+ All Categories
Home > Documents > Peptide Side Reaction

Peptide Side Reaction

Date post: 14-Jan-2017
Category:
Upload: yi-yang
View: 63 times
Download: 3 times
Share this document with a friend
43
Peptide Side Reactions Yi Yang, Chemical Development 21 st Apr. 2016, IPC
Transcript
Page 1: Peptide Side Reaction

Peptide Side ReactionsYi Yang, Chemical Development21st Apr. 2016, IPC

Page 2: Peptide Side Reaction

2

Amino Acid in Peptide SPPS

H2N

O

OH

R-amino group/N

backbone amino group

backbone carboxylate

-Carbon/C

Side chain

NH O

OH

R1

PG1

PG2

NH O

OH

HN

Fmoc

Boc

Base labile

Acid labile

H2N

O

OH

R1

+H2N

O

R2H2N

O

R1HN

O

R2

H2O

Page 3: Peptide Side Reaction

3

Solid Phase Peptide Synthesis (SPPS)X X = Cl, OH, NH2

NH O

OH

R1 PG1

Fmoc

NH O

O(NH)

R1 PG1

Fmoc

piperidine

HN

H2N

O

O(NH)

R1 PG1

Fmoc

HN

O

OH

R2

PG2

couplingreagent

Fmoc

HN

O

O

R2

PG2

Y

Y: activating group

NH O

O(NH)

R1 PG1

Fmoc

HN

O

R2

PG2

Fmoc deprotection

Fmoc-Amino acid coupling

repetitive Fmoc deprotection and AA coupling

NH O

O(NH)

R1 PG1

HN

O

R2

PG2

Peptide segment

PG3

PG4

O PGn-1

H2N

Rn

PGn

TFA/Scavenger

NH O

OH(NH2)

R1

HN

O

R2Peptide segment

O

H2N

Rn

Loading

Cleavage and Global deprotection

Peptide Assembly

Page 4: Peptide Side Reaction

4

A. Peptide Fragmentation/Deletion Side Reactions

A-1: N-Ac-N-alkyl peptide acidolysis

‣ Peptides with a motif of N-Ac-N-alkyl-Xaa sequence at the N-terminus have the distinctively high propensity to acidolysis

O

N

R1

O

NH

H+

N

OOH

R1

+Peptide OH H2N Peptide OH

Dyn A(1-11) H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-NH2

Arodyn 1: Ac-Phe-Phe-Phe-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

Arodyn 2: Ac-N-Me-Phe-Phe-Trp-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

Arodyn 3: CH3OCO-N-Me-Phe-Phe-Trp-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

Arodyn 4: N-Me-Phe-Phe-Trp-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

Ac-N-Me-Phe-Phe-Trp-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

H+

H-Phe-Trp-Arg-Leu-Arg-Arg-D-Ala-Arg-Pro-Lys-NH2

O

N

R

O

Page 5: Peptide Side Reaction

5

A. Peptide Fragmentation/Deletion Side Reactions

A-2: -N-Acyl-N-alkyl-Aib-Xaa acidolysis

‣ endo-peptide bond scission at ‑N-acyl-N-alkyl-Aib-Xaa- sequence upon acid treatment.

H2N

HN

O

O

NH

HN

O

O

NOH

O

HN

HNN

NH

NH

O

O

OO

O

O

OTFA

O

OLabile Bond

O

N

O

HN

O

H+O

N

OH+

HN

O

N+

O NH

OH

O

Tetrahedral Intermediate

N+

OO

O

NOH

O

H2O

H2NO

oxo-oxazolinium derivative

Page 6: Peptide Side Reaction

6

A. Peptide Fragmentation/Deletion Side Reactions

A-3: Acidolysis of -Asp-Pro- bond

‣ -Asp-Pro- peptide bond is labile under acidic conditions such as in TFA, HF, formic acid and acetic acid, even at weak acidic milieu (pH 4)

Segment 1 Asp-Pro Segment 2H+

Segment 1 Asp-OH

+

Segment 2H-Pro

HN

O

O

OH

N O

NH

H+

H2O

N+

HNO

O

ONH

2 H2O

NH

HN O

HN

O

OH

O

OH

Segment 1 Segment 1

Segment 2

Segment 2

Segment 1Segment 2

+

protein E298D eNOS has been identified to suffer from acidolytic fission at -Asp298-Pro299- sequence, giving rise to 100 kDa and 35 kDa fragments, while its native protein counterpart eNOS (Glu298) is exempted from acidolysis under the same conditions.

Herpes simplex virion-originated peptide might suffer from -Asp-Pro- cleavage during FAB-MS analysis; while –Asn-Pro- is exempted from such degradation.

Page 7: Peptide Side Reaction

7

A. Peptide Fragmentation/Deletion Side Reactions

A-4: Auto-degradation of peptide N-terminal H-His-Pro-Xaa- moiety

‣ The amide bond between Pro and the amino acid on its C-terminal side in peptide sequence could undergo fragmentation process catalyzed by the imidazole group on N-terminal His.

H-His-Pro- PeptideH+

His-Pro fragment

Peptide

[M] [M-234]

50% AcOH, H2N

O

RO

N

NH

N

ONH

N

NH

H2N

O

NHO

R

NH

HO

Page 9: Peptide Side Reaction

9

A. Peptide Fragmentation/Deletion Side Reactions

A-6: Deguanidination side reaction on Arg

If the guanidino moiety from Arg side chain is acylated by amino acid derivatives, it could be decomposed into Orn side product

NH O

NH

NH2HN

NH O

NH2

[M] [M-42]

H2N

O

N

HNHN

PG

PG

'

PG = Protecting GroupX = Leaving Group

NH

R

OX

O

Fmoc

NH O

N

HNN

PG

PG

'

OHN

R

Fmoc

O

NH

R

FmocNH O

HN

NH

N

PG

PG

O

H2N

R

OHN

RBase

NH O

N

HNN

PG

PG

'

O

H2N

R

O

H2N

R

Orn

Page 10: Peptide Side Reaction

10

A. Peptide Fragmentation/Deletion Side Reactions

A-7: DKP (2,5-diketopiperazine) formation The nucleophilic attack of the Nα group from the peptide N-terminal amino acid on the carbonyl functionality, either in the form of amide or ester moiety from the second amino acid, gives rise to the fission of the affected amide or ester bond. The N-terminal dipeptide is split off the peptide backbone in the form of a six-member ring derivative diketopiperazine.

NH

O

NH

O

HNO

NH

O N

O

HN

NH

OO

NH

O

HN

ONH

SO

HN

OS

H2N

N

OHO

O

HN

N O

O

NH2

Exact Mass: 1424.60

NH

O

NH

O

HN

O

NH

HN

O

O

HN

O

HN

O

NH

SO

HN

O

S

H2N

N

OH

OO

HN

N

O

O

NH2

Exact Mass: 1270.53

FE 205030

[M-154]

FE 205030 Des Gly-Pro

H2N

R1

O

HN

R2

O

X

R3

O

HN R1

ONH

R2

O

HX

R3

O

X = O, NH

+

Page 11: Peptide Side Reaction

11

B. β-Elimination Side Reactions

• β-elimination is a group of common side reactions that predominantly affect peptides bearing electron-withdrawing substituent located on the side chain Cβ position, such as Cys and phosphorylated Ser/Thr.

• These peptides could suffer from β-elimination mostly under base treatment.

• The consequence of this side reaction is the elimination of substituent on Cβ and the formation of dehydroalanine and/or corresponding relevant adducts.

NH O

EWGBase

NH O

H

Page 12: Peptide Side Reaction

12

B. β-Elimination Side Reactions

B-1: β-Elimination of Cys sulfhydryl side chainHα on Cys residue in the parental peptide is vulnerable to the base treatment and the protected sulfhydryl derivative suffers from the degradation by means of splitting off the β-position on Cys side chain, giving rise to the formation of a dehydroalanine intermediate.

NH O

SPiperidine

NH O

H

PG

PG: Protecting Group

PG-SH

O NH

O R1

O

HN

O

O

S

PG

H

HN

H2N

R1

O

HN

O

O

HN

H2N

R1

O

HN

O

O

N

dehydroalanine intermediate 3-(1-piperidinyl)alanine adduct

H

PG = Protecting GroupDBF = Dibenzofulvene

DBF, CO2

[M+51]

Page 13: Peptide Side Reaction

13

B. β-Elimination Side Reactions

B-2: β-Elimination of phosphorylated Ser, Thr

Utilization of Fmoc-Ser/Thr(PO3R2)-OH (R=methyl, ethyl, tert-butyl, benzyl) building blocks for the preparation of phosphopeptides could potentially cause β-elimination side reaction resembling Cys β-elimination.

O

O

NH

O

OR1

P OO

OR R

Fmoc-Ser/Thr(PO3R2)-OH(Thr: R1=CH3; Ser: R1=H)

R= methyl, ethyl, tert-butyl or benzyl

Base

H2N

O

R1

O-

P OO

OR R

O

O

NH

O

OR1

P OO

OR R

Fmoc-Ser/Thr(PO3R2)-OH(Thr: R1=CH3; Ser: R1=H)

R= methyl, ethyl, tert-butyl or benzyl

O NH

O R1

O

HN

O

NH

O

H

HN

H

R2

O

X

P

O

OOR R

H2N

R1

O

HN

O

NH

HN

dehydroalanine intermediate

O

X

R2

3-(1-piperidinyl)alanine adduct

H2N

R1

O

HN

O

NH

NO

X

R2

Thr: R3=CH3; Ser: R3=HR=methyl, ethyl, tert-butyl or benzylX=Peptide Fragment, O, NH

R3

R3

R3

P

O

O O

O-

R R

[M-98] [M-13]

Page 14: Peptide Side Reaction

14

C. Peptide Rearrangement Side Reactions

• Undesirable peptide rearrangement represents a category of common side reactions occurred in the process of peptide manufacture as well as storage.

• pH is one of the most important factors that drive peptide rearrangement process.

• One of challenges inherent to these types of side reactions is that the derived side products are frequently isomer to the target peptides and the development of analytical methods with respect to the re-arranged peptide impurities poses a critical task.

• Only acyl O N migrations are discussed herein.

Page 15: Peptide Side Reaction

15

C. Peptide Rearrangement Side Reactions

C-1: Acid catalyzed acyl NO migration and the subsequent peptide acidolysis

• Acyl NO migration process was initially detected under the circumstances of substrate treatment by strong acid such as H2SO4, HF or HCl.

• TFA-catalyzed acyl NO migration is becoming one of the most frequently detected side reactions in peptide synthesis.

• Its severity is evidently correlated to the sequences from the parental peptide. • The acceptors of the acid-catalyzed acyl shift in peptide synthesis are normally those residues that

bear nucleophilic substituents like Ser, Thr or Cys.

NH

R

O

HN

OH+

HO X

NH

R

HO

HN

O

O X

H+

NH

R NH3

O

XO O

X = H or CH3

NH

R

O

HN

O

HO X

H+

NH

R NH3

O

XO O

X = H or CH3

Segment 1

H2O

NH

R

OH

O

H2N

O

HO X

+

Segment 1

Segment 1

Segment 2 Segment 2

Segment 2

Page 16: Peptide Side Reaction

16

C. Peptide Rearrangement Side Reactions

C-1: Acid catalyzed acyl NO migration and the subsequent peptide acidolysis

NH O

HN

O

R

O

Fmoc piperidineH2N

O

HN

O

R

OAc2O

NH O

HN

O

R

OO

Pyridine

TFA

NH O

HN

OH

R

OOH+

OH-H3N

O

HN

O

R

O

O

H3O+

H3N

O

HN

OH

R

O

+ +

Targtet product [M]

O-Ac Isomer Imputiy [M]

Deacetyl impurity [M-42]

Page 17: Peptide Side Reaction

17

C. Peptide Rearrangement Side Reactions

C-2: Base catalyzed acyl ON migration

Base catalyzed acyl ON shift could be regarded as the reverse reaction of acid catalyzed acyl NO migration.

H2N

O

O

HN

O

X

R

HN

O

O

X

HO

R

HN

base baseHN

HO

O

XO

R

NH

X = H or CH3

H2N

O

O X

X = H or CH3

(TFA)

H2N

O

O X

O

FF

F

neutralization HN

O

HO XO

FF

F

O

OHF

FF

H3N

O

HO X

(TFA)

O

OHF

FF

[M] [M+96]

N-trifluoroacetylated impurity

Page 18: Peptide Side Reaction

18

C. Peptide Rearrangement Side Reactions

C-2: Base catalyzed acyl ON migration

HN

O

O

NH

O

O

O

OFmoc

O

HN

O

O1) Pd(PPh3)42) PyBOP/HOBt/DIEA

HN

O

O

Fmoc

O

HN

O

HN O

O

H2N

O

O

O

HN

O

HN O

O

PiperidineO

HN

O

HN O

O

O N acyl shift

HN

OH

O

Peptide

PeptidePeptide

Peptide

Piperidine

Target Intermediate (Ester)Amide Isomer impurity

Page 19: Peptide Side Reaction

19

D. Intramolecular Cyclization Side Reactions

D-1: Aspartimide formation

• Asp converted to imide by repelling a H2O molecule [M-18].• One of the most severe side reactions on peptides.• Both acid and base-catalyzed.• Occurred both in peptide synthesis, formulation, and storage.• Sequence dependent -Asp-Xaa-• Could also affect Glu, but to a much lesser extent (glutarimide).

NH

HN

O

O

O

OH

NH

O

N

OO

R R

[M] [M-18]

NH

HN

O

O

O

OH Acid or Base

NH

O

N

OO

R R

NH O

HN

R

O

HN

O OH

HN

O

O

R

(L/D)--Asp-peptide

(L/D)-iso-Asp-peptide 5

NH O

HN

R

O

HN

O

HN

O R

(L/D)--Asp-peptide piperidide

(L/D)-iso-Asp-peptide piperidide 6

N

O

N

O

Racemization

Nu

Nu

Path A

Nu = H2O Nu = piperidine

O

OHPath A

Path B

+

+

Path B

Nu = H2O Nu = piperidine

[M-18]

[M] [M+67]

[M] [M+67]

[M]

Page 20: Peptide Side Reaction

20

D. Intramolecular Cyclization Side Reactions

D-1: Aspartimide formation

OO

ONH

NH

OO

ROO

NH

O

HN

O

NHO

OH

Activation

R

O

HN

O

NHO

X

R

O

HN

O

N

O

R

O

HN

O

NHO

R

O X = Leaving GroupPG = Protecting Group

PG

PG

PG PG

PG

PG

HN

O

NHO

OH

R

O

peptide

HN

NH2

OPG PGHN

O

NHO

X

R

O

HN

NH2

OPG PGActivation H

N

O

NH

O

R

O

HN

HN

OPG PG

HN

O

N

O

R

O

HN

NH2

OPG PG

X = Leaving GroupPG = Protecting Group

peptide

peptide

peptide

Page 21: Peptide Side Reaction

21

D. Intramolecular Cyclization Side Reactions

D-2: Asn/Gln deamidation

• Asn/Gln-containing peptides are frequently involved in deamidation side reactions • Amide side chains are converted into the corresponding carboxylates [M+1].• Diverse mechanism.• Both acid- and base-catalyzed.• Sequence dependent -Asn-Xaa- N

H

HN

O

O

O

NH2

R

[M] [M+1]

NH

HN

O

O

O

OH

R

NH O

HN

O

NH2

R

O

NH O

N

O

NH2

R

Obase

NH O

N

-ONH2 O

R

NH3

NH O

N

O O

R

Racemization

NH O

N

O O

R

H2OPath A

H2OPath B

NH O

HN

O O

R

OH

NH

O

NH

OO

R

HO

Path A

Path B

32

Page 22: Peptide Side Reaction

22

E. Side Reactions on Amino Groups

Nα-acetylation H2N

R

O

NH

R

O

O

[M] [M+42]

Nα-trifluoroacetylation

F3C

O

OH HX+ F3C

O

X

N = O or NH

R R

[M] [M+96]

H2N

HN

+

HN

O

NH

O

OH

F3C

O

OH

Coupling Reagent

NH

O

F3C

O

O

O

O

O

O

Segmen ASegmen A

Segmen B

Segmen B

Segmen B

TFAO

O

HO

peptide

O

NH

R

Boc O

O

O

O

H3N

R

O

F3C

DIEA

O

O

O

O

H2N

R

O

F3C

O N acyl shift O

O

HO

O

NH

R

F3C

O

peptide

peptidepeptide

Page 23: Peptide Side Reaction

23

E. Side Reactions on Amino Groups

Nα-formylation

Nα-alkylation

H2N

R

O

N

O

H

NH

R

O

O

H

[M] [M+28]

H2N RH H

ONH

HORH+

NRH+

HN

O

N+

HN

O

N

+

[M] [M+30] [M+12]

R1

NH2

O

HN

O

R2

HCHO H2O

R1

N

O

HN

O

R2

R1

HN

O

N

O

R2

[M] [M+12]

Page 24: Peptide Side Reaction

24

E. Side Reactions on Amino Groups

Nα-alkylationHN

O

NH2

HN

O

NH

H2N NH

+HCHO

NH

ON

NH

ONH

NH

N

HN

O

NNH

O

N

NH

NH

and/or

Page 25: Peptide Side Reaction

25

E. Side Reactions on Amino Groups

N-alkylation on N-terminal His via acetone-mediated enamination

H2N

O

NH

N

OH+

H2N

O

N

N

OH

H+

H2O

H2N

O

N

N

[M] [M+40]

Page 26: Peptide Side Reaction

26

F. Peptide Oxidation Side Reactions

Cys Oxidation

NH O

SH

NH O

S

OH

NH O

S

O

OH

NH O

SO

OH

O

Cys (-2) Cys sulfenic acid (0) Cys sulfinic acid (+2) Cys sulfonic acid (+4)

NH O

SH

[O]NH O

SNH

O

HSOH

NH O

S

NH

O

S

NH O

S

O

NH O

NH O

S

NH O

S

OH

S

OH

H2O

thiosulfinite

NH

S

O

OH

H2N R

NH

S

O

HNR

H2O

HN

O

NH

SO

R'

OH

HN

O

NS

O

R'

H2O

sulfenamide sulphenyl amide

Page 27: Peptide Side Reaction

27

F. Peptide Oxidation Side Reactions

Met OxidationNH O

S

[O]

NH O

SO

[O]

NH O

SO

O

Met-sulfoxide Met-sulfone

Trp OxidationNH

HN

O

NH

HN

O

O

Oia

NH

HN

O

CHO

ONH2

HN

O

O

NH

HN

O

CHO

OHO NH2

HN

O

O

HO

KynNFK

3-hydroxykynureninehydroxy-N-formylkynurenine

Trp

NH

HN

O

HO

5-hydroxy-Trp

[M] [M+16] [M+32] [M+4]

Page 28: Peptide Side Reaction

28

F. Peptide Oxidation Side Reactions

His Oxidation

HN

O

N

NH

HN

O

N

NH

OH

HN

O

NH

NH

O

[O]

Page 29: Peptide Side Reaction

29

G. Cys Disulfide-related Side Reactions

Disulfide Scrambling

S SR1

R2

-S R3S S

R2

R3R1 S- +

S S

-S

SH

S

SH

S

-S

Thiol-Cystine disulfide exchange

S S

S S

-S R

-S

S S

S

SR

SS

SRS

-S

/ R-S-S-R

Redox buffer induced disulfide bond scrambling

Page 30: Peptide Side Reaction

30

G. Cys Disulfide-related Side Reactions

Disulfide Degradation

Homolytic degradation

NH O

S

S

HN

O

OH-

NH O

S-

S

HN

O

HO

OH-

-S

HN

O

H2O

+

S

HN

O

O

-O

NH O

S

S

HN

O

OH-H

NH O S-

S

HN

O

H2O

+

HS

HN

O

S

OH-

O-

S

HN

O

HS- -S

HN

O

S

HN

O

O

-O

+Cys persulfide

β-elimination

NH O

S

S

HN

O

OH-

H NH O

S

-S

HN

O H

+

OH-

NH O

OH

thioaldehyde

α-elimination

Page 31: Peptide Side Reaction

31

G. Cys Disulfide-related Side Reactions

Trisulfide Formation

HN

O

S

S

NH

O

HN

O

SH

peptide

peptideNH

O

HS

-eliminationHN

O

S

S-

NH

O

HN

O

SH

peptide

peptideNH

O

HS

HN

O

S S

HN

O

S

peptide

HN

O

S

HN

O

S

peptide

disulfide scrambling

Trisulfide

[M]

[M+32]

LanthionineFormation -S

HN

OHN

O

S

HN

O

HN

ONH O

S

S

HN

O

-elimination

Lanthionine[M][M-32]

Page 32: Peptide Side Reaction

32

G. Excipient-induced Side Reaction

Excipient Impurity Potential Side ReactionsPeroxide Oxidation on Cys, His, Trp, Met, etc.

Formic acid Fomylation on amino, hydroxy group

FormaldehydeImine formation on amino group, cross linking between

amino acid, N-alkylation, etc.Aldehyde (Furfural, 5-

hydroxymethyl furfural)Imine formation on amino group

glucose Maillard Reaction with amino groupFormic acidacetic acid acetylation on amino and hydroxy group

Benzyl alcohol BenzaldehydeAldehyde Peroxide

Starch Formaldehyde

MannitolReducing sugar (mannose,

glucose)Imine formation on amino group

arylmethylamine degardaion

Povidone, Polysorbate (Tween)

Lactose

PEG

HN

O

NH

O

NH2

O

R H

HN

O

NH

O

N

R

HN

O

NH

O

N

R

H2O

HN

O

NH

O

O

H2NR

H

[M][M-1]

Page 33: Peptide Side Reaction

33

Page 34: Peptide Side Reaction

34

Average Δ Mass

Modification Proposed Side Reaction Scheme

-98 β-elimination of phosphopeptide

-80 Peptide dephosphorylation

-42 Conversion of Arg to Orn via deguanidination

-34 Cysteine β-elimination

-32 Disulfide desulfurization

NH

O

O

P

O

HO OH

NH

O

NH

O

O

P

O

HO OH

NH

O

OH

NH

O

NH

HN NH2

NH

O

NH2

S

HN

O

HN

ONH O

S

S

HN

O

NH O

SH

NH O

Page 35: Peptide Side Reaction

35

Average Δ Mass

Modification Proposed Side Reaction Scheme

-32 Disulfide desulfurization

-26 Reduction of Nva(N3) to Orn

-18 Pyroglutamate formation from Glu

-18Aspartimide/Glutarimide formation

from Asp/Glu

-18 β-elimination of Ser

S

HN

O

HN

ONH O

S

S

HN

O

H2N

OHO

O

HN

O

RNH

HN

O R

O

O

NH

HN

O

O

O

OH

NH

O

N

OO

R R

NH

O

OH

NH

O

NH O

N3

NH O

NH2

Page 36: Peptide Side Reaction

36

Average Δ Mass

Modification Proposed Side Reaction Scheme

-18 dehydration of Asn/Gln

-17 Pyroglutamate formation from Gln

-17Aspartimide/Glutarimide formation

from Asn/Gln

-16 H -phosphonate formation

-14 Thioanisole-induced Tyr demethylation

-2 Cysteine oxidation to Cystine

H2N

OH2N

O

HN

O

RNH

HN

O R

O

O

NH

HN

O

O

O

NH2

NH

O

N

OO

R R

S

NH O

O

NH O

O+

H+

S+NH O

OH

+

H

NH

NH2

O

O

OHNH

N

OH

O

1-2 1-2

NH O

O

PHO

O

H

NH O

O

PHO

O

OH

NH O

SH

NH O

HS

NH O

S

NH O

S

peptide peptide

Page 37: Peptide Side Reaction

37

Average Δ Mass

Modification Proposed Side Reaction Scheme

+1 Asn/Gln hydrolysis

+1 Peptide amide hydrolysis

+2 Cystine reduction

+2 Trp reduction

+4 Oxidation of Trp to Kynurenine

+12 Imine formation on amino-containing peptide

+12 Imidazolin-4-one formation on peptide N-terminus

NH

HN

O

O

O

NH2

RNH

HN

O

O

O

OH

R

NH O

NH2

R

NH O

OH

R

HN

O

NH

HN

O

NH

NH

HN

O

NH2

HN

O

O

H2N RH H

ON

R+

R1

NH2

O

HN

O

R2

HCHO H2O

R1

N

O

HN

O

R2

R1

HN

O

N

O

R2

NH O

SH

NH O

HS

NH O

S

NH O

S

peptidepeptide

Page 38: Peptide Side Reaction

38

Average Δ Mass

Modification Proposed Side Reaction Scheme

+12Formaldehyde-induced crosslinking of peptide N-terminal Cys, Trp, Lys(Nma)

+14 Methylation of amino group

+14 methylesterfication on carboxyl group

+16 Oxidation of Cys to Cysteine sulfenic acid

+16 Oxidation of Trp to Oia (Oxindolylalanine)

+16 Oxidation of Met to Met sulfoxide

+16 Oxidation of His to 2-oxo-His

OHCHO

O

NH

NH2

HS

O

NHS

NH2

HCHO

O

NH

NH

NHO

NH2

NH

O

NO

NH2

N

O

HCHO

R NH2 NH

R

R

O

OH R

O

O

NH O

SH

NH O

S

OH

NH

HN

O

NH

HN

O

O

NH O

S

NH O

SO

HN

O

N

NH

HN

O

N

NH

OH

HN

O

NH

NH

O

Page 39: Peptide Side Reaction

39

Average Δ Mass

Modification Proposed Side Reaction Scheme

+25 Cys cyanilation

+26Schiff base formation from amino group and

acetaldehyde

+27 Cyanohydrin formation

+28 Peptide formylation at N α, Lys-N ε, Trp-N in or His-N im

+28 Carboxylate ethylation

+28 N -dimethylation

+32 Trisulfide formation

+32 Oxidation of Met to Met sulfone

+32 Oxidation of Cys to Cysteine sulfinic acid

HN

O

SH

HN

O

S

CN

H2N R NR

R2R1

OR2R1

OH

CN

H2N R NH

R

O

H

R

O

OH R

O

O

R NH2 NR

HN

O

S S

HN

O

S

HN

O

S

HN

O

S

NH O

S

NH O

SO

O

NH O

SH

NH O

S

O

OH

Page 40: Peptide Side Reaction

40

Average Δ Mass

Modification Proposed Side Reaction Scheme

+32 Oxidation of Trp to N -formylkynureine

+34 Chlorination of Tyr

+40 Enamination of His imidazolyl side chain by acetone

+40Acetone induced peptide N -terminal imidazolidinone

formation

+42 Acetylation on N α, Lys-N e , O -Ser/Thr

+44 Trp carbamate

NH

HN

O

NH

HN

O

CHO

O

NH O

OH

Cl

NH O

OH

H2N

O

NH

N

H2N

O

N

NO

+

H2N

O

HN

R1 O

R2

HN

O

NR1O

R2

X

O

X = leaving group

OHR NH2R'or

O

O

R orNH

O

R'

HN

O

N

OO

TFA

HN

O

N

OHO

HN

O

NH

+

Page 41: Peptide Side Reaction

41

Average Δ Mass

Modification Proposed Side Reaction Scheme

+48 Oxidation of Cys to Cys sulfonic acid

+51 Cys beta-elimination and piperidide adduct formation

+56tert-butylation on nucleophilic amino acid or insuffi cient removal of tBu protecting group

+67 Asp-piperidide

+71 endo-β-alanine

R-XH

X = NH, O, S or indolyl

+ RX

NH

HN

O

O

O

XAcid or Base

NH

O

N

OO

R R NH O

HN

R

O

HN

O

HN

O R

(L/D)--Asp-peptide piperidide (L/D)-iso-Asp-peptide piperidide

N

ON

O

Racemization

piperidine

piperidine

Path A

Path A

Path BX = OH, OAlkyl, OAryl, NH2

1 2

+

Path B

H2N

O

R1

Fmoc

HN

O

OH

R2

NH O

R1

Fmoc

HN

O

R2

NH O

R1

Fmoc

HN

O

R2

coupling reagent

(contaminated by Fmoc--Ala-Xaa2-OH) +

O

HN

NH O

SH

NH O

SO

OH

O

HN

O

HS

HN

O

HN H

N

N

HN O

Page 42: Peptide Side Reaction

42

Average Δ Mass

Modification Proposed Side Reaction Scheme

+74 esterification of Asp/Glu by glycerol

+ 80 Sulfonation

+ 90 Benzylation

+96 trifluoroacetylation of amino or hydroxyl group

NH O

O

OH OH

OH

HO1-2

NH O

O

1-2OH

OH

O

HN

O

NH OHS

O

O

HN

O

NH

NH

O

O

S OO

OH

NH

O

O

S OO

OH

NH

O

OH

NH

O

OH

HN

HNHN

NHO

S

O

O

OH

HN

HNNH2

NHO

NH O

HO

NH O

OS

O

OHO

R XH

X = O or S

R X

F3C

O

OH HX+ F3C

O

X

N = O or NH

RR

Page 43: Peptide Side Reaction

43

Further Reading


Recommended