+ All Categories
Home > Documents > Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946...

Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946...

Date post: 17-Aug-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
161
Perfect Maps Garth Isaak Lehigh University
Transcript
Page 1: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Perfect Maps

Garth Isaak

Lehigh University

Page 2: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

Page 3: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

Page 4: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00

Page 5: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01

Page 6: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11

Page 7: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12

Page 8: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21

Page 9: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10

Page 10: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02

Page 11: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22

Page 12: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

Page 13: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

Each size 2 ternary string appears exactly once

Also called DeBruijn cycles

Page 14: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A ternary 1-dimensional perfect map with window size 2

0 0 1 1 2 1 0 2 2 0 0 1 . . .

00, 01, 11, 12, 21, 10, 02, 22, 20

Each size 2 ternary string appears exactly once

Also called DeBruijn cycles

Page 15: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 16: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 17: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 18: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 19: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 20: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 21: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type question

General construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 22: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 23: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History

? Other?

1892 E. Baudot - telegraphy

- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 24: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

History? Other?

1892 E. Baudot - telegraphy- binary, window size 5

1894 C. Flye-Sainte Marie - monthly type questionGeneral construction and enumeration

1897 W. Mantel - primitive polynomials

1934 M.H. Martin - dynamics

1934 K.R. Popper - probability

1946 I.J. Good - decimal representation of numbers

1946 N.G. DeBruijn - telephone engineering

Page 25: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF31(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Page 26: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF31(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Page 27: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF31(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Page 28: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Notation

- I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF31(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Page 29: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Notation - I apologize, will try not to rely on this

notation too much

0 0 1 1 2 1 0 2 2 0 0 1 . . .

is in

PF31(9; 2; 1)

I PF - Perfect factor

I 3 - alphabet size 3

I 1 - dimension 1

I 9 - length 9

I 2 - window size 2

I 1 - 1 string

Page 30: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF31(9; 3; 3)

Page 31: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF31(9; 3; 3)

Every ternary length 3 string appears exactly oncein this collection of 3 length 9 strings

Page 32: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A1 = 0 0 0 1 2 2 1 2 1 0 0

A2 = 1 1 1 2 0 0 2 0 2 1 1

A3 = 2 2 2 0 1 1 0 1 0 2 2

is in

PF31(9; 3; 3)

Every ternary length 3 string appears exactly oncein this collection of 3 length 9 stringsFor example, 212 and 011 are indicated above

Page 33: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 0 1 00 0 1 0 01 0 1 1 10 1 1 1 00 0 0 1 0

is in PF22((4, 4); (2, 2); 1)

Every binary 2 by 2 array appears exactly once inthis 4 by 4, two dimensional array

Page 34: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 0 1 00 0 1 0 01 0 1 1 10 1 1 1 00 0 0 1 0

is in PF22((4, 4); (2, 2); 1)

Every binary 2 by 2 array appears exactly once in

this 4 by 4, two dimensional array For example1 00 1

and0 01 1

are indicated above (note the wrapping property)

Page 35: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Review of Basics: A construction for 1-dimensional perfectmaps when k is a prime power: These are feedback shiftregister sequences

I Let h(x) = xn + hn−1xn−1 + · · ·+ h1x + x0 be a primitive

polynomial of degree n over GF (k)

I Let f (x1x2 . . . xn) = −h0x1 − h1x2 − · · · − hn−1xn

I Given terms in a string x1x2 . . . xn let the next term bef (x1x2 . . . xn)

I This produces a perfect map (except for omitting000 . . . 00)

I This method is useful for efficient construction and alsoused for 2-dimensional perfect factors ...(details omitted)

Page 36: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Review of basics:

For all alphabet sizes k and window sizes n, one dimensionalperfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Notethat the string length is determined by k and n.Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):Vertices ‘ = ‘ k-ary strings of length nArcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings thatcan appear as consecutive windows

Page 37: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Review of basics:For all alphabet sizes k and window sizes n, one dimensionalperfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Notethat the string length is determined by k and n.

Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):Vertices ‘ = ‘ k-ary strings of length nArcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings thatcan appear as consecutive windows

Page 38: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Review of basics:For all alphabet sizes k and window sizes n, one dimensionalperfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Notethat the string length is determined by k and n.

Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):Vertices ‘ = ‘ k-ary strings of length nArcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings thatcan appear as consecutive windows

Page 39: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Review of basics:For all alphabet sizes k and window sizes n, one dimensionalperfect maps exist. That is, PFk

1(kn; n; 1) is non-empty. Notethat the string length is determined by k and n.Part of digraph D(3, 4):

2001

0010

0011

0012

0200

1200

2200

Construct a digraph D(k , n):Vertices ‘ = ‘ k-ary strings of length nArcs: (s1s2 . . . sn) −→ (s2s3 . . . snsn+1) between strings thatcan appear as consecutive windows

Page 40: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

100

010

001

111

110

101

011

Page 41: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

100

010

001

111

110

101

011

000

Page 42: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001

100

010 111

110

101

011

0001

Page 43: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

100

010 111

110

101

00011

Page 44: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

100

010

110

101

000111

Page 45: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

110100

010 101

0001110

Page 46: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

110

101

100

010

00011101

Page 47: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

110

101010

100

000111010

Page 48: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

110

101010

100

0001110100

Page 49: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

A Hamiltonian cycle in D(k, n)corresponds to a perfect map

000

001 011

111

110

101010

100

00011101000

Page 50: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Hamiltonian cycles is ‘hard’

BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

100

001 011

110

000 111101 010

Page 51: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Hamiltonian cycles is ‘hard’BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

100

001 011

110

000 111101 010

Page 52: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Hamiltonian cycles is ‘hard’BUT ...

000

001 011

111

110

101010

100

is the line digraph of

00

10

01

11

100

001 011

110

000 111101 010

Page 53: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00

10

01

11

100

001 011

110

000 111101 010

Page 54: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

000

00

10

01

11000

100

001 011

110

111101 010

Page 55: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

0001

00

10

01

11000001 01

1

111

110

101 010

100

Page 56: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011

00

10

01

11000001 01

1

111

110

101 010

100

Page 57: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

000111

00

10

01

11000001 01

1

111

110

101 010

100

Page 58: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

0001110

00

10

01

11000001 01

1

111

110

101 010

100

Page 59: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101

00

10

01

11000001 01

1

111

110

101 010

100

Page 60: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101 0

00

10

01

11000001 01

1

111

110

101 010

100

Page 61: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Finding Eulerian circuits is ‘easy’

000

001 011

111

110

101010

100

00011101 00

00

10

01

11000001 01

1

111

110

101 010

100

Page 62: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

It is easy to check that the digraphs D(k , n − 1) are Eulerian:they are connected and each vertex has indegree andoutdegree k . The Eulerian circuits correspond to Hamiltoniancycles in D(k , n).

Page 63: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Enumeration

BEST theorem: DeBruijn, Ehrenfest,Smith, Tutte:

Label the arcs leaving a given vertex in order that they aretraversed in the Eulerian circuit starting from 000 . . . 00. Thearcs traversed last form a spanning in-tree rooted at000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) thereare (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]kn−1

times the numberof trees rooted at some vertex. By the matrix tree theoremthe number of spanning trees is found by evaluating adeterminant of a matrix related to the incidence matrix andfor D(k − 1, n) this can be determined

Page 64: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Enumeration BEST theorem: DeBruijn, Ehrenfest,Smith, Tutte:

Label the arcs leaving a given vertex in order that they aretraversed in the Eulerian circuit starting from 000 . . . 00. Thearcs traversed last form a spanning in-tree rooted at000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) thereare (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]kn−1

times the numberof trees rooted at some vertex. By the matrix tree theoremthe number of spanning trees is found by evaluating adeterminant of a matrix related to the incidence matrix andfor D(k − 1, n) this can be determined

Page 65: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Enumeration BEST theorem: DeBruijn, Ehrenfest,Smith, Tutte:

Label the arcs leaving a given vertex in order that they aretraversed in the Eulerian circuit starting from 000 . . . 00. Thearcs traversed last form a spanning in-tree rooted at000 . . . 00.

For each of the kn−1 vertices in D(k , n − 1) thereare (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]kn−1

times the numberof trees rooted at some vertex. By the matrix tree theoremthe number of spanning trees is found by evaluating adeterminant of a matrix related to the incidence matrix andfor D(k − 1, n) this can be determined

Page 66: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Enumeration BEST theorem: DeBruijn, Ehrenfest,Smith, Tutte:

Label the arcs leaving a given vertex in order that they aretraversed in the Eulerian circuit starting from 000 . . . 00. Thearcs traversed last form a spanning in-tree rooted at000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) thereare (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]kn−1

times the numberof trees rooted at some vertex.

By the matrix tree theoremthe number of spanning trees is found by evaluating adeterminant of a matrix related to the incidence matrix andfor D(k − 1, n) this can be determined

Page 67: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Enumeration BEST theorem: DeBruijn, Ehrenfest,Smith, Tutte:

Label the arcs leaving a given vertex in order that they aretraversed in the Eulerian circuit starting from 000 . . . 00. Thearcs traversed last form a spanning in-tree rooted at000 . . . 00. For each of the kn−1 vertices in D(k , n − 1) thereare (k − 1)! orderings for the arcs not in the tree. Thus the

number of Eulerian circuits is [(k − 1)!]kn−1

times the numberof trees rooted at some vertex. By the matrix tree theoremthe number of spanning trees is found by evaluating adeterminant of a matrix related to the incidence matrix andfor D(k − 1, n) this can be determined

Page 68: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

The number of perfect maps fork-ary windows of size n is

[(k − 1)!]kn−1

kkn−1−n

Page 69: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Universal CyclesExtend perfect map ‘listing’ ideas to other combinatorialobjects.

Some recent non-existence results by Stevens forsubsets ...We illustrate with permutations (‘easier’ than subsets ...) :Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

Page 70: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Universal CyclesExtend perfect map ‘listing’ ideas to other combinatorialobjects. Some recent non-existence results by Stevens forsubsets ...

We illustrate with permutations (‘easier’ than subsets ...) :Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

Page 71: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Universal CyclesExtend perfect map ‘listing’ ideas to other combinatorialobjects. Some recent non-existence results by Stevens forsubsets ...We illustrate with permutations (‘easier’ than subsets ...) :Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

Page 72: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Universal CyclesExtend perfect map ‘listing’ ideas to other combinatorialobjects. Some recent non-existence results by Stevens forsubsets ...We illustrate with permutations (‘easier’ than subsets ...) :Look at length 3-permutations of {1, 2, 3, 4, 5}:

123421423215241321354153253452314531542543245134124351431251234

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

Page 73: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123

Page 74: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234

Page 75: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342

Page 76: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421

Page 77: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421, 214

Page 78: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Every length 3-permutation of {1, 2, 3, 4, 5} appears exactlyonce

1 2 3 4 2 1 4 2 3 5 2 1 . . .

123, 234, 342, 421, 214, . . .

Page 79: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}

Like the perfect map case these are line digraphs and similarmethods work to show existence of universal cycles for kpermutations of {1, 2, . . . , n}But Q(n, k) is the line digraph of some other digraph P(n, k)and not of Q(n, k − 1)

Page 80: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}Like the perfect map case these are line digraphs and similarmethods work to show existence of universal cycles for kpermutations of {1, 2, . . . , n}

But Q(n, k) is the line digraph of some other digraph P(n, k)and not of Q(n, k − 1)

Page 81: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Find a Hamiltonian cycle in a particular graph Q(n, k)

321

213

214

215

132

432

532

Graph for 3 permutations of {1, 2, 3, 4, 5}Like the perfect map case these are line digraphs and similarmethods work to show existence of universal cycles for kpermutations of {1, 2, . . . , n}But Q(n, k) is the line digraph of some other digraph P(n, k)and not of Q(n, k − 1)

Page 82: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

These other digraphs P(n, k) omit edges that do notcorrespond to permutations

321

213

214

215

132

432

532

Omit the red edges

Are these digraphs Hamiltonian?

Page 83: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

These other digraphs P(n, k) omit edges that do notcorrespond to permutations

321

213

214

215

132

432

532

Omit the red edgesAre these digraphs Hamiltonian?

Page 84: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles fork-permutations for which the k + 1 strings arealso permutations

I These digraphs were introduced by Fiol et al. ina different context and the question ofHamiltonicity asked by Klerlein, Carr andStarling (at a Southeast conference)

Page 85: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles fork-permutations for which the k + 1 strings arealso permutations

I These digraphs were introduced by Fiol et al. ina different context and the question ofHamiltonicity asked by Klerlein, Carr andStarling (at a Southeast conference)

Page 86: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Are these digraphs Hamiltonian?

I If yes then we get universal cycles fork-permutations for which the k + 1 strings arealso permutations

I These digraphs were introduced by Fiol et al. ina different context and the question ofHamiltonicity asked by Klerlein, Carr andStarling (at a Southeast conference)

Page 87: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph ofP(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certainturns produces a Hamiltonian cycle in P(n, k)

Page 88: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph ofP(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certainturns produces a Hamiltonian cycle in P(n, k)

Page 89: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph ofP(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certainturns produces a Hamiltonian cycle in P(n, k)

Page 90: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph ofP(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certainturns produces a Hamiltonian cycle in P(n, k)

Page 91: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I These digraphs P(n, k) are NOT line digraphs

I BUT

I They are NEARLY line digraphs

I Obtain P(n, k) from the line digraph ofP(n, k − 1) by deleting a few arcs

I An Eulerian circuit in P(n, k) that avoids certainturns produces a Hamiltonian cycle in P(n, k)

Page 92: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 93: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 94: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 95: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 96: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 97: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 98: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 99: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering
Page 100: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Rearrange the ‘loops’ to avoid ‘bad turns’.

Construct a newdigraph on the loops with arcs for good turns. Find a Hamiltoniancycle to give the rearrangement. The Hamiltonian cycle exists inthe new digraph as degrees are high enough. Repeat for all verticesof P(n, k) to get a Hamiltonian cycle

Page 101: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a newdigraph on the loops with arcs for good turns.

Find a Hamiltoniancycle to give the rearrangement. The Hamiltonian cycle exists inthe new digraph as degrees are high enough. Repeat for all verticesof P(n, k) to get a Hamiltonian cycle

Page 102: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a newdigraph on the loops with arcs for good turns. Find a Hamiltoniancycle to give the rearrangement.

The Hamiltonian cycle exists inthe new digraph as degrees are high enough. Repeat for all verticesof P(n, k) to get a Hamiltonian cycle

Page 103: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a newdigraph on the loops with arcs for good turns. Find a Hamiltoniancycle to give the rearrangement. The Hamiltonian cycle exists inthe new digraph as degrees are high enough.

Repeat for all verticesof P(n, k) to get a Hamiltonian cycle

Page 104: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Rearrange the ‘loops’ to avoid ‘bad turns’. Construct a newdigraph on the loops with arcs for good turns. Find a Hamiltoniancycle to give the rearrangement. The Hamiltonian cycle exists inthe new digraph as degrees are high enough. Repeat for all verticesof P(n, k) to get a Hamiltonian cycle

Page 105: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I When n = k − 2 the degrees are not highenough to get a Hamiltonian cycle in theauxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphsfrom an alternating group

I Use Rankin’s Theorem to conclude that there isno Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application tocamponology (bell ringing)

Page 106: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I When n = k − 2 the degrees are not highenough to get a Hamiltonian cycle in theauxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphsfrom an alternating group

I Use Rankin’s Theorem to conclude that there isno Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application tocamponology (bell ringing)

Page 107: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I When n = k − 2 the degrees are not highenough to get a Hamiltonian cycle in theauxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphsfrom an alternating group

I Use Rankin’s Theorem to conclude that there isno Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application tocamponology (bell ringing)

Page 108: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I When n = k − 2 the degrees are not highenough to get a Hamiltonian cycle in theauxiliary digraph.

I In this case P(n, n − 2) are Cayley digraphsfrom an alternating group

I Use Rankin’s Theorem to conclude that there isno Hamiltonian cycle in this case

I Rankin’s Theorem 1948 application tocamponology (bell ringing)

Page 109: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Back to perfect maps

Page 110: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Perfect Maps and Factors in higher dimensions - a partialhistory:

1961 Reed and Stewart

1985 Fan,Fan,Ma,Sui and Etzion

1988 Cock

1988 Ivanyi and Toth

1993 Hurlbert and Isaak

1994 Mitchell and Paterson

1996 Paterson

I and many others

Page 111: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I

There are RS entries/windowsand kuv possible windows

I

So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Page 112: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windowsand kuv possible windows

I

So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Page 113: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windowsand kuv possible windows

I So RS = kuv

I

The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Page 114: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windowsand kuv possible windows

I So RS = kuv

I The all 0 window is repeated if u = R or v = S

I

So R > u and S > v

Page 115: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

R

S

u

v

I For 2-dimensional k−ary perfect maps

I There are RS entries/windowsand kuv possible windows

I So RS = kuv

I The all 0 window is repeated if u = R or v = S

I So R > u and S > v

Page 116: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 117: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 118: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 119: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 120: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 121: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Necessary Conditions

RS = kuv and R > u, S > vSimilar conditions for perfect factors and for higher dimensions

I Are these sufficient?

I 1-dimensional perfect maps - YES

I 2-dimensional perfect maps when k is a prime power -YES (Paterson 1996)

I Otherwise? - partial results

I Difficulty with sizes like 212 × 312 with window size 3× 4and 6-ary

Page 122: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Non-prime powers alphabets from prime power alphabets:

0011 ∈ PF 12 (4; 2; 1)

{001, 112, 220} ∈ PF 13 (3; 2; 3)

‘Combine’

0 0 1 1 0 0 1 1 0 0 1 1⊕ 1 1 2 1 1 2 1 1 2 1 1 2

1 1 5 4 1 2 4 4 2 1 4 5

Using also 001 and 220 this gives 115412442145004301331034223520550253

∈ PF 16 (12; 2; 3)

Page 123: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit inmany results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfectmultifactors, equivalence class perfectmultifactors ...

Page 124: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit inmany results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfectmultifactors, equivalence class perfectmultifactors ...

Page 125: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit inmany results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfectmultifactors, equivalence class perfectmultifactors ...

Page 126: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit inmany results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfectmultifactors, equivalence class perfectmultifactors ...

Page 127: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Higher Dimensional Perfect Maps

I Two basic techniques have been implicit inmany results

I ‘Integration’ ‘grows’ the window size

I ‘Concatenation’ increases the dimension

I Both use as tools perfect factors, perfectmultifactors, equivalence class perfectmultifactors ...

Page 128: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 8001121022

Page 129: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 00 01 11 12 21 10 02 22 2

Page 130: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 00 0 11 1 11 1 22 2 11 1 00 0 22 2 22 2 0

Page 131: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 10 0 1 21 1 1 11 1 2 02 2 1 21 1 0 20 0 2 02 2 2 02 2 0 1

Page 132: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 1 00 0 1 2 21 1 1 1 21 1 2 0 02 2 1 2 01 1 0 2 10 0 2 0 12 2 2 0 22 2 0 1 1

Page 133: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 1 0 00 0 1 2 2 11 1 1 1 2 11 1 2 0 0 22 2 1 2 0 11 1 0 2 1 00 0 2 0 1 22 2 2 0 2 22 2 0 1 1 0

Page 134: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 1 0 0 00 0 1 2 2 1 21 1 1 1 2 1 21 1 2 0 0 2 02 2 1 2 0 1 01 1 0 2 1 0 10 0 2 0 1 2 12 2 2 0 2 2 22 2 0 1 1 0 1

Page 135: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 1 0 0 0 10 0 1 2 2 1 2 21 1 1 1 2 1 2 11 1 2 0 0 2 0 02 2 1 2 0 1 0 21 1 0 2 1 0 1 20 0 2 0 1 2 1 02 2 2 0 2 2 2 02 2 0 1 1 0 1 1

Page 136: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Concatenation

Start with 1-dimensional perfect map 001121022 for columnsand shift sequence 01023456789 a perfect map with windowsize 1

0 1 2 3 4 5 6 7 80 0 0 1 0 0 0 1 00 0 1 2 2 1 2 2 11 1 1 1 2 1 2 1 11 1 2 0 0 2 0 0 22 2 1 2 0 1 0 2 11 1 0 2 1 0 1 2 00 0 2 0 1 2 1 0 22 2 2 0 2 2 2 0 22 2 0 1 1 0 1 1 0

PF 23 ((9, 9); (2, 2); 1)

Page 137: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Find1 20 2

where there is a shift of 2

The shift in location from 10 to 22 in 001121022

0 1 2 3 4 5 6 7 80 0 0 1 0 0 0 1 00 0 1 2 2 1 2 2 11 1 1 1 2 1 2 1 11 1 2 0 0 2 0 0 22 2 1 2 0 1 0 2 11 1 0 2 1 0 1 2 00 0 2 0 1 2 1 0 22 2 2 0 2 2 2 0 22 2 0 1 1 0 1 1 0

Page 138: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factorsfor the shifts

I Concatenation of perfect factors requires two1-dimensional factors; one for shifts and one topick which factor

Page 139: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factorsfor the shifts

I Concatenation of perfect factors requires two1-dimensional factors; one for shifts and one topick which factor

Page 140: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

I Concatenation increases the dimension

I In general needs 1-dimensional perfect factorsfor the shifts

I Concatenation of perfect factors requires two1-dimensional factors; one for shifts and one topick which factor

Page 141: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3. Start with 0

Page 142: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 143: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 144: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 145: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 146: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2 1

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 147: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 148: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 149: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 1

The first row 001121022 is a PF 13 (9; 2; 1) (window size 2) and

gives the differences for (part of) a perfect factor with windowsize 3

Page 150: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

‘Integrating’ to produce perfect factors (the inverseof Lempel’s homomorphism, finite differenceoperator):For 1-dimensional perfect factors:

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 1

1 1 1 2 0 2 0 0 2

2 2 2 0 1 0 1 1 0

The top row 001121022 is a PF 13 (9; 2; 1) and gives the

differences for each of the other rows. The other rows differ bythe constant ‘starter’ in the first column.

The other rows form a PF 13 (9; 3; 3)

Page 151: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 11 1 1 2 0 2 0 0 22 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of therows) in a location ‘below’ 12

Requires sum of the entries to be 0 mod k. If not then numberof factors will be decreased and length of each factor increasedWe will use integration along ‘directions’ for higherdimensional perfect factorsIn general for higher dimensions we need a perfect multifactorfor a ‘starter’

Page 152: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 11 1 1 2 0 2 0 0 22 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of therows) in a location ‘below’ 12Requires sum of the entries to be 0 mod k. If not then numberof factors will be decreased and length of each factor increased

We will use integration along ‘directions’ for higherdimensional perfect factorsIn general for higher dimensions we need a perfect multifactorfor a ‘starter’

Page 153: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 11 1 1 2 0 2 0 0 22 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of therows) in a location ‘below’ 12Requires sum of the entries to be 0 mod k. If not then numberof factors will be decreased and length of each factor increasedWe will use integration along ‘directions’ for higherdimensional perfect factors

In general for higher dimensions we need a perfect multifactorfor a ‘starter’

Page 154: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

0 0 1 1 2 1 0 2 20 0 0 1 2 1 2 2 11 1 1 2 0 2 0 0 22 2 2 0 1 0 1 1 0

Find 202: its differences are 12 so it will appear (in one of therows) in a location ‘below’ 12Requires sum of the entries to be 0 mod k. If not then numberof factors will be decreased and length of each factor increasedWe will use integration along ‘directions’ for higherdimensional perfect factorsIn general for higher dimensions we need a perfect multifactorfor a ‘starter’

Page 155: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Perfect multifactors

000011210220112102201121022

is obtained by writing three 0’s followed by three copies of thestring 01121022. In this string every 3-ary window of length 2appears exactly 3 times, once in each position modulo 3. We callthis a perfect multifactor. Shifting by 3 and by 6 we get twoadditional strings

022000011210220112102201121 121022000011210220112102201

for a set of 3, length 27 strings in which each length 2 windowappears appears exactly once in each position modulo 9

Page 156: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

IntegrationUse the second string of the previous example and the 9× 9 arrayfrom the example preceding that:

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 10 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 00 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 1 0 0 1 2 2 1 2 2 11 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 11 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 2 1 1 2 0 0 2 0 0 22 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 1 2 2 1 2 0 1 0 2 11 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 0 1 1 0 2 1 0 1 2 00 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 2 0 0 2 0 1 2 1 0 22 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 2 0 2 2 2 0 22 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1 0 1 1 0

Integrate down the columns:

Page 157: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

integration down the columns yields:

0 2 2 0 0 0 0 1 1 2 1 0 2 2 0 1 1 2 1 0 2 2 0 1 1 2 10 2 2 1 0 0 0 2 1 2 1 0 0 2 0 1 2 2 1 0 2 0 0 1 1 0 10 2 0 0 2 1 2 1 2 2 1 1 2 1 1 0 1 0 1 0 0 2 2 2 0 2 21 0 1 1 1 2 1 2 0 0 2 2 0 0 2 2 2 1 2 1 1 0 1 0 2 0 02 1 0 1 1 1 1 2 2 1 0 1 0 0 1 2 2 0 0 2 0 0 1 2 2 0 21 0 1 0 1 2 1 1 0 0 2 2 2 0 2 2 1 1 2 1 1 2 1 0 2 2 02 1 1 2 2 2 2 0 0 1 0 2 1 1 2 0 0 1 0 2 1 1 2 0 0 1 02 1 0 2 0 1 0 0 2 1 0 1 1 2 1 1 0 0 0 2 0 1 0 2 1 1 21 0 2 2 2 0 2 0 1 0 2 0 1 1 0 0 0 2 2 1 2 1 2 1 0 1 1

Doing the same thing with the other two possible starters producesthree 3-ary 9× 27 arrays in which we claim that every 3-ary 3× 2subarray appears exactly once.

Page 158: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

The examples we have given hint at several general methods whichgive hope that that necessary conditions can be shown sufficient inhigher dimensions at least for prime power alphabets.

For non prime power alphabet sizes new tools will probably beneeded

Page 159: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

The examples we have given hint at several general methods whichgive hope that that necessary conditions can be shown sufficient inhigher dimensions at least for prime power alphabets.For non prime power alphabet sizes new tools will probably beneeded

Page 160: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Let A be a (~R; ~V ; τ)dG [~N] PMF (perfect multifactor). LetH = Zr1/n1

× Zr2/n2× · · ·Zrd/nd

and let H ′ = {1, 2, . . . , τ}. Let(B : C ) be a(Q; (U − 1,U); ρ)H,H′ [M] PMFP (perfect multifactor pair) withthe following property. There exists c ∈ H such that each stringB(j) in B satisfiesQ∑

h=1

[B(j)]h = c . That is, the entries in each fundamental block sum

to c .Then,

I If c = 0 ∈ H, concatenation using (B : C ) as indexer yields a(~R+; ~V +; ρ)d+1

G [~N+] PMF (perfect multifactor) where the

first d coordinates of ~N+, ~R+ and ~V + are the same as ~N, ~Rand ~V and n+

d+1 = M, r+d+1 = Q and v+

d+1 = U.I If c 6= 0 ∈ H and additionally we have the following: If c is

viewed as a vector ~C = (c1, c2, . . . , cd) with entries from Z

and for i = 1, 2, . . . , d we have ηi =ri/ni

gcd(ri/ni , ci )(i.e., the

order of ci in Zri/niis ηi ), then gcd (ηi , ci ) = 1. Also, for i 6= j ,

gcd(ηi , ηj) = 1. Then concatenation using (B : C ) as indexer

yields a (~R+; ~V +; ρ)d+1G [~N∗] PMF (perfect multifactor) where

the first d coordinates of ~R+ and ~V + are the same as ~R and~V with r+

d+1 = QΠdi=1ηi and v+

d+1 = U. Also ~N∗ is given byn∗j = niηi for j = 1, 2, . . . , d and n∗

d+1 = M.

Page 161: Perfect Maps - Lehighgi02/mcccf.pdf1934 M.H. Martin - dynamics 1934 K.R. Popper - probability 1946 I.J. Good - decimal representation of numbers 1946 N.G. DeBruijn - telephone engineering

Let A be a (~Q; ~U; ρ)dG [~N] PMF (perfect multifactor) with the sumof entries in each (one dimensional) projection along direction dequal to a constant c ∈ G . Let ~Q− and ~U− be obtained from ~Qand ~U by deleting the d th dimension.Then,

I If c = 0, let B be a (~R; ~U−; τ)d−1G |H [~Q−] EPMF (equivalence

class perfect multifactor modulo H). Integrating A withstarter B yields a(~R+; ~U∗; ρτ)dG |H [~N] EPMF (equivalence class perfect

multifactor modulo H) where ~U∗ = ~U + ~e(d) and r+d = qd .

I If c 6= 0, let H ′ be the subgroup generated by c . Let B be aset of representatives modulo H ′ of a (~R; ~U−; τ)d−1

G |H′ [~Q−]

EPMF (equivalence class perfect multifactor modulo H ′).Integrating A with starter B yields a (~R+; ~U∗; ρτ/|H ′|)dG [~N]

PMF (perfect multifactor) where ~U∗ = ~U + ~e(d) andr+d = |H ′|qd .


Recommended