+ All Categories
Home > Documents > Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza...

Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza...

Date post: 07-Mar-2018
Category:
Upload: vophuc
View: 218 times
Download: 4 times
Share this document with a friend
41
The First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO 2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research Laboratory for Nuclear Reactors Tokyo Institute of Technology
Transcript
Page 1: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

The First COE-INES International Symposiumat Keio Plaza Hotel, November 3, 2004

Super Critical CO2 Gas Turbine Cycle FBRs

Yasuyoshi KatoResearch Laboratory for Nuclear Reactors

Tokyo Institute of Technology

Page 2: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Program Title:Innovative Nuclear Energy Systems forSustainable Development of the World

1. Advanced nuclear energy systemsa) Advanced reactors− CO2 gas turbine reactors− Pb-Bi cooling fast reactors

b) Advanced partition and transmutationc) Advanced energy utilization− Waste heat recovery system− Hydrogen production− Electricity and heat storage

2. Development of human resources

Page 3: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Use of Na as Coolant in FBRs

Advantage: - Efficient heat removal of tight fuel pin lattice.

Disadvantages:1) Positive sodium void reactivity.

2) Hazardous (chemical) reaction with water or air in the event of sodium leakage.

3) Higher capital cost mainly ascribed to the need of extra intermediate cooling loops relative tolight water reactors.

Page 4: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Coolant Cycle

Steam Indirect(Rankine)

Gas TurbineDirect

(Brayton)

Steam Indirect(Rankine)

Gas TurbineDirect

(Brayton)

CO2

He

1950 1960 1970 1980 1990 2000~

Magnox reactor (60-655 MWe)

AGR (660 MWe)

1967*2 Peach Bottom (42 MWe)Fort St. Vrain (324 MWe)

AVR (15 MWe)

THTR-300 (308 MWe)

1967*2

1986*2

1982*1

PBMR (100 MWe)

GT-MHR (286 MWe)

GTHTR-300 (275 MWe)

TIT

S. Africa

Russia

JAERI*1: Start of operation, *2: Rated full power operation

1956*1

1976*1

History of Gas Cooled-Reactors

MIT,ANL, INEEL

US

UK

Japan

UK &France

Germany

US

Page 5: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Comparison of Cycle Efficiency with Other Cycles

30

35

40

45

50

55

60

200 400 600 800 1000Turbine Inlet Temperature (℃)

Cyc

le T

herm

al E

ffic

ienc

y (%

)

HTGRFort St.Vrain

(538℃, 40.6%)LWR (Av.278℃, about 34%)

HTGRGT-MHR

(850℃, 47.7%)

HTGRPartial Pre-Cooling Cycle

(800℃, 51.4%)

Water/SteamCycle (Indirect)

He Gas TurbineCycle (Direct)

CO2 Gas TurbineCycle (Direct)

Super Critical CO2 GT FBR

Page 6: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Steam TurbineGenerator

Cooling Water

Condenser

pump

Steam Generator

pump pump

IHX

Primary Na LoopReactor

Core

Secondary Na Loop Steam Loop

FeedwaterHeater

Na-Cooled Steam-Turbine Cycle System (Monju, CRBRP)

Page 7: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Gas TurbineGenerator

CoolingWater

RecuperatorCompressor

pump

Na LoopReactorCore

a) Indirect Cycle SystemGas Turbine

Generator

CoolingWater

RecuperatorCompressor

IHX

ReactorCore

b) Direct Cycle System

CO2 Gas Turbine FBRs

Advantages・No secondary Na loop・Smaller & simpler turbine system・Utilization of Monju Na R&D・Smaller core size reference to direct cycle systems

Advantages・No primary & secondary Na loops・Smaller & simpler turbine system・Lower void reactivity

Disadvantages・Larger core size reference to indirectcycle systems・R&D on core cooling and T&H in areactor vessel

Page 8: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

In the PastElevation of turbine inlet temperature

Present StudyReduction throughcompression aroundcritical temperature (31℃, 7.4 MPa)

Turbine Work

Net Work (=Efficiency)

Compressor Work

Enhancement of Cycle Efficiency

Page 9: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

22.1374H2O0.28-268He

7.431CO2

PressurePc (MPa)

TemperatureTc (ºC)

Critical DataMaterials

Super CriticalSolid

7.4

Pres

sure

MPa

31.1

Liquid

Triple PointGas

CriticalPoint

Temperature ºC

Critical State of CO2

Page 10: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Compressibility factor with Pr and Tr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18 20 22 24Reduced Pressure P r (=P /P c)

Com

pres

sibi

lity

Fact

or 

z15

108

64

321.6

1.41.21.1

Reduced Temperature T r =T/Tc=1.0

1.0

1.1

1.2

1.41.6

2

Higher cycle efficiency could be attained inCO2 cycles compared with He cycles byutilizing reduced compression work aroundthe critical point.

He Compression Condition

Drawn from the data in O.A.Hougen, et al.,"Chemical Process Principles,PartⅡ,Thermodynamics", John Wiley & Sons

Page 11: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Compression Work of Real GasIsentropic compression work W:

W = − V dP = − zRT dP/P,

where V=volume, P=pressure, R=gas constant, z=compressibility factor=f (Tr, Pr),

Tr=reduced temperature=T/Tc, Tc=critical temperature,

Pr=reduced pressure=P/Pc, Pc=critical pressure.

At the critical point, the z value takes an extremelylow value as low as about 0.2 or a real gas is five times more compressible than an ideal gas.

∫ ∫

Page 12: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Cp Pressure & Temperature Dependency

Temperature, (K)

Spec

ific

Hea

t C

pkJ

/km

olK

Large P & T dependency in CO2

Page 13: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Partial Pre-Cooling Cycle

Turbine

High Pressure Compressor

Low Pressure Compressor

Bypass Compressor

Reactor

Pre-

Coo

ler

Inte

rcoo

ler

Recuperator

Generator

Page 14: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Cycle Efficiency in Partial Pre-Cooling Cycle

Bypass Flow Fraction DependencyTemperature & Pressure Dependency

20

30

40

50

60

0 0.1 0.2 0.3 0.4Bypass Flow Ratio (-)

Cyc

le E

ffic

ienc

y (%

)

20.0MPa15.0MPa10.0MPa 5.0MPa

・Pre-Cooler Outlet Temperature : 35℃・Compressor & Turbine Efficiency : 90%・Effectiveness of Recuperator : 95%

He(527℃)

He(827℃)

CO2(827℃)

CO2(527℃)

Reactor Outlet Pressure

30

35

40

45

50

55

60

65

500 600 700 800 900 1000 1100

R eactor O u tlet T em p . (℃ )C

ycle

Eff

icie

ncy

(%)

20 .0M P a 15 .0M P a 10 .0M P a 5 .0M P a

R eactor Pressu re

C O 2 P artia lP re-coolin g

・P re-C ooler T em peratu re  : 35℃・C om pressor E ffic iency   : 90%・T u rb in e E ffic ien cy    : 90%・R ecu p erator E ffectiven ess: 95%

H e

Page 15: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

34.0517.2546.741.96

Core Fuel Volume Ratio (%)FuelStructural MaterialCoolantGap

3916.5

0.35Grid Spacer

8.45

Core Fuel PinNumber per SubassemblyOuter Diameter (mm)Cladding Thickness (mm)SpacingPitch (mm)

182/3.5Subassembly Geometry (mm)

Pitch/Duct Thickness

200 / 334.6Blanket Thickness (mm)

Axial/Radial

1502776

Core Geometry (mm)Effective Core HeightEquivalent Diameter

14.0 / 19.0Pu Enrichment (atomic %)

Inner Core/Outer Core

CO2UO2-PuO2-NpO2

B4C 316 SS

MaterialsCoolantFuelAbsorber (10B = 90%)Structural

Direct Cycle Core Parameters

Page 16: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

(n, γ)

α 87 y

(n, γ)

(n, γ)237Np 238Pu 239Pu

234U 235U

Fertile FissileAbsorber

237Np-239Pu, 235U Conversion Chain

Page 17: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Burnup Performance with 237Np Content

0.99

1.00

1.01

1.02

1.03

0 2 4 6 8 10Time (Year)

k eff

Np= 0.0%

Np= 4.5%

Np=10.0%Burnup Reactivity

Loss: 0.17% ∆k

1.28 (BOC) Breeding Ratio 1.11 (EOC)

Page 18: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Control Requirement and Reactivity Worth

0.72.02.60.5Shutdown Margin (%∆k/kk’)2.48.03.22.7*Reactivity Worth Available (%∆k/kk’)

1.3

-

0.4

-

1.7

1.3

3.1

1.4

0.2

6.0

0.6

-

-

-

0.6

0.6

0.3

1.0

0.3

2.2

Control Requirement (%∆k/kk’)

Cold to Full Power Reactivity

Burnup Reactivity

Uncertainty

Allowance for Operation

Total

61834Number of Control RodsBackupPrimaryBackupPrimary

Demonstration FBR(660 MWe)

Present GCFR(243.8 MWe)Items

* Worth of one stuck rod.

Page 19: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Inner Core

Outer C

ore

Blanket : 200 mm

Reflector

Equivalent Core Diameter2776 mm

Core H

eight1500 m

m

3500 mm

Blanket

Blanket

Blanket : 200 mm Outer C

ore

Gas Plenum

Reflector

Reflector

Reflector

M

M

M

B

B

B

M

Inner Core : 114

Outer Core : 90

Primary Control Rod : 4

Backup Control Rod : 3

Radial Blanket : 114

Reflector : 216

MB

Core Configuration

Direct Cycle Core Design

Page 20: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

40

45

50

55

60

0 2 4 6 8 10

Time (Year)

Inventory (ton)

HM Inventory Change with Burnup Time

U:-2.7 ton

Pu:+0.83 ton

Np:-0.50 ton ≈ Produced in 20 LWRs

Am:+0.11 ton Cm:+0.01 ton

Page 21: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Void Reactivity

・ 0.61% ∆k/kk’

・ Reactivity in the case of depressurization from 12.5 MPa to atmospheric pressure.

Page 22: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Hot Spot Temperature of Cladding> 700ºC (Maximum permissible temperature of 316SS)

1.341.491.16Grand Total

-1.031.061.201.21

-1.301.041.161.34

1.021.021.03

-1.04

StatisticalFlow distributionCoolant propertyManufacturingPellet eccentricityTotal

1.031.08

--

1.11

1.031.08

--

1.11

-1.081.021.021.12

DirectPower measurementPower distributionInlet temperatureSubchannel flowTotal

CladdingFilmCoolantHot Spot Factors

Items

Page 23: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

1.33 m1.00 m1.10 m1.25 m

0.81 m

He Gas Turbine CO2 Gas Turbine

Comparison of Gas Turbine Size

Gas Turbine Volume ( ≈ Weight or Cost)5 : 1

1.84 m

1.94 m 1.80 m 2.01 m

Page 24: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Basic Plant Design Conditions

12.5/2012.5Pressure (MPa)

Turbine Inlet Temperature (ºC)

CO2 GasTurbine

Inlet

-12.5Pressure (MPa)

425/550388/527Core Inlet/Outlet Temperature (ºC)

NaCO2CoolantCore

CoolingSystem

40/4240Efficiency (%)600Thermal (MW)Power

Output

Indirect Cycle

Direct Cycle

Design parameters

527

Page 25: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Direct Cycle Plant Design - designed by Fuji Electric for TIT

ReactorVessel

Core CatcherCooling System

Auxiliary Core Cooling System

Generator

Recuperator

Intercooler

BC

BC=Bypass CompressorHPC=High Pressure CompressorLPC= Low Pressure Compressor

Pre-Cooler

Turbine

HPC

LPC

Core

Page 26: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Direct Cycle Plant Design - designed by Fuji Electric for TIT

ReactorVessel

Core CatcherCooling System

Auxiliary Core Cooling System

Generator

Recuperator

Intercooler

BC

BC=Bypass CompressorHPC=High Pressure CompressorLPC= Low Pressure Compressor

Pre-Cooler

Turbine

HPC

LPC

Core

Page 27: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

[熱交換器・ポンプ合体方式]

図7.3-2  超臨界二酸化炭素ガスタービンFBRプラント系統図

600MWt

(*)

N L

(*)

A/C A/C

Indirect Cycle Plant Design- Loop Type (IHX-Pump Combined)- designed by ARTECH for TIT

Page 28: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

4500

4000

19000

Indirect Cycle Reactor Structure Design- designed by ARTECH for TIT

Page 29: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Compact Heat Exchangers Development HistoryCompact Heat Exchangers Development History

Page 30: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

What is the PCHE?

Fluid flow channels are etched chemically on metal plates.

- Typical plate: thickness = 1.6mm, width = 600mm, length = 1200mm,

- Channels have semi-circular profile with1-2 mm diameter.

Etched plates are stacked and diffusion bondedtogether to fabricate a blockThe blocks are then welded together to form the complete heat exchanger core

Page 31: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Construction of PCHEs

Plate stacking Diffusion bonding

Page 32: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Photo-etching technology:Micro channels with smaller hydraulic diameter Dh:

Pressure capability > 50 MPa.

Compact size (L) or higher efficiency (98%).j=(Dh/4L) Pr2/3N,

where N=NTU (Number of Thermal Units)=(Tout-Tin)/∆TLMTD.No plate-fin brazing:

Manufacturing cost reduction.

Diffusion bonding technology:Maintain parent material strength:

Temperature capability up to 700oC.No braze, flux or filler:

Corrosion resistant.

Advantages of PCHE

Page 33: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

PCHE T-H Test Loop for CO2 Cycle GCRs

Cooler

Compressor

Oil Separator

Heater

PCHE (3 kW)

Page 34: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

* Values in brackets are normalized to unity in the case of the TIT model.** Now applying for a patent.

To be presented at HEAT-SET 2005, April 5-7, 2005, Grenoble, France.

New PCHE Model in TIT

58/48(1/1)336/312 (5.8/6.5)Hot/Cold SidePressure Drop* (kP/m)1187 (1)1134 (0.96)Overall Heat Transfer Coefficient* (w/m2K)438/496439/494Hot/Cold SideCoolant Outlet Temp. (℃)

553/382Hot/Cold SideCoolant Inlet Temp. (℃)6.9x10-4/1.3x10-3Hot/Cold SideFlow Rate (kg/s)

1.9/0.94Width/DepthChannel Geometry (mm)38/0.8Angle (degree)/ Width (mm)Fin Geometry

316 SS/1.6Material/ Thickness (mm)Metal Plate10.3/121Width/LengthPCHE Size (mm)

CO2Fluid

**ZigzagFlow Channel

TIT ModelHEATRIC ModelParameters

Page 35: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

CO2 Gas Turbine Cycle Mockup Test

Verification of

- Compression work reduction around critical point

- PCHE T&H performance

- Operability of bypass flow configuration

Page 36: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Flow Diagram of Mockup Test FacilityLPC= Low Pressure Compressor, HPC= High Pressure Compressor

低圧圧縮機

加熱器(50kW)

前置き冷却器

再生熱交換器

膨張器

高圧圧縮機

中間冷却器

バイパス圧縮機

Heater30 kW

Expander

Pre-Cooler

LPC HPC

BypassCompressor

Inter-Cooler

Recuperator-1 (22kW)

Recuperator-1 (19 kW)

4.7 MPa, 300℃, 646 kg/h

12.8 MPa, 281℃, 646 kg/h

12.9 MPa192.1℃161 kg/h

4.6 MPa91.4℃485 kg/h

12.9 MPa, 85.7℃485 kg/h

4.6 MPa35℃

485 kg/h

6.8 MPa69.4℃

485 kg/h

6.8 MPa35℃485

kg/h

4.6 MPa91.4℃

161kg/h

4.7 MPa, 203.5℃646 kg/h

12.9 MPa192.1℃646 kg/h

Page 37: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Material Corrosion Test- Corrosion rate & mechanism (break away corrosion?)- Material selection & corrosion control

CO2

F

FF

F

FF

F

FF

F

Pump100 ml/min

Safety Valve

Temperature Sensor

Filter

Test Section- SUS316, 12%Cr alloy- 10 pipes with 1/8inch diameter- 10 MPa- 200-600℃ (Temperature gradient in pipes)

Heater

Filter

Pressure & Flow Rate Sensor

Impurity Sensor

O2H2O CO

Temperature Sensor

Impurity Sensor

O2H2O CO

Flow Diagram of Material Corrosion Test Facility

Page 38: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Na−CO2 Reaction Test- Heat of reaction - Chemical kinetics- Rupture propagation

Page 39: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

CO2ガス

Arカバーガス収納容器へ

ターゲット伝熱管

伝熱管の損耗

反応容器(0.5mDx3.3mH)

CO2ガス注入管

CO2ガスの噴出

Na-CO2反応により発生する反応生成物

Target Pipe

Na-CO2 reaction products

Ar cover gas

Pipe attacked

Na Reactor Vessel(0.5 m Dx3.3 m H)

CO2 gas

CO2 gas ejection

CO2gas CO2 gas pipe

Pipe Rupture Propagation Testusing SWAT for MONJU

Page 40: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

* Japan,US,France,England,Korea

1. Cycle Mockup Test- Compressor work reduction

around critical point- PCHE T&H performance- Operability

3. Na-CO2 Reaction Test- Reaction mechanism- Rupture propagation

4. Design Study- Direct/indirect system

design- Comparison with conventional systems

- Selection of next generation FBR system

2. Na-CO2 IHX Test- T&H performance- CO2 leak protection

1. Engineering Test- Core- Components- Materials- Safety et al

2. Prototype Plant Construction

2. Material Corrosion Test- Corrosion Mechanism- Corrosion control

R&D

International Project

International Collaboration

Information Exchange as I-NERI *

Engineering Mockup Tests

Turbomachinery & IHX Mockup Tests

Verification of Fundamental Performance, System Design & Evaluation

Third Step(2011-2015)

Second Step(2007-2010)

First Step (MEXT Program)(2003-2006)Phase

1. Turbomachinery Test- Turbine- Compressor

Mile stone for Super Critical CO2 FBR Construction

Page 41: Super Critical CO2 Gas Turbine Cycle FBRs First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research

Super Critical CO2 Gas Turbine Cycle FBRs

1.Carbon dioxide gas turbine cycles are achievable 4 to 11% highercycle efficiency than He cycles due to compressor work reductionaround the critical points.

2.Cycle efficiency of the CO2 cycles are about 41% at 527 ºC and 12.5MPa,which is comparable with those of LMFRs at the same core outlet temperature.

3. The CO2 cycles might exclude the problems related to safety, cost and maintenance.

4. Fast reactors with the CO2 cycles are expected to be a potentialalternative option to LMFRs.


Recommended