+ All Categories
Home > Documents > Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References:...

Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References:...

Date post: 11-Jan-2016
Category:
Upload: aron-whitehead
View: 218 times
Download: 1 times
Share this document with a friend
Popular Tags:
80
Perfect Fluid QGP Perfect Fluid QGP or CGC? or CGC? Tetsufumi Hirano Tetsufumi Hirano Institute of Physics, Institute of Physics, University of Tokyo University of Tokyo References: References: T.Hirano and M.Gyulassy, Nucl.Phys.A T.Hirano and M.Gyulassy, Nucl.Phys.A 769 769 (2006)71. (2006)71. T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, Y.Nara, Y.Nara, Phys.Lett.B Phys.Lett.B 636 636 (2006)299; work in (2006)299; work in progress. progress. Seminar@RCNP, 7/27/2006 Seminar@RCNP, 7/27/2006
Transcript
Page 1: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Perfect Fluid QGP Perfect Fluid QGP or CGC? or CGC? Tetsufumi HiranoTetsufumi Hirano

Institute of Physics, University of Institute of Physics, University of TokyoTokyoReferences:References:

T.Hirano and M.Gyulassy, Nucl.Phys.A T.Hirano and M.Gyulassy, Nucl.Phys.A 769769(2006)71.(2006)71.T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, Y.Nara, Y.Nara, Phys.Lett.B Phys.Lett.B 636636 (2006)299; work in progress. (2006)299; work in progress.Seminar@RCNP, 7/27/2006Seminar@RCNP, 7/27/2006

Page 2: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

OUTLINEOUTLINE

• IntroductionIntroduction• Basic checksBasic checks• Dynamical modeling in heavy ion collisions Dynamical modeling in heavy ion collisions

based on ideal hydrodynamicsbased on ideal hydrodynamics• Elliptic flow and perfect fluidElliptic flow and perfect fluid• Results from hydro modelsResults from hydro models

– Dependence on freezeout prescriptionDependence on freezeout prescription– Dependence on initializationDependence on initialization

• Summary and OutlookSummary and Outlook

Page 3: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

IntroductionIntroductionWhat is the origin

of matter?

What is the matterwhere our building block

plays a fundamental role?

Matter Particle: quarkGauge Particle: gluonDynamics : QCDMatter form : QGP

Quarks, Leptons+Gauge particles

ConfinementQuark Gluon Plasma

Page 4: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Two Faces of QCDTwo Faces of QCD

Low energy scale Low energy scale High energy scale High energy scale??? ??? perturbation perturbation OK! OK!

S. Eidelman et al.F.Karsch and E.Laermann

q-qbar potentialq-qbar potentialStrong coupling “constant”Strong coupling “constant”

Color confinement Asymptotic freedom

Page 5: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

QGP RecipeQGP Recipe

1. Adding pressure Pushing up chemical potential scale2. Adding heat Pushing up temperature scale

Page 6: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

QGP from 1QGP from 1stst principle calculations principle calculations

•Critical temperature   Tc ~170MeV ~2x1012K !

c ~0.3-1.3GeV/fm3 •Rapid increase around Tc

Karsch et al.

Stefan-Boltzmann law(energy density)∝(d.o.f.)x(temperature)4

Hadron phase(): 3 QGP: 37 (color, flavor…)

Normalized temperature

Page 7: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

QGPQGP

HadronizationHadronization

NucleosynthesisNucleosynthesis

Matter Evolved with Our Matter Evolved with Our Universe Universe

QGP studyQGP study

UnderstandingUnderstandingearly universeearly universe

Page 8: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Little Bang!Little Bang!Relativistic Heavy Ion

Collider(2000-)RHIC as a time machine!

100 GeV per nucleonAu(197×100)+Au(197×100)

Collision energy

Multiple production

Heat

sideview

frontview

STAR

STAR

Page 9: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Physics of the QGPPhysics of the QGP

• Matter governed by QCD, not QEDMatter governed by QCD, not QED

• High energy density/temperature frontier High energy density/temperature frontier Toward an ultimate matter (Maximum Toward an ultimate matter (Maximum

energy density/temperature)energy density/temperature)

• Reproduction of QGP in H.I.C.Reproduction of QGP in H.I.C.Reproduction of early universe on the EarthReproduction of early universe on the Earth

• Understanding the origin of matter which Understanding the origin of matter which evolves with our universeevolves with our universe

Page 10: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

BASIC CHECKSBASIC CHECKSAS AN AS AN

INTRODUCTIONINTRODUCTION

Page 11: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Basic Checks (I): Energy Basic Checks (I): Energy DensityDensity

Bjorken energy densityBjorken energy density

: proper time: proper timey: rapidityy: rapidityR: effective transverse radiusR: effective transverse radiusmmTT: transverse mass: transverse mass

Bjorken(’83)Bjorken(’83)

Page 12: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Critical Energy Density from Critical Energy Density from LatticeLattice

Stolen from Karsch(PANIC05).Stolen from Karsch(PANIC05).

Page 13: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Centrality Dependence of Centrality Dependence of Energy DensityEnergy Density

PHENIX(’PHENIX(’0505))

c from lattice

Well aboveWell abovecc from lattice from lattice

in centralin centralcollision at RHIC, collision at RHIC,

if assumingif assuming=1fm/c.=1fm/c.

Page 14: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

CAVEATS (I)CAVEATS (I)

• Just a necessary condition in the sense that Just a necessary condition in the sense that temperature (or pressure) is not measured. temperature (or pressure) is not measured. (Just a firework?)(Just a firework?)

• How to estimate tau?How to estimate tau?

• If the system is thermalized, the actual If the system is thermalized, the actual energy density is larger due to pdV work.energy density is larger due to pdV work.

• Boost invariant?Boost invariant?

• Averaged over transverse area. Effect of Averaged over transverse area. Effect of thickness? How to estimate area?thickness? How to estimate area?

Gyulassy, Matsui(’84) Ruuskanen(’84)

Page 15: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Basic Checks (II): Chemical Basic Checks (II): Chemical Eq.Eq.

Two fitting parameters: TTwo fitting parameters: Tchch, , BB

directdirect Resonance decayResonance decay

Page 16: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Amazing fit!Amazing fit!

T=177MeV, T=177MeV, BB = 29 MeV = 29 MeV

Close to TClose to Tcc from lattice from lattice

Page 17: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

CAVEATS (II)CAVEATS (II)• Even eEven e++ee-- or pp data can be fitted or pp data can be fitted

well!well!See, e.g., Becattini&Heinz(’97)See, e.g., Becattini&Heinz(’97)

• What is the meaning of fitting What is the meaning of fitting parameters? parameters? See, e.g., See, e.g.,

Rischke(’02),Koch(’03)Rischke(’02),Koch(’03) • Why so close to TWhy so close to Tcc??

No chemical eq. in hadron phase!?No chemical eq. in hadron phase!? Essentially dynamical problem!Essentially dynamical problem!

Expansion rate Expansion rate Scattering rate Scattering rate (Process dependent)(Process dependent)

see, e.g., U.Heinz, nucl-th/0407067see, e.g., U.Heinz, nucl-th/0407067

Page 18: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Statistical Model Fitting to Statistical Model Fitting to ee&ppee&pp

Becattini&Heinz(’97)Becattini&Heinz(’97)

Phase space dominance? Phase space dominance? ““T” prop to E/N?T” prop to E/N? See, e.g., Rischke(’02),Koch(’03)See, e.g., Rischke(’02),Koch(’03)

Page 19: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Basic Checks (III): Radial Basic Checks (III): Radial FlowFlow

Spectrum for heavier particlesSpectrum for heavier particlesis a good place to see radial flow.is a good place to see radial flow.

Blast wave model Blast wave model (thermal+boost)(thermal+boost)

Driving force of flow:Driving force of flow:Inside: high pressureInside: high pressure

Outside: vacuum (Outside: vacuum (pp=0) =0) pressure gradientpressure gradient

Sollfrank et al.(’93)Sollfrank et al.(’93)

Page 20: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Spectrum change is seen in Spectrum change is seen in AA!AA!

O.B

ara

nn

ikova,

talk

at

QM

05

Power law in pp & Power law in pp & dAudAu

Convex to Power Convex to Power law law

in Au+Auin Au+Au•““Consistent” Consistent” with thermal + with thermal + boost pictureboost picture•Pressure can be Pressure can be built up in AAbuilt up in AA

Page 21: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

CAVEATS (III)CAVEATS (III)• Finite radial flow even in pp collisions? Finite radial flow even in pp collisions?

– (T,v(T,vTT)~(140MeV,0.2))~(140MeV,0.2)– Is blast wave reliable quantitatively?Is blast wave reliable quantitatively?

• Not necessary to be thermalized completely Not necessary to be thermalized completely – Results from hadronic cascade models.Results from hadronic cascade models.

• How is radial flow generated dynamically?How is radial flow generated dynamically?• Consistency? Consistency?

– Chi square minimum located a different point for Chi square minimum located a different point for and and

• Separate f.o. due to strong expansion.Separate f.o. due to strong expansion. Time scale: micro sec. in early universe Time scale: micro sec. in early universe 1010-23-23 (10 yocto) sec. in H.I.C. (10 yocto) sec. in H.I.C.• Flow profile? Freezeout hypersurface? Sudden Flow profile? Freezeout hypersurface? Sudden

freezeout?freezeout?

Page 22: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Basic Checks Basic Checks Necessary Necessary Conditions to Study QGP at Conditions to Study QGP at RHICRHIC• Energy density can be well above Energy density can be well above cc..

– tau? thermalized?tau? thermalized?

• ““Temperature” can be extracted. Temperature” can be extracted. (particle ratio)(particle ratio)– ee++ee-- and pp? Why freezeout happens so and pp? Why freezeout happens so

close to Tclose to Tcc

• Pressure can be built up. (pPressure can be built up. (pTT spectra) spectra)– Completely thermalized?Completely thermalized?

Importance of Systematic Study Importance of Systematic Study based on Dynamical Frameworkbased on Dynamical Framework

Page 23: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Dynamics of Heavy Ion Dynamics of Heavy Ion CollisionsCollisions

Time scale10fm/c~10-23sec

Temperature scale 100MeV~1012K

Freezeout

“Re-confinement”

Expansion, cooling

Thermalization

First contact (two bunches of gluons)

Page 24: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Why Hydrodynamics?Why Hydrodynamics?StaticStatic•EoS from Lattice QCDEoS from Lattice QCD•Finite Finite TT, , field theory field theory•Critical phenomenaCritical phenomena•Chiral property of hadronChiral property of hadron

Dynamic Phenomena in HICDynamic Phenomena in HIC•Expansion, FlowExpansion, Flow•Space-time evolution ofSpace-time evolution of thermodynamic variablesthermodynamic variables

Once one accepts localOnce one accepts localthermalization ansatz,thermalization ansatz,life becomes very easy.life becomes very easy.

Energy-momentum:Energy-momentum:

Conserved number:Conserved number:

Page 25: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Three Inputs for Hydrodynamic Three Inputs for Hydrodynamic ModelsModels

Final stage:Free streaming particles Need decoupling prescription

Intermediate stage:Hydrodynamics can be validas far as local thermalization isachieved. Need EoS P(e,n)

Initial stage:Particle production,pre-thermalization, instability?Instead, initial conditions are put for hydro simulations.

Need modeling(1) EoS, (2) Initial cond., and (3) Decoupling

0z

t

Page 26: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Intermediate Stage: Equation Intermediate Stage: Equation of Stateof State

Latent heat

Lattice QCD predicts cross over phase transition.Nevertheless, energy density explosively increases in the vicinity of Tc. Looks like 1st order.

Lattice QCD simulationsLattice QCD simulations Typical EoS in hydro modelsTypical EoS in hydro models

H: resonance gas(RG)

p=e/3

Q: QGP+RG

F.Karsch

et a

l. (’00

)

P.K

olb

and

U.H

ein

z(’03)

Recent lattice results at finite T

Page 27: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Initial Stage: Initial ConditionInitial Stage: Initial Condition

Transverse plane Reaction plane

Energy density distributionEnergy density distribution

Parameterization/model-calculation to reproduce (dN/d)/(Npart/2) and dN/d

Page 28: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Final Stage: FreezeoutFinal Stage: Freezeout(1) (1) Sudden freezeoutSudden freezeout (2) (2) Transport of hadronsTransport of hadrons

via Boltzman eq. (hybrid)via Boltzman eq. (hybrid)

Continuum approximation no Continuum approximation no longer valid at the late stagelonger valid at the late stageMolecular dynamic approach Molecular dynamic approach for hadrons (for hadrons (,K,p,…),K,p,…)

0z

t

0z

t

At At TT==TTff,,=0 (ideal fluid)=0 (ideal fluid) =infinity (free stream)=infinity (free stream)

T=Tf

QGP fluid

Hadron fluid

QGP fluid

Page 29: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Obviously, final results depend onObviously, final results depend onmodeling ofmodeling of

1.1.Equation of stateEquation of state2.2.Initial conditionInitial condition3.3.FreezeoutFreezeout

So it is indispensable to check sensitivitySo it is indispensable to check sensitivityof conclusion to model assumptions andof conclusion to model assumptions andtry to reduce model parameters.try to reduce model parameters.In this talk, I will cover 2 and 3.In this talk, I will cover 2 and 3.

Caveats on Hydrodynamic Caveats on Hydrodynamic ResultsResults

Page 30: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

What is Elliptic Flow?What is Elliptic Flow?How does the system respond to spatial anisotropy?How does the system respond to spatial anisotropy?

Ollitrault (’92)Ollitrault (’92)

Hydro behaviorHydro behavior

Spatial AnisotropySpatial Anisotropy

Momentum AnisotropyMomentum Anisotropy

INPUTINPUT

OUTPUTOUTPUT

Interaction amongInteraction amongproduced particlesproduced particles

dN

/d

No secondary interactionNo secondary interaction

0 2

dN

/d

0 2

2v2

x

y

Page 31: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Elliptic Flow from a Kinetic Elliptic Flow from a Kinetic TheoryTheory

b b = 7.5fm= 7.5fmTime evolution of Time evolution of vv22

generated through secondary collisionsgenerated through secondary collisions saturated in the early stage saturated in the early stage sensitive to cross section (~m.f.p.~viscosity)sensitive to cross section (~m.f.p.~viscosity)

• Gluons uniformly distributedGluons uniformly distributedin the overlap regionin the overlap region• dNdN//dy dy ~ 300 for ~ 300 for b b = 0 fm= 0 fm• Thermal distribution with Thermal distribution with T T = 500 MeV= 500 MeV

vv22 is is

Zhang et al.(’99)Zhang et al.(’99)View from collision axisView from collision axis

ideal hydro limitideal hydro limit

t(fm/c)

v2

Page 32: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,
Page 33: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Basis of the AnnouncementBasis of the AnnouncementPHENIX(’03)STAR(’02)

Multiplicity dependencepT dependenceand mass ordering

Hydro results: Huovinen, Kolb, Heinz,…

resp

on

se =

(outp

ut)

/(in

pu

t)

Page 34: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Sensitivity to Different Sensitivity to Different Assumptions in Early/Late Assumptions in Early/Late StagesStages

Glauber-typeGlauber-type Color Glass Color Glass CondensateCondensate

Sudden Sudden freezeoutfreezeout

Discovery ofDiscovery of

““Perfect Perfect Liquid”Liquid”

??Hadronic Hadronic

rescatteringrescattering ?? ??

InitialInitialConditionCondition

FreezeoutFreezeout

Page 35: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Dependence onDependence onFreezeout PrescriptionFreezeout Prescription

T.Hirano and M.Gyulassy, Nucl.Phys.A T.Hirano and M.Gyulassy, Nucl.Phys.A 769769(2006)71.(2006)71.

Page 36: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Classification of Hydro ModelsClassification of Hydro Models

Tc

QG

P p

has

eH

ad

r on

ph a

s e

Partial

Chemical

Equilibrium

EOS

Model PCE:Hirano, Teaney,

Kolb…

Model HC:Teaney, Shuryak,

Bass, Dumitru,…

Tch

Tth

Hadronic

Cascade

Chemical

Equilibrium

EOS

Tth

Model CE:Kolb, Huovinen,Heinz, Hirano…

Perfect Fluid of QGP

T

~1 fm/c

~3 fm/c

~10-15 fm/c

ideal hydrodynamics

Page 37: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Chemically Frozen Hadron Chemically Frozen Hadron Phase Phase

Chemical parameters particle ratioThermal parameters pt spectra

•Statistical modelTch>Tth

•(conventional) hydroTch=Tth

• No reproductionof ratio and spectrasimultaneously

Page 38: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Nobody knows this factNobody knows this fact……P.Huovinen, QM2002 proceedings

Page 39: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Extension of Phase DiagramExtension of Phase Diagram

iIntroduction of chemical potentialfor each hadron!

•Single Tf in hydro•Hydro works?•Both ratio andspectra?

Page 40: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(p(pTT) for Different Freezeout ) for Different Freezeout Prescriptions Prescriptions

2000 (Heinz, Huovinen, Kolb…)2000 (Heinz, Huovinen, Kolb…)Ideal hydro w/ chem.eq.hadronsIdeal hydro w/ chem.eq.hadrons2002 (TH,Teaney,Kolb…)2002 (TH,Teaney,Kolb…)+Chemical freezeout+Chemical freezeout2002 (Teaney…)2002 (Teaney…)+Dissipation in hadron phase+Dissipation in hadron phase2005 (BNL)2005 (BNL)““RHIC serves the perfect liquid.”RHIC serves the perfect liquid.”

20-30%

Why so different/similar?

Page 41: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Differential Elliptic Flow Differential Elliptic Flow DevelopsDevelopsin the Hadron Phase?in the Hadron Phase?

T.H

. and K.T

suda (’02)

Ko

lb a

nd

Hei

nz(

’04)

Is v2(pT) really sensitiveto the late dynamics?

0.4 0.6 0.80.20 0.4 0.6 0.80.20 1.0

140MeV

100MeV

transverse momentum (GeV/c)

Page 42: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Mean pMean pTT is the Key is the Key

Slope of v2(pT) ~ v2/<pT> Response to decreasing Tth

(or increasing )vv22

PCEPCE

CECE

vv22/</<ppTT>><<ppTT>>

Generic Generic feature!feature!

Page 43: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Accidental Reproduction of Accidental Reproduction of vv22(p(pTT) )

pT

v2(p

T)

<pT>

v2

pT

v2(p

T)

v2

<pT>

pT

v2(p

T)

v2

<pT>

Chemical Eq.

Chemical F.O.

At hadronization

CE: increase

CFO: decrease

freezeout

Page 44: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Why <pWhy <pTT> behaves > behaves differently?differently?ChemicalFreezeoutChemicalFreezeout

Chemical EquilibriumChemical

Equilibrium

Mean ET decreasesdue to pdV work

For a more rigorous discussion, see TH and M.Gyulassy, NPA769(2006)71

MASS energy

KINETICenergy

ET per particle increases in chemical equilibrium.

This effect delays cooling of the system like a viscous fluid.

Chemical equilibrium imitates viscosity

at the cost of particle yield! Hydro+Cascade is the only model to

reproduce v2(pT)!!!

Page 45: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Ideal QGP Fluid Ideal QGP Fluid + Dissipative Hadron Gas + Dissipative Hadron Gas ModelsModels

(1+1)D with(1+1)D with

Bjorken flowBjorken flow(2+1)D with(2+1)D with

Bjorken flowBjorken flowFull (3+1)DFull (3+1)D

UrQMUrQMDD

A.Dumitru et al., A.Dumitru et al., PLB460,411(1999); PLB460,411(1999); PRC60,021902(199PRC60,021902(1999);S.Bass and 9);S.Bass and A.Dumitru, A.Dumitru, PRC61,064909(200PRC61,064909(2000).0).

N/AN/A

C.Nonaka and C.Nonaka and S.Bass, S.Bass,

nucl-th/0510038nucl-th/0510038; ; nucl-th/0607018nucl-th/0607018

RQMDRQMD

N/AN/A

D.Teaney et al., D.Teaney et al., PRL86,4783(2001), PRL86,4783(2001), nucl-th/0110037nucl-th/0110037;;

D.Teaney, D.Teaney, nucl-th/0204023nucl-th/0204023..

N/AN/A

JAMJAMN/AN/A N/AN/A

TH, U.Heinz, TH, U.Heinz, D.Kharzeev, D.Kharzeev, R.Lacey, and R.Lacey, and Y.Nara, Y.Nara, PLB636,299(2006).PLB636,299(2006).

hydrohydro

cascadecascade

Page 46: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

(CGC +)QGP Hydro+Hadronic (CGC +)QGP Hydro+Hadronic CascadeCascade

0z

t

(Option)(Option)Color GlassColor GlassCondensateCondensate

sQGP coresQGP core(Full 3D(Full 3DIdeal Hydro)Ideal Hydro)

HadronicHadronicCoronaCorona(Cascade, (Cascade, JAM)JAM)

TH et al.(’05-)TH et al.(’05-)

Page 47: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(p(pTT) for identified hadrons) for identified hadronsfrom QGP Hydro + Hadronic from QGP Hydro + Hadronic CascadeCascade

Mass dependence is o.k.Mass dependence is o.k.Note: First result was obtainedNote: First result was obtainedby Teaney et al.by Teaney et al.

20-30%

Page 48: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(N(Npartpart) and v) and v22(eta)(eta)

Significant Hadronic Viscous EffectsSignificant Hadronic Viscous Effects at Small Multiplicityat Small Multiplicity!

Page 49: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Viscosity and EntropyViscosity and Entropy

•1+1D Bjorken flow 1+1D Bjorken flow Bjorken(’83)Bjorken(’83) Baym(’84)Hosoya,Kajantie(’85)Danielewicz,Gyulassy(’85)Gavin(’85)Akase et al.(’89)Kouno et al.(’90)…Baym(’84)Hosoya,Kajantie(’85)Danielewicz,Gyulassy(’85)Gavin(’85)Akase et al.(’89)Kouno et al.(’90)…

(Ideal)(Ideal)

(Viscous)(Viscous)

•Reynolds numberReynolds number

: shear viscosity (MeV/fm: shear viscosity (MeV/fm22), ), s s : entropy density : entropy density (1/fm(1/fm33))

wherewhere

//ss is a good dimensionless measure is a good dimensionless measure(in the natural unit) to see viscous effects.(in the natural unit) to see viscous effects.

RR>>1 >>1 Perfect fluidPerfect fluid

Iso, Mori, Namiki (’59)Iso, Mori, Namiki (’59)

Page 50: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Why QGP Fluid + Hadron Gas Works?Why QGP Fluid + Hadron Gas Works?T

H a

nd

Gyu

lass

y (’

06)

TH

an

d G

yula

ssy

(’0

6)

!•Absolute value of viscosityAbsolute value of viscosity •Its ratio to entropy densityIts ratio to entropy density

Rapid increase of entropy density Rapid increase of entropy density cancan

make hydro work at RHIC.make hydro work at RHIC.Deconfinement Signal?!Deconfinement Signal?!

: shear viscosity, : shear viscosity, s s : entropy density: entropy density

Kovtun,Son,Starinets(’05)Kovtun,Son,Starinets(’05)

Page 51: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

DigressionDigression(Dynamical) Viscosity (Dynamical) Viscosity :: ~1.0x10~1.0x10-3-3 [Pa s] (Water [Pa s] (Water 20℃)20℃) ~1.8x10~1.8x10-5-5 [Pa s] (Air 20℃) [Pa s] (Air 20℃) Kinetic Viscosity Kinetic Viscosity :: ~1.0x10~1.0x10-6-6 [m [m22/s] (Water/s] (Water 20℃)20℃) ~1.5x10~1.5x10-5-5 [m [m22/s] (Air/s] (Air 20℃) 20℃)

[Pa] = [N/m[Pa] = [N/m22]]

Non-relativistic Navier-Stokes eq. (a simple form)Non-relativistic Navier-Stokes eq. (a simple form)

Neglecting external force and assuming incompressibility.Neglecting external force and assuming incompressibility.

waterwater > > airair BUT BUT waterwater < < airair

Page 52: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Taken from Csernai-Kapusta-Taken from Csernai-Kapusta-McLerran paperMcLerran paper

Page 53: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Summary So FarSummary So Far

• When we employ Glauber-type initial When we employ Glauber-type initial conditions, hadronic dissipation is conditions, hadronic dissipation is indispensable.indispensable.

• Perfect fluid QGP core and dissipative Perfect fluid QGP core and dissipative hadronic coronahadronic corona

Page 54: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Dependence onDependence onInitialization of HydroInitialization of Hydro

T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, T.Hirano, U.Heinz, D.Kharzeev, R.Lacey, Y.Nara, Phys.Lett.B Y.Nara, Phys.Lett.B 636636 (2006)299; work (2006)299; work in progress.in progress.

Page 55: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

(1) Glauber and (2) CGC Hydro (1) Glauber and (2) CGC Hydro Initial Conditions Which Clear the Initial Conditions Which Clear the First Hurdle First Hurdle

•Glauber modelGlauber model NNpartpart:N:Ncollcoll = 85%:15% = 85%:15%•CGC modelCGC model Matching I.C. via e(x,y,Matching I.C. via e(x,y,))

Centrality dependenceCentrality dependence Rapidity dependenceRapidity dependence

Page 56: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(N(Npartpart) from ) from QGP Hydro + Hadronic QGP Hydro + Hadronic CascadeCascade

GlauberGlauber:: Early thermalizationEarly thermalization Mechanism? Mechanism? CGCCGC:: No perfect fluid?No perfect fluid? Additional viscosity Additional viscosity

is required in QGPis required in QGP

Importance of better understanding of initial Importance of better understanding of initial conditioncondition

TH et al.(’06)TH et al.(’06)

Page 57: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Large Eccentricity from CGC Initial Large Eccentricity from CGC Initial ConditionCondition

xx

yy

Pocket formula (ideal hydro):Pocket formula (ideal hydro): vv22 ~ 0.2 ~ 0.2 @ RHIC energies @ RHIC energies

Ollitrault(’92)Ollitrault(’92)

Hirano and Nara(’04), Hirano et al.(’06)Hirano and Nara(’04), Hirano et al.(’06)Kuhlman et al.(’06), Drescher et al.(’06)Kuhlman et al.(’06), Drescher et al.(’06)

Page 58: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(p(pTT) and v) and v22(eta) from CGC (eta) from CGC initial conditionsinitial conditions

vv22(model) > v(model) > v22(data)(data)

20-30%

Page 59: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Summary and OutlookSummary and Outlook

• Much more studies needed for initial Much more studies needed for initial statesstates

• Still further needed to investigate EOS Still further needed to investigate EOS dependencedependence

• To be or not to be (consistent with hydro), To be or not to be (consistent with hydro), that is the question!that is the question!

FAKE!FAKE!

Page 60: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Experimental FactsExperimental Facts

Explosive increase!Hadron and nucleusas a bunch of gluons

What happens eventually?Unitarity? Froissart bound?

Page 61: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Interplay between Emission Interplay between Emission and Recombinationand RecombinationSmall x gluons come from large x partons (linear effect)

Fusion of two gluons (non-linear effect)

Figures from Iancu and Venugopalan, QGP3

Page 62: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

““Phase Diagram” of HadronPhase Diagram” of Hadron

0

non

-pe

rtu

rba

tive

regi

on

dilute parton

CGC

geometrical s

calin

g

Q2: Size of a probe(resolution)x: Momentum fraction

DGLAP

BFKL

Linear region(s)•dilute parton•geometrical scalingNon-linear region•CGC

Page 63: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Color Glass Condensate Color Glass Condensate (CGC)(CGC)

•Color: Gluons are colored•Glass: The strong analogy to actual glasses.

•Disorder•Evolve slowly due to Lorentz time duration

•Condensate: High density of massless gluons•Density ~ 1/s>>1•Coherence

•“Characteristic momentum”•a.k.a. saturation scale ““saturation”saturation”

Gribov, Levin Ryskin (’83)Gribov, Levin Ryskin (’83)Mueller, Qiu (’86)Mueller, Qiu (’86)Blaizot, Mueller (’87)Blaizot, Mueller (’87)

Page 64: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

A Saturation ModelA Saturation ModelZ~1/mx

BFKL eq.:linearNon-linear evolution isimportant in high density.

Page 65: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Gluon Production from a Gluon Production from a Saturation ModelSaturation Model

Qs2

kT20

1/Qs ““saturation scale”saturation scale”

Mueller diagramggg

A la Karzeev and Levin

Page 66: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Results from Kharzeev & Results from Kharzeev & LevinLevin

Parton-hadron duality (gluon dist. Parton-hadron duality (gluon dist. pion dist.) pion dist.)

Unintegrated gluon dist.Unintegrated gluon dist.

dilutedilute

densedense

Page 67: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

A Closer Look Reveals Details A Closer Look Reveals Details of Hadronic Matterof Hadronic Matter S

tole

n fro

m M

.Ble

icher (T

he B

erke

ley S

chool)

Page 68: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

How Reliable How Reliable Quantitatively?Quantitatively?

Radial flow in pp collisions?Radial flow in pp collisions?

central

peripheral

SmallSmallrescatteringrescattering

SystemSystemexpandsexpandslike thislike thistrajectory?trajectory?

Page 69: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Excitation Function of vExcitation Function of v22

Hadronic DissipationHadronic Dissipation•is huge at SPS.is huge at SPS.•still affects v2 at RHIC.still affects v2 at RHIC.•is almost negligible at LHC.is almost negligible at LHC.

Page 70: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

vv22(p(pTT) for identified hadrons) for identified hadronsfrom QGP Hydro + Hadronic from QGP Hydro + Hadronic CascadeCascade

Mass dependence is o.k.Mass dependence is o.k.Note: First result was obtainedNote: First result was obtainedby Teaney et al.by Teaney et al.

20-30%

Proton

Pion

Mass splitting/ordering comesMass splitting/ordering comesfrom hadronic rescattering.from hadronic rescattering.Not a direct signature ofNot a direct signature ofperfect fluid QGPperfect fluid QGP

Page 71: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Phi meson as a direct Phi meson as a direct messenger of QGP messenger of QGP hadronizationhadronization

Violation of mass orderingin low pT region!

Tiny splitting

Just after hadronization Final v2

Page 72: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Phi spectraPhi spectra

What happens above pT=1.5GeV/c?

Page 73: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Source Function from 3D Hydro Source Function from 3D Hydro + Cascade+ Cascade

Blink: Ideal Hydro, Kolb and Heinz (2003)Caveat: No resonance decays in ideal hydro

How much the source functionHow much the source functiondiffers from ideal hydrodiffers from ideal hydroin Configuration space?in Configuration space?

Page 74: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Non-Gaussian Source?Non-Gaussian Source?

x

y

px=0.5GeV/c

Page 75: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Viscosity from a Kinetic Viscosity from a Kinetic TheoryTheory

See, e.g. Danielewicz&Gyulassy(’85)See, e.g. Danielewicz&Gyulassy(’85)

For ultra-relativistic particles, the shear viscosity isFor ultra-relativistic particles, the shear viscosity is

IdealIdeal hydro: hydro: 00

shear viscosity shear viscosity 0 0Transport cross sectionTransport cross section

Page 76: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Temperature Dependence Temperature Dependence ofof /s/s

•We propose a possible scenario:We propose a possible scenario:

Kovtun, Son, Starinets(‘05)Kovtun, Son, Starinets(‘05)

Danielewicz&Gyulassy(’85)Danielewicz&Gyulassy(’85)•Shear Viscosity in Hadron GasShear Viscosity in Hadron Gas

•Assumption:Assumption: /s at T/s at Tcc in the sQGP is 1/4 in the sQGP is 1/4

No big jump in viscosity at Tc!

Page 77: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

A Bigger Picture in Heavy Ion A Bigger Picture in Heavy Ion CollisionsCollisions

Pro

per

time

Pro

per

time

Transverse momentumTransverse momentum

CGCCGC Geometric ScalingGeometric Scaling

Shattering CGCShattering CGC

HydrodynamicsHydrodynamics•viscosity?viscosity?•non chem. eq.?non chem. eq.?

Parton energy lossParton energy loss•InelasticInelastic•ElasticElastic

HadronicHadroniccascadecascade

Low pLow pTT High pHigh pTT

RecombinationRecombinationCoalescenceCoalescence

““DGLAP region”DGLAP region”

(N)LOpQCD(N)LOpQCD

Bef

ore

Bef

ore

colli

sion

sco

llisi

ons

Par

ton

Par

ton

prod

uctio

npr

oduc

tion

Pre

-P

re-

equi

libriu

meq

uilib

rium

““ Per

fect

” flu

idP

erfe

ct”

fluid

QG

P o

r G

PQ

GP

or

GP

Dis

sipa

tive

Dis

sipa

tive

hadr

onha

dron

gas

gas

FragmentationFragmentation

InteractionInteraction

Intermediate pIntermediate pTT

Instability?Instability?Equilibration?Equilibration?

Page 78: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

ppTT Spectra for identified Spectra for identified hadronshadronsfrom QGP Hydro+Hadronic from QGP Hydro+Hadronic CascadeCascade

Caveat: Other components such as recombination and Caveat: Other components such as recombination and fragmentation should appear in the intermediate-high pfragmentation should appear in the intermediate-high pTT regions. regions.

dN/dy and dN/dpdN/dy and dN/dpTT are o.k. by hydro+cascade. are o.k. by hydro+cascade.

Page 79: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Discussions: Hadronic Discussions: Hadronic DissipationDissipation• Hybrid Model:Hybrid Model:

QGP Fluid + Hadronic QGP Fluid + Hadronic GasGas + Glauber I.C. + Glauber I.C.

• Hydro Model:Hydro Model:

QGP Fluid + Hadronic QGP Fluid + Hadronic FluidFluid + Glauber I.C. + Glauber I.C.

ComparisonComparisonTry to drawTry to drawinformation on hadron gasinformation on hadron gas

Key technique in hydroKey technique in hydro: : •Partial chemical equilibrium in hadron phasePartial chemical equilibrium in hadron phase•Particle ratio fixed at TParticle ratio fixed at Tchch

Chemical equilibrium changes dynamics. Chemical equilibrium changes dynamics. TH and K.Tsuda(’02),TH and M.Gyulassy(’06)TH and K.Tsuda(’02),TH and M.Gyulassy(’06)

Page 80: Perfect Fluid QGP or CGC? Tetsufumi Hirano Institute of Physics, University of Tokyo References: T.Hirano and M.Gyulassy, Nucl.Phys.A 769(2006)71. T.Hirano,

Hadronic Dissipation Hadronic Dissipation Suppresses Differential Elliptic Suppresses Differential Elliptic FlowFlow

Difference comes Difference comes from dissipation from dissipation only in the hadron only in the hadron phase phase

Caveat: Chemically frozen hadronic fluid is Caveat: Chemically frozen hadronic fluid is essential in differential elliptic flow. (TH and essential in differential elliptic flow. (TH and M.Gyulassy (’06))M.Gyulassy (’06))

•Relevant parameter: Relevant parameter: ss Teaney(’03)Teaney(’03)•Dissipative effect is not soDissipative effect is not solarge due to small expansion large due to small expansion rate (1/tau ~ 0.05-0.1 fmrate (1/tau ~ 0.05-0.1 fm-1-1))


Recommended