+ All Categories
Home > Documents > Pelagic ecosystem responses to climate forcing: Linear ...

Pelagic ecosystem responses to climate forcing: Linear ...

Date post: 08-Feb-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
31
Year 1950 1960 1970 1980 1990 2000 2010 Temperature anomaly (º C) -2 -1 0 1 2 Scripps pier Sea Surface Temperature Mark D. Ohman Scripps Institution of Oceanography University of California, San Diego Pelagic ecosystem responses to climate forcing: Linear tracking or threshold dynamics?
Transcript

Year

1950 1960 1970 1980 1990 2000 2010Tem

pera

ture

ano

mal

y (º

C)

-2

-1

0

1

2

Scripps pier Sea Surface Temperature

Mark D. OhmanScripps Institution of OceanographyUniversity of California, San Diego

Pelagic ecosystem responses to climate forcing:

Linear tracking or threshold dynamics?

U.S. LTER Network - 26 sites including terrestrial, aquatic, & human-dominated ecosystems

Scheffer et al. 2009, Nature

Fold Bifurcation

Preferred state A

Preferred state B

LinearThreshold

California Current Ecosystem LTER A Coastal Upwelling Biome

CCE: leverages 62-yr CalCOFI time series

Multiple, interacting time scales

of ecosystem change

Progressive, long-term changes

in the California Current Ecosystem

Scripps Pier Temperature

DensityStratification

N2CalCOFI line 80

Lavaniegos & Ohman (2007) Progress in OceanographyKim and Miller (2007) J. Physical Oceanography

Long-term Changes in Vertical Stratification

Year

1950 1960 1970 1980 1990 2000Tem

pera

ture

ano

mal

y (º

C)

-2

-1

0

1

2

Salps

Year1950 1960 1970 1980 1990 2000

C B

iom

ass

(Log

mg

C m

-2 )

0.0

1.0

2.0

3.0

Salp biomass

photo: D.Wrobel

Buoy

ancy

Fre

quen

cyan

omal

y (

N2 ,

s-1)

Year

Year

Long

itude

Sta. M deep-sea benthic observatoryK. Smith

POC fluxes, SCOD, benthic macrofauna interactions4100 m deep

Links to BiogeochemistryDeep Sea C fluxes?

export fluxes

Salps

Year1950 1960 1970 1980 1990 2000

C B

iom

ass

(Log

mg

C m

-2 )

0.0

1.0

2.0

3.0

Sta. M

OceanSurfacewaters

Long-Term Decrease in Ocean Transparency(Secchi disk depth)

annual averagesinshore region

CalCOFIregion

Aksnes and Ohman 2009

Ohman & Romagnan (in prep)

inshoreoffshore

Wei

ghte

d M

ean

Dep

th (

m)

-- Night-- Day

Cycle 1 Cycle 3Cycle 4Cycle 2Cycle 5

Body size (µm ECD)

Planktonic Copepods

CCE-P0605

Exchanging Space for Time:Spatial differences as an analog of temporal change

Copepod Diel Vertical Migrationvs. water column transparency

Beam attentuation (m-1)

0.0 0.2 0.4 0.6

Am

plitu

de o

f DV

M (m

)

0

100

200

300

Changes in transparency over time

Spatial differences in Transparencyaffect zooplankton vertical distributions

SanDiego

Thecosome Pteropods

1950 1960 1970 1980 1990 2000 2010

Log

(x+1

), N

o m

-2

0.0

1.0

2.0

3.0

Heteropoda (Atlanta spp.)

1950 1960 1970 1980 1990 2000 2010

Log

(x+1

), N

o m

-2

0.0

1.0

2.0

3.0

Foraminifera

Year

1950 1960 1970 1980 1990 2000 2010

Log

(x+1

), N

o m

-2

0.0

1.0

2.0

3.0

Southern California

Ohman et al. (2009) GRL

Consequences of lowered seawater pH and undersaturation w.r.t. aragonite in the CA Current System ?

(cf. Feely et al. 2008)

Spring cruises

Importance of long term research:detecting thresholds of change

Natural modes of climate variability:

interannual and interdecadal changes

in the California Current Ecosystem

Ohman and Di Lorenzo (in prep)

Brinton data source - CalCOFI

Euphausia pacifica

1950 1960 1970 1980 1990 2000 2010

-1

0

1 anomalies

Log

No.

m-2

Year

E.p.recon vs. E.p.obs

Year

Sea Surface Height AR1 model

Interannual variability

M. Ohman

Major El Niño’s

Ohman and Di Lorenzo (in prep)

Brinton data source - CalCOFI

1950 1960 1970 1980 1990 2000 2010

-1

0

1

Nyctiphanes simplex

Log

No.

m-2

anomalies

Year

N.s.recon vs. N.s.obs

Year

PDO AR1 model

Interdecadal variabilityPDO

J. Gómez

Di Lorenzo et al. 2008, GRL

North Pacific Gyre Oscillation (NPGO)

NPGO initiallydiagnosed froma ROMs model

Interdecadal variability

Spatial dimensions of climate forcing:

differential effects on co-occurring species

curl-driven upwelling

coastal boundary upwelling

Rykaczewski and Checkley (2008) PNAS

Distinction between:Coastal boundary upwellingWind-stress curl upwelling

Typical VerticalVelocity(m day-1)

0-1

7-12

San Diego

Santa Cruz

Rykaczewski and Checkley (2008) PNAS

Curl-driven upwelling

Nutricline depth

Chla

Long-term increase in curl-driven upwelling

Coastal boundary upwelling

σθ

Rykaczewski & Checkley 2008

PNAS

CCE-LTERprocess cruises

Upwelling velocity w (m d-1)

Biom

ass

spec

tral

slo

pe (

g m

m-2)

Upwelling velocity w (m d-1)

Biom

ass

spec

tral

slo

pe (

g m

m-2)

Zooplankton body sizeis proportional to upwelling velocity

Coastal boundary upwelling: anchovy

Wind stress curl driven upwelling: sardine

Climate change may act at the

mesoscale and sub-mesoscale

Spatial dimensions of climate forcing:

N

S

Temp

Chl-a

(N.B. glider and SeaWifs imagesare on different color scales)

R. Davis, M. Ohman - glider imageM. Kahru – satellite imagesP. Franks - composition

0 m

400 m

Mesoscale & sub-mesoscale ocean features

Biophysical gradients at ocean fronts

Salinity

Potential Density

Acoustic Backscatter

Temperature

Chlorophyll-a

Acoustic Backscatter(750 kHz)

Potential Density

Salinity

34.5

33

16

0

27

24

4

090

55

0

500

°CdB

Volts

PSU

Sigmaθ

350 km 0 kmLine 80 Section

Temperature

Pres

sure

(db

)

nearshoreoffshore

Spray ocean glider

Jesse PowellScripps, CCE

graduate student

Russ Davis,Dan Rudnick,Mark Ohman

(off Pt. Conception)

Quantum Yield (φ ph)

Latitude

32.70 32.75 32.80 32.85 32.90

NASC

m/nm

i2

0

200

400

600

800

1000

FishKrillLarvae

Calanoid copepods

nauplii

Acoustic biomass

SouthDistance along section (km)

Distance along section (km)

North

Synechococcus biomass

Bacterial C production

Prochlorococcus biomass

Diatom biomass

Wang

Taylor,Landry

Taylor,Landry

Symo,Azam

Ohman

Koslow,Lara-Lopez

Sections across the “A-Front”

Total Biomass > 202 µm

fish krill

NorthSouth front

(offshore, Southern CA Current)

Ocean hotspotsN

omin

al d

epth

(m

)

NorthSouth

Human perceptions of

(and responses to) Climate Change

Coda:

Part of the

LTER Maps and Locals (MALS) project:

Fish species landed in San Diego during El Niño or La Niña

Zhang et al. (in review) Fishermens’ perspectives on climate variability

El NiñoLa Niña

Prop

ortio

n

Fish species

Only 12.9 % of these respondents unambiguously agreed that climate change is a possibility

The broader American public, in 2010: 71% (Yale) 74.5% (Stanford)

Interviews with captains of commercial passenger fishing vessels (CPFVs)

Time frame: April to July 2010Locations: Mission Bay and Point LomaTotal effective samples: 62 (total number of CPFVs in these two locations in 2009: 83)

SummaryExamples of climate influences on the California Current Ecosystem LTER site:

Processes operate on multiple, interacting time scalesProgressive, long-term changesInterannualInterdecadal

Importance of the spatial dimension in climate responsesWind stress curl vs. coastal boundary upwellingPossible nonlinear effects of ocean “hot spots”

Best conceptual model for biotic responses ?Linear tracking of the physical environmentThresholdsFold bifurcation with stabilizing mechanisms

1950 1960 1970 1980 1990 2000 2010

-1

0

1

Log

No.

m-2

anomalies1950 1960 1970 1980 1990 2000 2010

-1

0

1 anomalies

Log

No.

m-2

Salps

Year1950 1960 1970 1980 1990 2000

C B

iom

ass

(Log

mg

C m

-2 )

0.0

1.0

2.0

3.0

fin

-0.01

00.01

0.02

0.03

0.040.05

0.06

0.07

0.080.09

0.1

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006 -11

-6

-1

4

9

14Area1NOI

-0.01

00.01

0.02

0.03

0.040.05

0.06

0.07

0.080.09

0.1

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006 -11

-6

-1

4

9

14Area1NOI

Long-Term Variability in Front Frequencysatellite SST imagery

Related to variation in climate (NOI)

Arrows indicate coincident peaks

Kahru and Manzano (in prep.).

Southern California Current

Front FrequencyNOI

Fron

t Fr

eque

ncy

(pro

port

ion

of r

egio

n)

NO

I

End-to-end Observing System – Southern California Current SystempCO2 to marine mammals, integrated with 4D ocean modeling

Chl-a shown at surface;salinity in vertical section

Pacific sardineNorthern anchovy

Southwest Fisheries Science CenterNational Marine Fisheries Service

Preliminary study of an Oceanic FrontSST (º C)San Diego

“A-front” study


Recommended