algebra I, 2nd ed. Freeman, New York.

[102] Kam, T.Y. and Lee, F.S. (1986) Nonlinear analysis of steel plane frames with initial imperfections. Comput. & Structures 23(4), 553-557.

[103] Karadeniz, H., van Manen, S., and Vrouwenvelder, A. (1982) Prob­abilistic reliability analysis for the fatigue limit state of gravity and jacket type structures. Proceedings of the Third International Conference-BOSS. McGraw-Hill, London.

[104] Keener, J.P. (1974) Perturbed bifurcation theory at multiple eigenvalues. Arch. Rational Mech. Anal. 56, 348-366.

[105] Keener, J.P. (1979) Secondary bifurcation and multiple eigenvalues. SIAM J. Appl. Math. 37(2), 330-349.

[106] Keener, J.P. and Keller, H.B. (1973) Perturbed bifurcation theory. Arch. Rational Mech. Anal. 50, 159-175.

Page 8: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 399

[107] Keller, J.B. and Antman, S. eds. (1969) Bifurcation Theory and Nonlinear Eigenvalue Problems. Mathematics Lecture Note Series. Benjamin, New York.

[108] Kendall, M. and Stuart, A. (1977) The Advanced Theory of Statistics, Vol. 1, 4th ed. Charles Griffin, London.

[109] Kettle, S.F.A. (1995) Symmetry and Structure, 2nd ed. Wiley, Chichester, UK.

[110] Kim, S.K. (1999) Group Theoretical Methods and Applications to Molecules and Crystals. Cambridge University Press, Cambridge, UK.

[111] Kolymbas, D. (1981) Bifurcation analysis for sand samples with a non-linear constitutive equation. Ingenieur-Archiv 50, 131-140.

[112] Koiter, W.T. (1945) On the Stability of Elastic Equilibrium. Dis­sertation. Delft, Holland (English translation: NASA Technical Translation FlO: 833, 1967).

[113] Koiter, W.T. (1963) The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression. Proc. Roy. Netherlands Acad. Sci. Ser. 13, 66(5), 265-279.

[114] Koiter, W.T. (1976) Current trends in the theory of buckling. Buckling of Structures, Proceedings of the IUTAM Symposium at Cambridge, pp. 1-16. Springer-Verlag, Berlin.

[115] Koschmieder, E.L. (1966) On convection of a uniformly heated plane. Beitr. zur Phys. Atmosphiire 39, 1-11.

[116] Koschmieder, E.L. (1974) Benard convection. Adv. in Chern. Phys. 26, 177-188.

[117] Krasnosel'skii, M.A. (1964) Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics, Vol, 133. Pergamon Press, Oxford, UK.

[118] Kuznetsov, Y.A. (1995) Elements of Applied Bifurcation The­ory. Applied Mathematical Sciences, Vol. 112. Springer-Verlag, New York.

[119] Lindberg, H.E. and Florence, A.L. (1987) Dynamic Pulse Buckling. Mechanics of Elastic Stability, Vol. 12. Martinus Nijhoff, Dordrecht.

[120] Ludwig, W. and Falter, C. (1996) Symmetries in Physics-Group Theory Applied to Physical Problems, 2nd ed. Springer Series Solid­State Sciences, Vol. 64. Springer-Verlag, Berlin.

[121] Marsden, J.E. and Hughes, T.J.R. (1983) Mathematical Founda­tions of Elasticity. Prentice-Hall Civil Engineering and Engineering Mechanics Series. Prentice-Hall, Englewood Cliffs, NJ.

[122] Marsden, J.E. and Ratiu, S.R. (1994) Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, Vol. 17. Springer­Verlag, New York.

[123] Matkowsky, B.J. and Reiss, E.L. (1977) Singular perturbations of bifurcations. SIAM J. Appl. Math. 33(2), 230-255.

Page 9: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

400 References

[124] Miller, W., Jr. (1972) Symmetry Groups and Their Applications. Pure and Applied Mathematics, Vol. 50. Academic Press, New York.

[125] Mitropolsky, Yu. A. and Lopatin A. K. (1988) Nonlinear Mechanics, Groups and Symmetry. Mathematics and Its Applications. Kluwer Academic, Dordrecht.

[126] Moehlis, J. and Knobloch, E. (2000) Bursts in oscillatory systems with broken D4 symmetry. Phys. D 135, 263-304.

[127] Morgenstern, N.R. and Tchalenko, J.S. (1967) Microscopic struc­tures in kaolin subjected to direct shear. Geotechnique 17, 309-328.

(128] Murota, K. and Ikeda, K. (1991) Computational use of group theory in bifurcation analysis of symmetric structures. SIAM J. Sci. Statist. Comput. 12(2), 273-297.

[129] Murota, K. and Ikeda, K. (1991) Critical imperfection of symmetric structures. SIAM J. Appl. Math. 51(5) 1222-1254.

(130] Murota, K. and Ikeda, K. (1992) On random imperfections for structures of regular-polygonal symmetry. SIAM J. Appl. Math. 52(6), 1780-1803.

(131] Murota, K., Ikeda, K., and Terada, K. (1999) Bifurcation mechanism underlying echelon mode formation. Camp. Methods Appl. Mech. Engrg. 170(3-4), 423-448.

(132] Nakano, M. (1993) Analysis of Undrained and Partially Drained Behavior of Soils and Application to Soft Clays under Embankment Loading. Doctor Thesis. Department of Civil Engineering, Nagoya University (in Japanese).

(133] Nakazawa, M., Ikeda, K., Wachi, S., and Kuranishi, S. (1996) Nu­merical identification of secondary buckling phenomena of elastic rectangular plate under pure bending. Structural Engrg.jEarthquake Engrg., JSCE 13(1), 29s-41s.

(134] Needleman, A. (1972) A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids 20, 111-127.

(135] Nicolas, A. (1995) The Mid-Oceanic Ridges-Mountains Below Sea Level. Springer-Verlag, Berlin.

[136] Nishimaki, T. (1992) On the Dependence of Drained Shearing Be­havior of Sand on Stress Path. Master Thesis. Department of Civil Engineering, Tohoku University (in Japanese).

(137] Noda, T. (1994) Elasto-Plastic Behavior of Soil near/at Critical State and Soil- Water Coupled Finite Deformation Analysis. Doc­tor Thesis. Department of Civil Engineering, Nagoya University (in Japanese).

[138] Oden, J.T. and Ripperger, E.A. (1981) Mechanics of Elastic Structures, 2nd ed. Hemisphere, Washington, DC.

(139] Ohsaki, M. and Nakamura, T. (1994) Optimum design with imper­fection sensitivity coefficients for limit point loads. Structural Optim. 8, 131-137.

Page 10: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 401

[140] Okamoto, H. and Shoji, M. (2001) The Mathematical Theory of Per­manent Progressive Water- Waves. Advanced Series in Nonlinear Dynamics. World Scientific, Singapore.

[141] Okazawa, S., Oide, K., Ikeda, K., and Terada, K. (2002) Imper­fection _sensitivity and probabilistic variation of tensile strength of steel members. Intemat. J. Solids Structures, to appear.

[142] Olver, P.J. (1986) Applications of Lie Groups to Differential Equa­tions. Graduate Texts in Mathematics, Vol. 107. Springer-Verlag, New York.

[143] Olver, P.J. (1995) Equivariance, Invariants, and Symmetry. Cam­bridge University Press, Cambridge, UK.

[144] Palassopoulos, G.V. (1989) Optimization of imperfection-sensitive structures. J. Engrg. Mech. ASCE 115(8), 1663-1682.

[145] Peek, R. and Kheyrkhahan, M. (1993) Postbuckling behavior and imperfection sensitivity of elastic structures by the Lyapunov­Schmidt-Koiter approach. Comput. Methods Appl. Mech. Engrg. 108, 261-279.

[146] Peek, R. and Triantafyllidis, N. (1992) Worst shapes of imperfec­tions for space trusses with many simultaneously buckling modes. Intemat. J. Solids Structures 29(19), 2385-2402.

[147] Petit, J.P. (1988) Can natural faults propagate under mode II conditions? Tectonics 7(6), 1243-1256.

[148] Petryk, H. and Thermann, K. (1992) On discretized plasticity problems with bifurcations. Intemat. J. Solids Structures 29(6), 745-765.

[149] Pignataro, M., Rizzi, N., and Luongo, A. (1991) Stability, Bifurca­tion and Postcritical Behaviour of Elastic Structures. Developments in Civil Engineering, Vol. 39. Elsevier, Amsterdam.

[150] Poirier, J.-P. (1985) Creep of Crystals: High-Temperature Deforma­tion Processes in Metals, Ceramics and Minerals. Cambridge Earth Science Series, Vol. 4. Cambridge University Press, Cambridge, UK.

[151] Pollard, D.D., Segal, P., and Delaney, P.T. (1982) Formation and interpretation of dilatant echelon cracks. Geological Soc. A mer. Bull. 93, 1291-1303.

[152] Poston, T. and Stewart, I. (1978) Catastrophe Theory and Its Ap­plications. Survey and Reference Works in Mathematics. Pitman, London.

[153] Prince, E. (1994) Mathematical Techniques in Crystallography and Materials Science. Springer-Verlag, Berlin.

[154] Reiss, E.L. (1977) Imperfect bifurcation. In: Applications of Bi­furcation Theory, edited by Rabinowitz, P.H., pp. 37-71. Academic Press, New York.

[155] Roorda, J. (1965) The Instability of Imperfect Elastic Structures. Ph.D Dissertation. University of London.

Page 11: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

402 References

[156) Roorda, J. and Hansen, J.S. (1972) Random buckling behavior in axially loaded cylindrical shells with axisymmetric imperfections. J. Spacecraft 9(2), 88-91.

[157) Rosen, J. (1995) Symmetry in Science. Springer-Verlag, New York.

[158) Sangha, C.M. and Dhir, R.K. (1972) Strength and complete stress­strain relationships for concrete tested in uniaxial compression under different test conditions. Materiaux et Constructions 5(30), 361-370.

[159) Sattinger, D.H. (1979) Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Mathematics, Vol. 762. Springer-Verlag, Berlin.

[160) Sattinger, D.H. (1980) Bifurcation and symmetry breaking in applied mathematics. Bull. Amer. Math. Soc. 3(2), 779-819.

[161) Sattinger, D.H. (1983) Branching in the Presence of Symmetry. Regional Conference Series in Applied Mathematics, Vol. 40. SIAM, Philadelphia, PA.

[162) Schaeffer, D.G. (1980) Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Cambridge Philos. Soc. 87, 307-337.

[163) Schofield, A.N. and Wroth, C.P. (1968) Critical State Soil Mechanics. McGraw-Hill, New York.

[164) Serre, J.-P. (1977) Linear Representations of Finite Groups. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York.

[165) Seydel, R. (1979) Numerical computation of branch points in ordinary differential equations. Numer. Math. 32, 51-68.

[166) Seydel, R. (1979) Numerical computation of branch points in nonlinear equations. Numer. Math. 33, 339-352.

[167) Seydel, R. (1994) Practical Bifurcation and Stability Analysis, 2nd ed. Interdisciplinary Applied Mathematics, Vol. 5. Springer-Verlag, New York.

[168) Singer, J., Abramovich, H., and Yaffe, R. (1978) Initial Imper­fection Measurements of Integrally Stringer-Stiffened Cylindrical Shells. TAE Report 330. Department of Aeronautical Engineering, Technion, Israel Institute of Technology.

[169) Stewart, I. and Golubitsky, M. (1992) Fearful Symmetry-Is God a Geometer? Blackwell, Oxford, UK.

[170) Tanaka, R., Saiki, 1., and Ikeda, K. (2002) Group-theoretic bifurca­tion mechanism for pattern formation in three-dimensional uniform materials. Internat. J. Bifurcation Chaos, to appear.

(171) Taylor, G.l. (1923) The stability of a viscous fluid contained be­tween two rotating cylinders. Phil. Trans. Roy. Soc. London Ser. A 223, 289-343.

[172) Terzaghi, K. and Peck, R.B. (1967) Soil Mechanics in Engineering Practice, 2nd ed. Wiley, New York.

Page 12: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

References 403

[173] Thompson, J.M.T. (1982) Instabilities and Catastrophes in Science and Engineering. Wiley (Interscience), Chichester, UK.

[174] Thompson, J.M.T. and Hunt, G.W. (1973) A General Theory of Elastic Stability. Wiley, New York.

[175] Thompson, J.M.T. and Hunt, G.W. (1984) Elastic Instability Phenomena. Wiley, Chichester, UK.

[176] Thompson, J.M.T. and Schorrock, P.A. (1975) Bifurcation insta­bility of an atomic lattice. J. Mech. Phys. Solids 23, 21-37.

[177] Timoshenko, S.P. and Gere, J .M. (1963) Theory of Elastic Stability. McGraw-Hill, Tokyo.

[178] Timoshenko, S. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd ed. McGraw-Hill, New York.

[179] Triantafyllidis, N. and Peek, R. (1992) On stability and the worst imperfection shape in solids with nearly simultaneous eigenmodes. Internat. J. Solids Structures 29(18), 2281-2299.

[180] '!'roger, H. and Steindl, A. (1991) Nonlinear Stability and Bifurca­tion Theory: An Introduction for Engineers and Applied Scientists. Springer-Verlag, Wien.

[181] Tvergaard, V. and Needleman, A. (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157-169.

[182] Tvergaard, V., Needleman, A., and Lo, K.K. (1981) Flow localiza­tion in the plane strain tensile test. J. Mech. Phys. Solids 29(2), 115-142.

[183] van der Waerden, B.L. (1955) Algebra. Springer-Verlag, New York.

[184] Vardoulakis, I. and Sulem, J. (1992) Bifurcation Analysis in Geomechanics. Blackie Academic & Professional, Glasgow, UK.

[185] Vermeer, P.A. (1982) A simple shear-band analysis using compli­ances. IUTAM, Conference on Deformation and Failure of Granular Materials, pp. 493-499.

[186] von Karman, T., Dunn, L.G., and Tsien, H.S. (1940) The influence of curvature on the buckling characteristics of structures. J. Aero. Sci. 7(7), 276-289.

[187] Voskamp, A.P. and Hoolox, G.E. (1998) Failsafe rating of ball bearing components. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTM STP 987, 102-112.

[188] Wei bull, W. (1939) A statistical theory of the strength of materials. Roy. Swedish Inst. Engrg. Res., Proc. 151.

[189] Weibull, W. (1951) A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293-297.

[190] Werner, B. and Spence, A. (1984) The computation of symmetry­breaking bifurcation points. SIAM J. Numer. Anal. 21(2), 388-399.

[191] Weyl, H. (1952) Symmetry. Princeton University Press, Princeton, NJ.

(192] Wiggins, S. (1988) Global Bifurcations and Chaos. Applied Mathematical Sciences, Vol. 73. Springer-Verlag, New York.

Page 13: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

404 References

(193] Wriggers, P. and Simo, J.C. (1990) A general procedure for the direct computation of turning and bifurcation points. Internat. J. Numer. Methods Engrg. 30, 155-176.

(194] Yamaki, N. (1984) Elastic Stability of Circular Cylindrical Shells. Applied Mathematics and Mechanics, Vol. 27. Elsevier, Amsterdam.

(195] Yatomi, C., Yashima, A., Iizuka, A., and Sano, I. (1989) Shear bands formation numerically simulated by a non-coaxial Cam-clay model. Soils Foundations 29(4), 1-13.

(196] Ziegler, H. (1968, 1977) Principles of Structural Stability, 1st ed. GinnBlaisdel, Lexington; 2nd ed. Birkhii.user, Basel.

(197] Zlokovic, G. (1989) Group Theory and G- Vector Spaces in Structural Analysis. Ellis Horwood, Chichester, UK.

Page 14: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

Index

C-irreducible representation, 340, 349 Ce, 197 Coo, 286, 288 Cooh, 286 Coov, 285, 286, 288, 293, 296, 340 Coov X Coov, 314, 320, 321, 324, 326,

331, 340, 344 C;, 286 Cn, 197, 206, 286, 288 Cnh, 286, 288 Cnv, 286, 288, 296 Din;;,, 317 D3, 194, 245, 247 Ds, 269 De, 98, 246 D2h, 30, 296, 297, 359 Doo, 286, 288 Doooo, 353 Dooh, 285-288, 293, 298, 299 Dn, 189, 198, 234, 251, 262 Dn (Schoenflies notation), 286, 288,

294 Dnd, 286, 288, 289, 299, 305, 306 Dnh, 286, 288, 299, 303, 304 EC~~kll 319 ECnnkll 317, 318, 320, 321, 324, 329,

355

G (group) equivariant system, 164 invariance, 160, 162, 167, 168 symmetric, 164, 165

OB~~, 319, 352 OBn;;,, 317, 321, 324 0(2) X 0(2), 28, 314, 325, 326, 328,

344 0(2) X S0(2), 344 0(2) x z2, 28, 30, 313 R-irreducible representation, 340, 349 Sn, 286, 288 Z2 x z2, 326

absolutely irreducible, 160, 186 representation, 173, 174

aloof path, 218 asymptote, 213 asymptotic

analysis, 42, 44, 64 behavior, 72 distribution, 110 generalized law, 129, 133, 134 law, 139 potential, 209 stability, 40

atomic crystal lattice, 383

Page 15: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

406 Index

autocorrelation function, 116 average, 104 axial strain, 144 axisymmetry, 286

Benard convection, 311 basis, 46, 158

change, 165, 172 vectors, 24 7

beam on a nonlinear foundation, 115, 387, 388

bifurcation, 38 direct, 321, 324, 369, 370 equation, 41, 45, 47, 69, 126, 343,

350, 353 explosive, 389 mode, 64, 388

harmonic, 387 parameter, 1, 2, 37 problem, 1 secondary, 32, 321, 361, 369, 370

bifurcation behavior imperfect, 43, 64, 212, 382 local, 42, 61, 204

bifurcation diagram, 17, 224 experimentally observed, 18 imperfect, 61, 132 mathematical, 18, 125, 224

bifurcation point asymmetric, 43, 52 cascade, 391 clustered, 379 double, 12, 99, 179, 195, 197, 236,

244, 259, 269 unstable, 254

hilltop, 383-385, 391 n-fold, 390 pitchfork, 4, 57, 62, 68, 71, 88, 103,

121, 189, 342 stable, 59, 75 unstable, 10, 59, 71, 76, 84, 93,

96, 117, 126, 13~ 214, 383 quadruple, 344 search, 144, 294 simple, 74, 224, 350 symmetric, 52, 63 transcritical, 43, 56, 68, 70, 75, 88,

103, 120

block-diagonal form, 160, 162, 172, 173, 252

block-diagonalization, 162, 173-175 branch, 131, 190, 204, 391

Cam clay model, 324 canonical coordinate, 17 cantilever, 2, 8 central limit theorem, 107 classification

simple critical point, 52 commutativity condition, 163 complementary invariant subspace,

160 complementary subspace, 168 complex coordinates, 198 concrete

cylindrical specimen, 262, 263, 380 conjugate, 176 correlation coefficient, 271 Couette-Taylor problem, 311 critical

eigenvector, 7, 40, 43, 46, 64, 180, 197, 246

left, 38, 84 right, 38, 84

initial imperfection, 10, 11, 14, 82, 83, 86-88, 93, 96, 98, 234, 235, 246

load, 7, 383, 388 normalized, 104 random variation, 117, 259, 272 variation, 251

load increment normalized, 254, 257

point, 1, 3, 38-40, 53, 388 double, quadruple (see

bifurcation point) simple, 46, 105, 236

criticality condition, 47, 69, 170, 199 cumulative distribution function, 105,

109, 110, 258 cylindrical domain, 26 cylindrical specimen

concrete, 262, 263, 380 sand, 16, 23, 26, 143, 145, 262, 272,

274, 287, 289, 308, 309, 381, 382, 385

soil, 26, 27, 308, 309, 314, 322-324

Page 16: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

degenerate, 54 deviatoric stress, 144, 274 deviatoric stress versus axial strain

curve, 145, 294, 297, 322, 382 deviatoric stress versus volumetric

strain curve, 145 diagonal block, 173 diagonal shear band, 369 diamond pattern, 28, 315, 347 diffuse necking, 364 direct product, 285, 313, 326, 348 direct sum, 179

decomposition, 161, 167 irreducible representation, 161 isotypic components, 173 representation spaces, 161

discriminant, 72 displacement

experimentally observed, 19, 133, 224

nonsymmetric, 139 symmetric, 132, 138

distribution asymptotic, 110 conditional, 103 critical load, 102, 108, 253 cumulative, 105, 109, 110, 254, 258 double exponential, 111 exponential, 253, 254 Gumbel, 111 limit, 110, 111 minimum value, 108, 110, 258 multivariate normal, 16, 102, 112,

260, 262 normal, J.01~103, 116, 119, 250,

252, 271 potential, 5 standard normal, 104, 105, 252, 253 uniform, 107, 119, 265 Weibull, 102, 252 x2 , 254

double Fourier series, 30, 327, 333 dynamical system, 39

echelon mode, 28, 314, 317, 320, 323 elimination of passive coordinates, 45 equilibrium equation, 6, 41, 387 equilibrium path, 7 equivalence, 4 7

Index 407

equivalent, 160 representation, 179

equivariance, 157, 164, 354 bifurcation equation, 169, 343, 345 Jacobian matrix, 172

expected value, 105, 254 explosive bifurcation, 389 exponential distribution, 254 extreme order statistic, 109 extreme value, 109

five-bar truss tent, 244, 249 fold bifurcation, 52 Fourier series, 116 Fnkhet derivative, 40 fracture mechanics, 380 fundamental path, 3, 57, 213, 387

Galerkin-type solution, 116 gamma function, 105 Gaussian, 116 geometrical symmetry, 18, 279, 285,

326, 359 geometrical transformation, 20 governing equation, 1, 37, 40, 45, 87 gradient system, 39 granite, 381 group, 20, 156, 158

compact, 163, 242 cyclic, 163, 183, 187, 193 dihedral, 21, 159, 179, 183, 186, 288 equivariance, 163, 168, 193 finite, 158, 163 inversion, 286 representation theory, 172 symmetry, 164, 166, 235, 252, 341,

359 group-theoretic, 166, 202

bifurcation theory, 20, 26, 163 critical point, 166, 252 double bifurcation poin , 225, 251,

342, 350, 353 Gumbel distribution, 111

half-rotation, 315, 327, 350 symmetry, 294, 317, -~, 324, 336

hierarchy of subgrou, 20, 24, 30, 177, 192, 287 C\

histogram, 271

Page 17: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

408 Index

homogeneous, 161 hyperbolic umbilic catastrophe, 166

identity element, 158 identity transformation, 157 image simulation, 331, 340

kaolin, 30, 331, 334, 336, 338 steel, 331, 337, 339

imperfect system, 1 imperfection, 4, 269, 289

category, 91 data bank, 250 generalized sensitivity law, 126 influence factor, 89 magnitude, 7, 39 parameter vector, 1, 37, 42, 84,

102, 178, 243, 259 pattern vector, 11, 38, 78, 201, 235 random, 16, 101, 102, 108, 113,

245, 251, 258, 273 sensitivity, 381

piecewise linear, 384 sensitivity law, 10, 68, 72, 75, 252,

385 sensitivity matrix, 11, 51, 86, 87,

112, 180 implicit function theorem, 46, 168,

175 index, 185, 219, 236, 252 inequivalent, 160, 162

irreducible representation, 161, 173, 186, 299, 341

infinite-periodic-cylinder approximation, 314

infinite-periodic-domain approximation, 326

inheritance group symmetry, 167 reciprocity, 167, 171

initial imperfection (see imperfection) invariance, 157 invariant subspace, 160, 162 inverse, 158 inversion, 359 irreducible, 160, 163

component, 161 matrix representation, 162, 344 representation, 161, 186, 187, 340,

348, 353

four-dimensional, 344 one-dimensional, 179, 186, 224,

299, 340, 349 two-dimensional, 179, 186, 198,

225, 299, 333, 342, 349 isola center, 56 isomorphic, 288, 375 isotypic component, 161, 173 isotypic decomposition, 161, 173

Jacobian matrix, 37, 228, 388

kaolin, 26, 29, 30, 331, 334 cross-checker pattern, 26 echelon mode, 335 image simulation, 30, 331, 334, 336,

338 kernel, 38, 166, 198

space, 38, 167, 180 symmetry, 341, 342, 351

Koiter law, 126

leading term, 42, 68 Lennard-Jones constitutive law, 389 Liapunov-Schmidt reduction, 45, 85,

166, 167, 176 Liapunov-Schmidt-Koiter reduction,

45 limit distribution, 111 limit point, 4, 52, 54, 69, 76, 93, 118 linear

map, 160 operator, 38 representation, 158 stability, 50 transformation, 158

linearly stable, 39, 40 linearly unstable, 39, 40 load versus elongation curve, 372 loading parameter, 3, 10

Maschke theorem, 160, 161 material softening, 145 matrix representation, 158, 159 maximum

load, 364 point, 59, 79, 218 stress, 274

mean, 103

Page 18: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

minimum critical load, 108, 258 point, 59, 79, 218

mode interference, 334 mode switching, 23, 289, 297, 380,

385, 387 Monte Carlo method, 117 multiplicity, 38, 161, 272, 274, 353 multivariate normal distribution, 260,

262

Newton polygon, 60, 73 nondegeneracy condition, 54 nondegenerate, 204 nonreciprocal system, 39, 157 nonshallow truss arch, 76, 83, 93, 96 normal distribution, 103, 252

oblique stripe pattern, 28, 314, 317, 347

odd function, 59, 157 one-half power law, 70, 76, 246 orbit, 164, 176, 197 order, 185 ordinary point, 38, 40, 54 orthogonal complement, 160, 162 orthogonal matrix, 173, 17 4 orthonormal basis, 168, 171, 173 orthonormal eigenvectors, 47

parametric, 166, 378 path, 3

aloof, 218 bifurcated, 3, 57, 96, 112, 189, 193,

299, 329, 379 fundamental, 3, 57, 96, 112, 193,

247, 324, 372, 387 post-bifurcation, 3 primary, 3 secondary, 3 stable, 5, 40 trivial, 3 unstable, 5, 40

pattern, 26, 322 perfect system, 1, 39 periodic boundary, 26, 314, 325, 328,

333 periodic symmetry, 279, 361 permutation, 17 4

representation, 159 pitchfork, 52

Index 409

Poincare's exchange of stability, 57 point group, 288, 303 point of accumulation, 379 polar coordinates, 203, 213 potential, 39, 157 power series, 51, 200 principle

minimum potential energy, 4 stationary potential energy, 3, 39

probability density function, 16, 103, 108, 117, 254

semiempirical evaluation, 108 theoretical evaluation, 108

projection, 167, 168 propped cantilever, 41, 62, 75, 112,

125

range space, 46 rank deficiency, 38, 166 reciprocal system, 39, 47, 167, 192,

193, 202, 208, 287, 352 reciprocity, 39 recovering perfect system, 134 rectangular domain, 30, 325 rectangular parallelepiped domain,

359, 375 rectangular parallelepiped steel

specimen, 361 rectangular plate, 141 rectangular steel specimen, 384 recursive bifurcation, 28, 30, 192, 268,

289, 296, 298, 320, 324, 334, 361, 369, 372

reflection, 179, 243, 285, 313, 326, 359 symmetry, 206, 269

regular-hexagonal truss dome, 97, 137, 139, 140, 246

regular-hexagonal truss tent, 12 regular-pentagonal truss dome, 269 regular-polygonal truss dome, 259 regular-triangular truss dome, 20, 193 reliability function, 105, 254 representation, 158, 160

four-dimensional, 344 matrix, 157, 160, 340 one-dimensional, 159 space, 158, 160, 173

Page 19: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

410 Index

theory, 163 two-dimensional, 163 unit, 159, 189, 340

resonance of symmetry, 242, 246, 247 restriction, 160, 161 resultant, 72 ribbon, 311 rock, 381

echelon mode, 308, 310 rotation, 178, 183, 285, 313

saddle node, 52 sample

mean, 108, 262 size, 113 standard deviation, 113 variance, 108, 262

sand cylindrical specimen, 16, 23, 26,

143, 145, 262, 272, 274, 287, 289, 382, 385

diamond pattern, 308, 309 mode switching, 297 oblique stripe pattern, 308, 309 recursive bifurcation, 289 size effect, 381

hollow cylindrical specimen, 26, 27 cross-checker pattern, 26, 27

Schoenflies notation, 184, 362 Schur complement, 170 Schur's lemma, 162 Schwedler dome, 197 shallow truss arch, 76, 93 shape effect, 359, 362, 364 shear band, 28, 293, 364 singular point, 38 size effect, 378, 380, 381, 383, 385,

388, 389 negative, 380 positive, 381

soil cylindrical specimen, 26, 27, 314,

322 echelon mode, 26, 27, 308, 309,

323 oblique stripe pattern, 324 pattern, 322, 323 shear-band formation, 324

spatial symmetry, 24, 286, 317

spiral, 311 stability, 4, 39, 57, 210 stable, 39, 40

bifurcation point, 210 branch, 212 linearly, 40 path, 5, 40 point, 5, 40

standard normal distribution, 104, 105, 252

state variable vector, 1, 10 stationary point, 54 statistical property, 116, 255 steel, 30, 331, 337

cross-checker pattern, 308, 310 image simulation, 331, 337, 339 recursive bifurcation, 369 shape effect, 364 shear band, 364 specimen, 30, 31, 362

stress ratio versus axial strain curve, 381

stress versus strain curve, 16, 19, 24, 379

subgroup, 20, 185, 286, 342 abelian, 348

subrepresentation, 160, 167, 180 symmetric displacement, 226 symmetric system, 20 symmetry, 20, 156, 165, 192, 242

bilateral, 59, 156, 317, 322 breaking, 22, 314 condition, 157 kernel, 341, 342, 351 solution, 175 upside-down, 142, 262, 288, 317,

326 symmetry group (see group)

tangent stiffness matrix, 37 tensor product of representations,

340, 341, 349 three-bar truss tent, 178, 243, 245 torus, 314 total potential energy, 3, 6, 39, 325,

387 transcritical, 52 transformation, 165, 17 4 transformation matrix, 17 4

Page 20: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

translation, 30, 314 translational symmetry, 26, 28 triaxial compression test, 23, 143,

287, 289, 314, 322, 385 trivial solution, 78, 157, 203 truss

arch, 99 nonshallow, 66, 76, 81, 83, 93,

96, 149 shallow, 76, 93

dome regular-hexagonal, 97, 100, 137,

139, 140, 231, 246 regular-triangular, 20, 181, 193,

249 rotation-symmetric, 193

member, 41, 99 tent

five-bar, 244, 249 n-bar, 231, 243 regular-hexagonal, 12 three-bar, 178, 243, 245

turning point, 52 two rigid bars, 5, 12 two-thirds power law, 10, 71, 80, 84,

86, 126, 245, 383

unfolding parameter, 72 uniaxial compression test, 331 uniform material, 321 unitary, 159, 160

matrix representation, 164, 235, 251

representation, 160, 17 4, 179, 186, 251

universal unfolding, 61, 71 unlinked cellular structural form, 389 unstable, 39, 40

bifurcation point, 210 branch, 212 linearly, 40 path, 5, 40 point, 5, 40

variance, 103, 105, 254 variance-covariance matrix, 103, 117,

252

Weibull distribution, 255

Index 411

weight matrix, 11, 85, 235, 243 width-thickness ratio, 362

x2 distribution, 254

Page 21: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

Applied Mathematical Sciences (continued from page ii)

60. GhiVChildress: Topics in Geophysical Dynamics:

Atmospheric Dynamics, Dynamo Theory and

Climate Dynamics.

61. Sa/linger/Weaver: Lie Groups and Algebras with

Applications to Physics, Geometry, and Mechanics.

62. LaSalle: The Stability and Control of Discrete

Processes. 63. Grasman: Asymptotic Methods of Relaxation

Oscillations and Applications. 64. Hsu: Cell-to-Cell Mapping: A Method of Global

Analysis for Nonlinear Systems. 65. Rand/ Armbruster: Perturbation Methods,

Bifurcation Theory and Computer Algebra.

66. Hlawicek/Haslinger/NecasVLovfsek: Solution of

Variational Inequalities in Mechanics.

67. Cercignani: The Boltzmann Equation and Its

Applications. 68. Temam: Infinite-Dimensional Dynamical Systems

in Mechanics and Physics, 2nd ed.

69. Golubitsky/Stewart/Schaejfer: Singularities and

Groups in Bifurcation Theory, Vol. II. 70. Constantin/Foia;/Nicolaenko/femam: Integral

Manifolds and Inertial Manifolds for Dissipative

Partial Differential Equations. 71. Catlin: Estimation, Control, and the Discrete

Kalman Filter. 72. Lochak/Meunier: Multiphase Averaging for

Classical Systems.

73. Wiggins: Global Bifurcations and Chaos.

74. Mawhin!Willem: Critical Point Theory and

Hamiltonian Systems. 75. Abraham/Marsden!Ratiu: Manifolds, Tensor

Analysis, and Applications, 2nd ed. 76. Lagerstrom: Matched Asymptotic Expansions:

Ideas and Techniques. 77. Aldous: Probability Approximations via the

Poisson Clumping Heuristic. 78. Dacorogna: Direct Methods in the Calculus of

Variations. 79. Hernandez-Lerma: Adaptive Markov Processes.

80. Lawden: Elliptic Functions and Applications.

81. Bluman/Kumei: Symmetries and Differential

Equations. 82. Kress: Linear Integral Equations, 2nd ed.

83. Beberne>IEberly: Mathematical Problems from

Combustion Theory. 84. Joseph: Fluid Dynamics of Viscoelastic Fluids.

85. Yang: Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics.

86. Dendrinos/Sonis: Chaos and Socio-Spatial Dynamics.

87. Weder: Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media.

88. Bogaevski/Povzner: Algebraic Methods in Nonlinear Perturbation Theory.

89. O'Malley: Singular Perturbation Methods for

Ordinary Differential Equations.

90. Meyer/Hall: Introduction to Hamiltonian Dynamical Systems and theN-body Problem

91. Straughan: The Energy Method, Stability, and

Nonlinear Convection. 92. Naber: The Geometry of Minkowski Spacetime. 93. Colton/Kress: Inverse Acoustic and

Electromagnetic Scattering Theory, 2nd ed.

94. Hoppensteadt: Analysis and Simulation of Chaotic

Systems, 2nd ed. 95. Hackbusch: Iterative Solution of Large Sparse

Systems of Equations. 96. Marchioro/Pulvirenti: Mathematical Theory of

Incompressible Nonviscous Fluids.

97. Lasota/Mackey: Chaos, Fractals, and Noise:

Stochastic Aspects of Dynamics, 2nd ed.

98. de Boor/Hollig/Riemenschneider: Box Splines.

99. Hale/Lunel: Introduction to Functional Differential

Equations. 100. Sirovich (ed): Trends and Perspectives in

Applied Mathematics. 101. Nusse/Yorke: Dynamics: Numerical Explorations,

2nd ed. 102. Chossat/Iooss: The Couette-Taylor Problem

I 03. Chorin: Vorticity and Turbulence. 104. Farkas: Periodic Motions.

105. Wiggins: Normally Hyperbolic Invariant Manifolds in Dynamical Systems.

106. Cercignani!Il/ner/Pulvirenti: The Mathematical Theory of Dilute Gases.

107. Antman: Nonlinear Problems of Elasticity.

108. Zeidler: Applied Functional Analysis: Applications to Mathematical Physics.

109. Zeidler: Applied Functional Analysis: Main Principles and Their Applications.

110. Diekmannlvan Gils/Verduyn LuneVWalther:

Delay Equations: Functional-, Complex-, and

Nonlinear Analysis. Ill. Visintin: Differential Models of Hysteresis.

112. Kuznetsov: Elements of Applied Bifurcation

Theory, 2nd ed. 113. Hislop/Sigal: Introduction to Spectral Theory:

With Applications to Schrtldinger Operators.

114. Kevorkian/Cole: Multiple Scale and Singular

Perturbation Methods.

115. Taylor: Partial Differential Equations I, Basic

Theory. 116. Taylor: Partial Differential Equations II,

Qualitative Studies of Linear Equations.

(continued on next page)

Page 22: References - Springer978-1-4757-3697-7/1.pdfanalysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Engrg. 56, 167-215. [19] Boyce,

Applied Mathematical Sciences (continued from previous page)

117. Taylor: Partial Differential Equations Ill, Nonlinear Equations.

118. GodlewskVRaviart: Nunx:rical Approximation of Hyperbolic Systems of Conservation Laws.

119. Wu: Theory and Applications of Partial Functional Differential Equations.

120. Kirsch: An Introduction to the Mathematical Theory of Inverse Problems.

121. Brokate/Sprekels: Hysteresis and Phase Transitions.

122. Gliklikh: Global Analysis in Mathematical Physics: Geometric and Stochastic Methods.

123. Le/Schmitt: Global Bifurcation in Variational Inequalities: Applications to Obstacle and Unilateral Problems.

124. Polak: Optimization: Algoritbms and Consistent Approximations.

125. Arnold/Khesin: Topological Methods in Hydrodynamics.

126. Hoppensteadtllzhikevich: Weakly Connected Neural Networks.

127. lsakov: Inverse Problems for Partial Differential Equations.

128. LVWiggins: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrildinger Equations.

129. Miiller: Analysis of Spherical Symmetries in Euclidean !ipaces.

130. Feintuch: Robust Control Theory in Hilbert Space.

131. Ericksen: Introduction to the Thermodynamics of Solids, Revised ed.

132. lhlenburg: Finite Element Analysis of Acoustic Scattering.

133. Vorovich: Nonlinear Theory of Shallow Shells. 134. Vein/Dale: Determinants and Their Applications in

Mathematical Physics. 135. Drew/Passman: Theory ofMulticomponent

Flnids. 136. Cioranescu/Saint Jean Paulin: Homogenization of

Reticulated Structures.

137. Gurtin: Configurational Forces as Basic Concepts of Continuum Physics.

138. Haller: Chaos Near Resonance. 139. Sulem/Sulem: The Nonlinear ScbrOdinger

Equation: Self-Focusing and Wave Collapse. 140. Cherkaev: Variational Methods for Structural

Optimization. 141. Naber: Topology, Geometry, and Gauge Fields:

Interactions. 142. Schmid/Henningson: Stability and Transition in

Shear Flows. 143. SelVYou: Dynamics of Evolutionary Equations. 144. Nedelec: Acoustic and Electromagnetic Equations:

Integral Representations for Harmonic Problems.

145. Newton: TheN-Vortex Problem: Analytical Teclmiques.

146. Allaire: Shape Optimization by the Homogenization Method.

147. Aubert!Komprobst: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations.

148. Peyret: Spectral Methods for Incompressible Viscous Flow.

149. lkeda/Murota: Imperfect Bifurcation in Structures and Materials: Engineering Use of Group­Theoretic Bifucation Theory.

150. Skorokhod/Hoppensteadt/Salehi: Random Perturbation Methods with Applications in Science and Engineering.

151. Bensoussan/Frehse: Topics on Nonlinear Partial Differential Equations and Applications.

152. Holden/Risebro: Front Tracking for Hyperbolic Conservation Laws.

153. Osher/Fedkiw: Level Sets and Dynamic Implicit Surfaces.

154. Bluman/Anco: Symmetry and Integration Methods for Differential Equations.


Recommended