+ All Categories
Home > Documents > Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng...

Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng...

Date post: 10-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
228
i I l l .j ! J ! l .. ' CPSK TPJl,NSMISSIOO T'.dR:)UGI NCNLINEAR O:@ .. Ni.'ifilS . ' ... / \ I I I i 'l t ') l ,. rr; ' t } 1 · t f I i . \ l. u ' '
Transcript
Page 1: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

i I l

l .j ! J ! l

..

'

CPSK TPJl,NSMISSIOO T'.dR:)UGI NCNLINEAR O:@ .. Ni.'ifilS .

' ~

...

/

\

I

I I

i 'l • t ,· ') l

,.

rr;

'

t } 1 ·

~

t f I

• i . \ l.

u ' '

Page 2: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

Jt ' J

I f i I

l I

.. I t l

~ i \

'.

~· ;

,,,_ ..... '

•' t'.

PERF()Rf,WqCE ANALYSIS OF q'SK TRANSMISS!al

'.t'HIUJGI NOOJNFAR CHANNErS

By

PRITI HEl'JW<OL, B.E., M.E.

A.t:h:!sis

Subnitted to the Schooi of Graduate. Studies .. . .

in Partial_. Fulfilnent" of the P.eqlli.ren_l:mts

for the Degree

Ik>ctor of Philosophy

I I

McMaster University

March, 1976

@ PRITI HETRAKUL 1977 J ••

I

...

Page 3: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-. . . ' ,-. '. ':.,., / ( ~ , .... ~

; .. )..·,

.:;' i -~:1 :'t~}

;

' 1 · 1· l • {

I

... { .. .

. ' ,,•

•,,,

/

' '

IX'.Cl'OR OF PH!U60PHY (1976) (Electrical Engineering)

M:MAS'I'ER UNIVERSITY Hamilton, Ontario

TITIE:

AUl'HOR:

J

(

PerfoI!llal1te Analysis of a>sK Transmissicn through Ncnlinear Cllannels.

Priti Hetrakul B.E. (University of New South Wales, 1971) M.E. (University of Newcastle, 1972)

Dr. D.P. Taylor

xvii, 210.

..

; ..

ii

/

, I

Page 4: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

t I

' • I

t .

' . I

Virtually all satellite repeaters use a traveling-wave tube ('lWI')

as their mrln p<:M:!r arc;;,lifier. Because en-board power is a limited can­

mxlity, it is highly desirable that the TWr be q,erated as efficiently as

possible, narrely in or near saturaticn where it is highly non1i;near. These

ncnlinear effects manifest themselves as an anplitu:le conpression (#VAM

a:nversion) effect and an anplltude <'JeFendent phase rocrluJaµon (Al-VPM con­

version) effect; In this thesis a number of investigaticns have been

nade in ~lation to the TWI' nonlinearities and their effect on th,tper-1

· formanoa of camunication system:J.

A novel quadrature nodel of the 'lWl' has been clevel.qai. This·

mxlel is nnst useful in that it is analytic and requires~ choite of

only four paranete.rs to obtain an excellent fit to the TWr diaracteristics.

~ optirral bandpass nonlinear trans.fe;" characteristjc that maxi­

mizes its output signal to interference~ ratio has also been derived.

By making use of this c:ptinal transfer characteristic and the quadrature

' . JIDdel of the tube, a ronputer-aided design prc>Cl:!dure h.3$ ~ described

for obtcµ.ning a predistortion co1E5isaticn network for the 'lWl'. This

~ oonsists of a sinple arrange.nent of attenuators and ~-law

devices and has been shown, by caipUte.r s.f.nulaUai, to yield about 1 dB

.i.nproven5rt. in system performance fo:t: the case when ooly a single ca.n:1er

is present in the 'lWl'.

iii

'; ,,

..... '

. •, ..... ~·

Page 5: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

r

·.

. ~·

. •,

... ·'

.. ~. '

In the case when a single sanple detection and najo.rity logic

decision cii:cuit is assuned at the .reaaiver, it has bee: possible to de­

rive anal~cal expressions for the probability of error for M-ary CPSK

signals transmitted ~gh a piecewise-linear envelope limiting repeater.

An infinite series expression for~ bit error rate of bi.naty CPSK

transnrl.ssion t:J:,.rough an actual TWl' channel has also been derived.

A perfo~ analysis of a ro.rrelatiai rerei~r with a linear . . iritegrate and &mp circuit has been carried~ for the case of binary . CPSK transmi.ssi/ through a ~s ~~ exhibiti.ng. AM,IPM con-

versicn. · I I I

I For the case of ptlrely anplitude-limiting channel.$, an optimal

(maxf.mum-likeliho::xl) receiver structure and its approximate. ~orrnan~

has also been investigated. .. .

iv

.•

\

Page 6: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,,

·' '· ., .

.... ,,'.

\· •...

.. . ~ :, .

·,.

..._, . .. ·' . . ·- :

•.

'l'he author gratefully acknowledges the help and guidance given to

him by his supervisor, 0r.' Desmmd P. Taylor throughout the preparatioo of

the thesis. Sped.al thanks are due to Dr. $. S. Haykin for his suggestion

of the problem and many valuable discussions and to Dr. M. A. Stephens for

serving on the superv.f.s9ry oomrrl.ttee.

'lhe aut:h?r would like to thank Dr. ~.c. Chan' for his pez:mf.ssioo

to include f.;gures ~3 to 4-8 in the thesis and his many enjoyable and ·

he~ discussions. Thanks are also due to the research J;ersonnel of the

camunications Research Lal:xtratoxy at M:Master University for participating

in many lively discussions, and to Ms. Bemi~ Johnsen for her assistance

in the typing.

Finally, the author is grateful for the financial support fran

Md-faster University through thg award of a Benefactor Scholarship.

'

..

v

Page 7: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

• I

.. ~

,.,,_ ·.,i.:,¥.<t

. . ... -; .. ', " I

... I";.: ' ' .... (:-;.~ i"' ~ '.':

~;.~/; L ; ~

.. . . . f

•. • ..

,.

\

LIST OP !ILUS'I'PAT!OOS

LIST OP TABIES

LIS'!' OF PRINCIPAL SYMBJl6

dIAPI'ER 1 - ~00 MID BACKGF.OtND 1.1 Introductioo 1.2 'llie Traveling Wave Tube ('I'Wl') 1. 3 Sa:,pe of the Thesis

. OIAPTER 2 - PRBLIMINARY DISOJSSICN AND~ M)OEILING

2.1 Perfannance of Cohenmt Phase Shift Keying (CPSK)

2.2 f.bdelli.ng of Satellite Ncnlinearity·

OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY 3. i Optimum Bandpass Honlineari ty ~ TWI' Linearlzation Techniques

3. 2 .1 Butler Matrix. Transponder (BML') 3.2.2 Feed-forward Technique 3.2.3 Signal Predistortion Tedmique

OIAPTER 4 - ~CE MIALYSIS OF CPSK SYSTEMS THIOJGH NCMJNEAR OWJNELS 4 .1 Sirnulaticn Study of Bandllrnitation Effects 4. 2 Effect of Theimal Noise Disturbances

4.2.1 Piecewise-linear Envelq,e Limiting~

· 4. 2. 2 Actual '1Wl' Channel

OmFTER 5 - RECEIVER srRUCI'URES roR NCNLINEAR WIDEBAND BINARY CPSK amNNELS 5 .1 Correlation P.ecei ~-5 .2 Maximum Likelihood Ieceiver

vi

Page

iii

v

viii

xi

xii

1 1 12 17

20 20

26

38 I 39 46 47 49 52

66

68 84 89

) 117

131

132 142

Page 8: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'

4 •'

.. , .

. ,.

,'.;

'

Tables ot c.ont.ents (Continued}

CHA?l'ER 6 - CXNCWSICNS AND SUa;ESI'!CNS FOR FU1'tJRE STUTJ'l 6.1 CCnt.ribut:tons of ~ Thesis 6.2 Suggesticns for FUture Study

APPENDIX A: eurve Pitting the Quadrature M:xiel of 'IWI'

APPENDIX B: The Cl!ebyshev Transform ·

Page

·164

164 166

169

171

APPENDIX C: The Noise Statistics and calculation of 175 A' for Piea:M.1.se-linear Arrplitooe Limiting (Soft-limi. ting) Channels C.l Derivation of the Noise Statistics 175 c. 2 Calculation of A' 184

APPWDIX D: calculaticns of A' , S and Various Noise z.t::trents for Satellite Channels D .1 Calcu.1.atioo of A' and 8 D.2 Nuxrerical Evaluation of M::m:!nts of .. In-phase Noise Calponents

APPENDIX E: Absolute Corwerg,"...noo Property of the Bit Error Rate Expression

v.i.i

.,,

185

185 188

198

203

.. <

Page 9: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

LIS'!' OF ILll.JSTFATICNS

Figure caption ~

1-1 Capacity ccnparison. 6

. 1..;.2 Traveling wave tube • 13

1-3 The single-carrier characteristic of~ 16 1

Intelsat DJ 'IWI', Hughes 261-H. \

2-1 Block diagram of a correlation recei, 23

for CPSK systems.

2-2 ~ error probability w ~O' M-ary 27 .: '"':

+ ~ ' ~

2-3 cascade node! of '!WI'. '. ~·~ ... 29 :~ .. ·,; ,,. .. ,

< .. 2-4 General quadrature~ ,model of 'IWI' 30 •";, ...

2-5 The nonlinear dlaracteristics of TWl' 33 ,, "

I (Hughes 261-H) and the Bessel functicn' approximation •

. " 2-6 Bl.ode diagram of the camunicaµm system. 36

I I 3-1 The optinum envelope transfer dlaracteristic. 45

3-2 m-<llannel Butler Matrix Transpooder 48 (

,, 3-3 Open-loop feedforward anplifier rn:x:lel. 50 ~ ..

~--.. ·, 3-4 Predi.stortion ooapensator for TWI'. 54 f.; •.. ·" ... 3-5 The ca1t,~n.sator characteristics. 59 ..... . ' ": .. ,

3-6 The single-carrier characteristics of the. ' '• 60 I~ ,,,

. . '-" ·~ CCJll)E!llSated and uncn1pansated tube (Hughes 261-H) •

~ ~ , • I

'•' > ... J' 3-7 Nonlinear inplementation of tre (X)J1i:,ermator. 63 I~~.

t ,. 3-8 Probability of error vs EiJNo, 2-phase CPSK. 64 . >: "-~.) ~- ..

,!•

' -,.,.. ~

: . .. , viii ··~ .. ;,I •'1

' ·,

•[

Page 10: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

......_ I

' ' " : . .,. ~ ..... . "'

~,... l

.. .. . ·.

I ;

,, I

\

IJ.st of Illustrations (Ccntinued)

Figure

4-1

4-2

4-3,4-4

4-5,4-6

4-7,4-8

4-9

4-10

4-ll to 4-16

4-17 to 4-22

4-23 to 4-25

4-26 ,;

4-27

4-29

4-30

Caption

Bandl.imi ted M-aty CPSK sys~ transmissicn through a nonlinear channel.

Co'tplex plane representation of the received signal at t 0, (M::8).

Probability of error vs ~O' 2-phase CPSK.

Probability c,f error vs ;JN0, 4-phase CPSK.

Probability of error vs ~O' ,8-phase CPst<.

CPSK system transmission through a nmlinear channel.

A ooherent read ver for CPSK system.

Shifted pdf of in-phase noise fran limiter, Pn' (x-A'). ,

1 • Pdf of quadrature noise frcm limiter, Pn' (x). 4 ,

2 r

Probability of error vs ~ 0, 2-phase CPSK.

Probability of error vs ~O' 4-phase CPSK.

PJ;obabi_lity of e~r vs ~O' 8-phase CPSK.

MJdel for binary CPSK transmission through a satellite type charmel. ·

V ~ of equivalent in-phase and quadrature noise . ratio of output to input <NR (2.s· dB t power badroff) •

·J Bit errpr ra for a binary CPSK system as a function of. re ved <NR CA: majority logic rereiver, B: matched filter receiver) • ..

... ix

~ I

69

74

77,78

79,80

81,82

85

87

95-100

101-106

111-113

115 '

I 116

118 s ' J i

124 ~ ,. ' f ,,

'"" ' I' t

129 ;. , . .

Page 11: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·,

' .. ~ •4-:

I \

.... .

. ,

.•.

. •' \, ~ ,, . ' r •,

. . I

'

....

"

List of Illustratums ! (Continued) • ,v..,

FiCJ%:e Caption

5-1 a Actual cx,rrelation re0=iver, O<-l)T ~ t ~ kl', 133 ... -5-1 b Approximate correlation reroiver, O<-l)T ::. t ~ kT. / 133

5-2

5-3 to 5-10

Probability of error vs up-link CNR, 2-phase PSK, CA

~ likelihood nonlinearity for soft-limited channel.

5-ly_, .Maxinum likelihood receiwr, ()<-l)T ~ t :: kT. I 5l2 Perfoxmance of binary CPSK transrnisaioo th.rough

hard-limited chaimel.

5-13 ~rfo.rmanoe of binary CPSK transmission through 5-15 \,~t-limited channel.

C-1 //1 Integration regiC!'19 as used in the detennination L /· of the in-phase noise statistics •

C-2 Integration regions as used in the detennination of the quadrature noise. statistics.

D-1 Coovergence of the second m:rrent of in-phase noise to the final value as a function of M.

D-2 Convergence of the third m:rrent of in-phase.noise to the final value as a ftmctiai of M. ,.

D-3 Convergence of the fourth rranent of in-phase noise to the final value as a function of M.

I, D-4

D-5

D-6

D-7

Convergence of the fifth m::xrent of in-phase noise to the final value as a function of M •

Ccnverge.nce of the sixth m:rrent of in-phase noise, to the final value as a functicn of M.

Conver9=!11~ of the ~th m:xrent of in-phase noise to the final value as a ftmction of M •

Convergence of the eighth m:rrent of in-phase noise to the final value as a function of M.

x

14],

147-154

156

158

160-162

178

182

191

192

193

(

194

195

196

197

l l I

.I

Page 12: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

Lisr OF TA.BLE.5

Table ~en ~ , . 1-1 Ccnparison of~ .'and FDMA for satellite 7-9 b"

cx:mnunications.

" 2-1 M:>dels of T'l'lr. 34

3-1 The·cx::efficients ~and!\: for the 57-

a:xrpensator (M=4).

(1 3-2 The coefficients 'le and~ for the 58

c.urp:msator (M=E?) •

4-1 Hernrl.te :EXJlynanials. 121 ,

4-2 Nurrerical calculation of m:::rrents of 128

in-phase.noise. l

:· j /I ,)

......_

I

t ' /

I l

t'

xi

Page 13: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~.. f' ·, . ':~~::t.

... •

.... ; .. .,. .....

•'.

' . .... ~"'

.. :~ .... -. -·· -,.,. ';'.'~

---------~·

Syrrbol

A

BMI'

C/I

CNR

c (.) n

CPSK

(CNR) d

(CNR)u

DC

dB

d8m

dBW

··-·--· ---'-o.-

LIST OF PRINCIPAL SYM30IS ).

~resentation

Single carrier signal anplit~

F.quivalent signal anplitude at the output of the

ncnlinear devire

· kth coefficient of .N ( • ) p

kth o:>efficient of G ( • ) .,, p

Anpli~ m:xlulaticn. to ~lit:uci= m:xlulation .

Anp:µtooe nodulatian to phase m::x:lulaticn ~

Anplitooe phase shift keying

kth coefficient of N ( -") q

kth coefficient of G ( ·) q

Butler matrix ,transpcnder

carrier to interlerence po.,.,er ratio

carrier to noise paver ratio

J

I

Oiaracteristic functicn of randan variable n .

Coherent phase shift keying

Do.'111-link CNR

Up-link CNR

Direct rurrent

Decibel

Decibel relative to 1 milliwatt :paver

D9cibe1 relative tGl 1 watt paver

xii

..

·'

J

...

Page 14: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' I ~

• !

f

'°'", .... ', .(

'·. ,, •,

Lisbi of Principal Synrols (Continued)

Synbol

VNo ~[·]

E___ (.] ~,e:

erf(·)

Representation '·

Bit energy to noise pc:Mer spectral density ratio

Expectation with respect to the probability distribution

function of randan variable R

E>:pectaticn with respect to the joint probability distri­

bution functicn of R and e:

Error functirn

erfc( ·) Ccnplenentary error function

li [a, b; x] Cmfluent hypergearetric functicn

FCM

FDMA

FM

f (R}'

Gssl

G (.) p .

G {.) q

'\ (.)

I

I'

Im(x)

IMP

'

F.tequency divisim multiple access

Frequency nodulaticn

Pierewise-linear envelcpe LiJni ting nonlinearity

Small signal gain of TWI' l

In-phase _e1;1velcpe flOI;}linearity of the rorrpensator,

Quadrature envelcpe noolinearity of the o:::npensator

Hermite polynani.al of degree k

Countable index set

Countable index set excluding zero

Imagina}:y part of the catplex mmber x

Inte.nrodulation products

xiii

Page 15: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' j

-I

,-

--------------~------- - -------------

Li.st of Principal Syrrbols (Ccntinued)

Synbol

I ( •) n

J

kl

I.PF

1n (.)

Miz

ML

N

NO 2

N[µ,a ]

N I· J q

N u

N' u

~tation

Mxli.fied Piessel functioo of the first kind of order n

Una:nstrained objective function

Factorial of integer k

k! = m! (k-m) !

ION pass filter

Log-likelihood rat'i.o nmctional.

Natural logarithm

Maga.cycles per sea:nd

Maxim.Im likelihcxxl

kth central m::rrent

Noise paver

Noise power spectral density

Nonnal density ftmction with nean µ., and varianre a2 Down-link noise~

In-fhase instantanecus volta~ ncnlineari.ty of the

cx:itpen.Sator

Quadrature instantaneoos wltage ncnlineari_ty of the

ccmpensator

Up-link noise pc:,y.er

Effective in-phase noise~ at the output of the

nonlinear derire

xiv

·t,.

5

I i I

Page 16: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

List of Principal Synbols (Continued}

Syrrbol

n' (t)

P01

PDP

pdf

Pb(M)

p (M) e

PSK

QPSK

R

Re(x}

RF

s * 0 s·

SSW\

s' (t)

sgn(x)

~tation

Effective noise a:nponent at the output' of the nonlinear '1

device

F.quivalent in-phase noise carponent at the output of the

noolinear devia:

F.quivalent quadrature noise c:xnponent at the output of

the nrnlinear deviae

Pulse rode rcodulatim

Probability dist.rib.lticn functi.oo

Probability density ftmction

Bit error probability for M-ary CPSK

Synool error pro~ility for M-ary CPSK

Phase shift keying

Quatemacy phase shift keying

Envelope of signal plus nar:rowband noise

Real part of the ca:rplex nurrter x

Radio frequency

s1gna1·por,,er

Opt:imal,signaI power

Spread spectrum nultiple ao:ess

Effective signal ~tat the output of the nonlinear

device

Sign of real- nurnrer x

xv

Page 17: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~··

.. ,..--

List of Principal Syrrbols (Continued)

Syrrbol

sup

T

T (.) m

TWl'

w

lxl

zP C. >

* zP c. >

zq.<. >

* z (.) q * z (.)

e:

* ).

... >.

Pepresentation

Sup.renun

Synbol duraticn

Olebyshev polynan.ial of order m

Traveling wave tul:e

System banct.r.i.dth

M:>dulus of real or a:nplex m.mll::er x

Integer part of real rn.nnber"x

In-phase envelope ncnlinearity

I

~timal in-phase envelq;,e ncnlinearity

Quadrature envelope nonlinearity

Cptizral quadrature envelope nonlinearity

Cptizral overall envelope transfer characteristic

Effective phase shift at the output of the nmlinear

devire

Rancbn phase of signal plus narro..Jband n,oise

In-phase and ~ture a::npcnents of d0,,/11-link Gaussian

noise

t.p-link carrier to noise pa,.ier ratio

~-link carrier to noise J?O'A=r ratio

Limiter softness factor

Nomli.z(?(i limiter softness factor

Lagrange Il1l1 tiplier

xvi

Page 18: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

• . . '

----- ---------~-------------------.-~ ---

List of Principal Syrrbols (CCntin~)

Synbol

~ (x)

~(x)

p

=

Iepresentaticn

= 3.1415926 ..... .

= NfO, 1]

= ! erfcf-x//2]

Effective receiver carrier to noise.power ratio

Transmitted phase during the nth synt,ol intenral .,

kth cumulant

carrier frequency (in radians per serond)

Defined as ·

Approximately equal to

' I \ ...-'

" ,,.,

xvii

Page 19: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

';,, . .._ .. . ..,,_. ... ,.,. .. , A- :;~.'

-:,-. -~ •, ;,_.. ..

'::

I - ·. I •

! ·::.:~

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1) INTRODUCTION

Since the launch of the first, successful geo-

stationary satellite, SYNCOM II, in July 1963, satellite

connnunications have expanded at a phenomenal rate. Within

the last d~cade, communications traffic has been growing

at an approximate rate of 15 to 25 per cent per year.

This growth is expected to continue for the next 10 to

20 years [62].

At an orbital altituije of 34,863 km above the

equator, i.e. about six times the earth's radius, econ-

omical means can be provided to keep a satellite stationary

with respe~t to the rotating earth. This is known as

syn~hronous orbit. The angle subtended by the earth from

the satellite is about 18° and the resulting earth coverage

for conununicationrurposes is approximately four-tenths of

the earth's surface. Hence only three SUGh satellites are

sufficient in principle to provide connnunication between

any two points on the earth's surface [26].

Early satellites were sharply power-limited but

had more than sufficient bandwidth for the small number of

1

Page 20: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. ..

.. , .....

I:>.· ( .,,

,• ' . ' ~-:~

· .. · . ...

"' .

. 2 available users (ground station accesses)~ In order to

trade off bandwidth -for signalling power, wideband fre-

quency modulation (FM) techniques were used in conjunction

with frequency division multiplexing (FDM) in order to

accommodate a large number of simultaneous messages from

each user. An additional factor influencing this choice

was that the FM/FDM technology was highly developed and

widely used in terrestrial microwave systems.

In today's systems it is desirable that a large num-

ber of earth terminals (each with a different volume of

message traffic) simultaneously access or use a given satel-

lite cpannel. This is known as multiple access conununications

and there are several methods of achieving it [65]. Of main

concern to us in the subsequent analysis are the following

multiple access methods:

(1) frequency division multiple access (FDMA)

(2} time division multiple access (TOMA) .

(3) spread spectrum m~ltiple access_ (SSMA)

Conunercially, the most widely used methods are fre­

quency division mulliple access (FDMA) and time-division

multiple access (TOMA). In frequency-division multiple access,

the~repeater bandwidth ~s divided into a number of nonover­

lapping frequency bands which constitute ac,cess channels. The

transmitting stations are tnen assigned to each of these acc~ss

channels. Either frequency-division multiplexing (FDM) or

time divisi~n multiplexing may be employed in order to .

assemble the individual baseband

Page 21: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,\ 3

channels prior to the transmission. This multiplexed

. baseband is then modulated onto the main radio frequency

(RF) carrier either by analog means, such as, wideband

frequency modulation (FM) or phase modulation (PM), or by

digital methods, such as, phase shift keying (PSK). When

each user is transmitting an analog modulated FM/FDM signal,

the only viable multiple access method is FDMA with pre-

assigned channels. In such systems, several simultaneously

transmitted signals with different carrier frequencies are

passed through the traveling wave tube (TWT) amplifier

transponder on board the satellite (see section 1.2). As

a result of the TWT nonlinearity, these multicarrier sigr,als

interact with each other to cause intermodulation products

(intermodµlation noise) to appear at the output of the (

satellite repeater. This intermodulation effect' in<;..rease?

with the number of simultaneous users. It may result in

out-of-band noise which is subtracted from the output power ,

available to the desired signal or it may be within the

frequency band of a d_esired signal causing severe signal

distortion. This undesirable effect may be mitigated to

some extent by properly spacing the frequency bands of the

varicus transmitted signals so that most of the intermodul-

ation noise falls outside the bands of the desired signals.

However, this causes a significant portion of the satellite

bandwidth to be unused and unusable and hence a significant

Page 22: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. •, . . ...:

/•

.. ~~-:-·:-:

·rtt <·~< -".,.- -·~·

• ~- ' t ~ .. ~ ....

... ~ l" ~

j ;-;

decrease in available transmission capacity and efficiency

of utilization of the satellite (74].

Another major problem of the FM/FDM/FDMA system

is the need for complicated and stringent up-link power

control among the transmitting stations. In gene~al, the

ratio of powers of any two component signals at the out-

put of the TWT will differ fr.om the power ratio of the

same two components at the input, the change favoring the

stronger signal at the expe~se of the weaker one (weak

signal suppression effect). This .situati8!':l may require

extra margin in the power requirement for each weak-signal

transmitting earth station and, in the absence of power

control, reduce the total number of stations able to use

the repeater simultaneously.

An alternative multiple access communications

method is time-division multiple access (TOMA) in which

earth stations or users communicate with each other by

using ~hort non-overlapping bursts of signal. In the case

of PCM/PSK/TDMA used for voice transmission each user

4

first converts the analog signals (e.g. voice) into digital

signals via pulse code modulation (~CM) encoding. These

digital signals are converted into burst signals by using

compression buffers. These burst signals are then used

to digitally modulate the assigned carrier by means of

phase shift keying (PSK) and these are transmitted over

I

Page 23: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

....... ,· .~ .. •.,..\ ~· ~. ·/

.· ..

_____________ \ __

the satellite link[60]. Because only one signal is pa sing \

through the satellite at any instant, intermodulatio'n \

noise problems and accurate power control requirements at:e

eliminated. Thus, a substantial improvement in useful

channel capacity may be obtained. Fig. 1-1 (reproduced

from [69]) illustrates the transmission capacity of an

Intelsat IV transponder as a function of the number of

active earth stations ( those simultaneously accessing

the satellite transponder) in a network using the different

multiple access systems. It is readily evident from the

plots in Fig. 1-1 that when only a small number of earth

stations is accessing the channel in either its assigned

frequency or time partition, then the available transponder

capacity is high and efficient use is made of the satellite

transponder in both the TOMA and FDMA modes. However, as

the number of simultaneous accesses increases, the trans-

ponder capacity drops sharply for the FDMA mode while that

of 'l'DMA decreases much m::>re slowly. Table 1-1 compares the

general capabilities and requirements of TOMA and FDMA

satellite systems (extracted and modified from [58]).

Either FDMA or TOMA is well suited for a high

capacity system with few traffic fluctuations with TOMA

5

having an advantage as the number of accesses increases. •

However, if there exists a larg~ number of users ( in the

order of several hundreds), each with small 'but changing

conununications traffic requirements, other fonns of multiple

Page 24: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~ ;

kt r

I V) _, .....

l z z

I <( . I :x: v

>-!:::: v <( a.. <(

u 0.:: U,J

0 z 0 0. V)

\ z ·: ' . l <{

~:....· ;'": :..: 0.::

'~ •' ,.• t-

6

..,.

900 --e,~-

PC MI P S K I T [>MA PERFORMANCE

800 ---- ----- ----~---- -----

700

.. ,·

600

500

~ FM/fDMA PEl<f'ORMAN([

'4 00 -- -

300 --~~~~...._~~~~-'-~~~~~~~~~-'-~~~~-'-~~~~...J ·o 4 8 17 16

STATIONS PER TRANSPONDER

(SINGr.E CARRIER PER QIA:'HlEL)

Fig. 1-1. C.apacity c:x:,nparisai.

20 24

v

Page 25: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

I i ,·.-. ~~ !

, . -_., I

.,

7

Table 1-1' . _.-~

· cx:MPARISCN OF TIMA AND Fr1-!A FOR SATELLITE ~IG\TICNS

\

Total system

capacity

Effective ~ak.

transmit ~r

requirenEnt at

earth statioo

l'-Essage

rrodulation

Up-link p:,~r

rontrol

Frequency

stability

Interferenre to

adja0=nt RF

channels

. - ·----- ·------ 'I.

()

Drops ~lo,.;ly with nurri.:er Undergoes a rapid drcp

of acresses

~ach statioo may satu-

'·t.;r satellite transp:n-

Digital

I

Not critical

Short-tenn frequency

stability may te

critical to carrier

recx,very circuit

A band-limiting filter

follCMing the satellite

'lWI' may be required to

redure the effect of ·

energy,spread.ing

fran one to four a~sses

Po.,;er requirerrent 1s pro-

portiooal to traffic

density

Malog or digital

'May be critical if high

capacity is required

u:,ng-term frequency

control is critical for

small channel bandwidths

Out of band intermxhlla­

tion products do hot ge­

nerally limit system

design

.. ( oont.inued)

~

Page 26: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

8

r I

Table 1-1 (continued}

'lU1A. fU,1A

.M-:xl2rrs Irentical wideband J Operating bandwidth of

burst m::xJems for all rrodem varies with -

stations statioo' s traffic

requirerrent ill

Timing and Burst syndlronizatim Not .required

a::ntrol with m::xlem ccntrol

interface is required

at earn station for

t:.ine multiplexing at

the satellite repeater

Data buffers !€qui.red Not required

* ·Frequency Sirrple because of the Conplex frequency

planning fer sarre, single transmit multiplexing equiµrent is

earth station and receive carrier required

freqooncy for all ,

earth stations .,,

{ continued) 'i ·, ' l ~ 1

.., i * Cnly awlies to~ case.

l

• I ) •

I l 'I

Page 27: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

t

- ---- -· ,~- ------ -- ---- -- ..

Po.-~r bandwidth

efficiency

• -...i..---· ---~ •-•• ___ ..........,...._ ~-· V M ..__ ' ~.. - -- , ....

Table 1-1 (rontim.ed)

TDM\ FD.MA.

* Bandwidth utilizaticn Bandwidth is inten-

efficiency can te tiooally tr~ off for

increased by using p::1,-;er.

higher order m:xlula-

tion. In pcwer-limited

case forward-acting

/ \ * Cost .<?~~sent Expensive tine rrulti- Can use the existing

technology (up plexing equiprrent is I terrestrial mic:ro.-,ave

to 1975}.

\_

required. equiµrent.to reduce the

/ overall o::>st.

9

".

* Only applies to FM/FI!.f/FDMA case.

Page 28: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I

' j

• I l

l

l I

·;. j' '' ~~· . .. .

• 0

... ..

· ... ,, ''°:;

10

access, e.g. spread spectrum multiple access {SSMA), may

be more approrriate.

In SSMA, the carriers from each earth st~tion are

frequency or phase modulated in such a way that their

transmitted spectra occupy the whole of the available trans-

mission bandwidth. The message modulation bandwidth in

such a system (SSMA) is normally small relative to the system

bandwidth. The message modulation can take the form of an

analog frequency or phase modulated signal or it can take

a digital form such as phase or frequency shift keying.

The usual method of generating a spread-spectrum signal,

known as the direct-sequence method, is to assign to each

* user a distinct pseudonoise (PN) sequence . This is known

as pseudonoise carrier. The clock rate of this PN sequence

{equal ~o half the transmitted signal bandwidth) is

norrnally several orders of magnitude (=1000) larger than

the message bandwidth. Each active user then modulates

' his message onto this pseudonoise {PN) sequence and trans-

mits the resulting PN·carrier through the satellite

repeater to the receiving ti!rminals. Both the spectrum spread-

ing and the function of addressing the transmitting station

are achieved by this PN carrier. Upon receiving this spread-

,,

spectrum signal, each earth station employs a phase coherent

* A sequence of 2'11-1 binary numbers (zeros and ones) that is gen~ated fran a lirrear feedba~ shift register of length n .

' /

Page 29: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-- -- - - ·-------

correlator capable of locking onto any one of the trans-

mitted signals while rejecting the others. Once the

receiving station is locked onto one of the PN carriers,

the message can then be recovered by correlation detection.

The PN sequence used to spread the spectrum of

the"i'nultiple-access carrier also serves to address the

transmitted carrier to the desired receiver automatically.

In general, owing to the length of the PN sequence normally

used, an extremely large number of distinctly different

11

addres~es are available, many more than.the number of active

links a satellite repeater can support. However, this

multiple access method is not widely used commercially at

present because it-requires fast symbol synchronization to

the transmitted PN sequence, and because it usually can

handle only slow to medium speed messages. Furthermore,

it requires more complex terminal equipment, more accurate ...,.

power control at the transmitter ( in order to avoid the .. incidence of weak signal suppression), and most important

of all it yields very poor transponder bandwidth utilization.

1.2) THE TRAVELING WAVE TUBE (TWT)

Most satellite transponders to date and in the near

future will employ traveling wave tube (Tl-rt') amplifiers in

the filgh power amplifier stage of the transmitting section

of the satellite repeater. This choice has been dictated

Page 30: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

: .... ~· '

.... , .....

_, . .

--·--·~- -- ...... ------~-- -- -~ - - -· ---- ,. __ ----...... -- _,,....._. __ ..,..~-- -~-· -- - ,.._. ---

by the needs for broad bandwidth, high gain, relatively

light weight, long life, high reliability and high direct-

current (DC) to radio frequency (RF) power conversion

efficiency all of which are supplied by the TWT.

In order to facilitate an understanding of its

behaviour, a brief and elementary physical description of

the traveling wave tube is now given. The discussion in

this section essentially follows that in [57], and can be

found in most texts on electromagnetic devices [64].

The basic elements of a traveling wave tube are an

electron beam and, surrounding the benm\ an RF slow wave

12

structure (64] which supports the propagation of a traveling

electromagnetic wave. The RF structure, an electron gun

(cathode, anode), electron focusing structure and a col~

lector comprise the components of the TWT as shown in Fig.

1-2.

In the TWT an electron beam generated by the

.electron gun traverses the cylindrical axis of an evacu-d

ated glass tube about 30 cm. long and about 25 mm. wide.

The beam, which travels through the centre of the tube, is

enclosed by a spiral wire coil (the helix). The coil and

the electron collector are both given a positive bias. In

order to keep the beam focused, the tube is surrounded by

an axial magnetic field. This focusing field, which is•

produced by an external magnetic coil, is also.known

Page 31: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

- . ".

~~" :..:· ' ... .

I 1

--~---- -------- ------~-~-.... ,._ ... ....,.. 11,-"•- ,- .... ~-~ ---, -,,.,. ....

13

ELECTK:N BEN1 I

l>NO[E BEAM FOCUSING! STRU:'IUI£

CA'IliOCE ~ ~l~#$/J1,£W#&&ldWl@AJ

O)LILCfOR

~ o/lll/~ff//////////111$/I, ml rf :C-lPur rf O!Jl'PUT

,.__ n,rn;AACI'ICN REr;IO~ ....

----'l,1r--i-----------_J

Fig. 1-2 • Traveling wave tme .

.(

Page 32: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ..

• i '

i t

:. I I

..

as the beam directing field.

The high frequency signal(RF input) that is to be

amplified is fed in at the beginning of the helix. It I

becomes increasingly amplified in its passage ~~ong the

helix and is ·then uncoupled at the end (RF output). The

continuous and progressive interaction of

the fields of the electron beam and the signal leads to a

bunching of the beam electrons. These bunched electrons

form electric fields and consequently induce electric

fields on the helix. These induced fields are 90 out of

phase with the initially present field~ The result-

ant field present on the helix appears greater in com-

parison to the original field, and thus exhibits an

amplification effect. Essentially there is a transfer of

energy from the electrons to the signal field. Under

correct operating conditions, the total energy of the

electrons decreases along the beam and the total energy

of the high frequency signal increases along the helix.

At low RF drive levels a faithful reproduction of

the input signal is found at the cutput of the TWT, except

14

that there has been a considerable increase in power due to

beam-wave interaction as explained earlier. The TWT in

this case is a linear device, where the output signal

grows in direct proportion to the applied input signal.

Above a certain power level, however, an increase in RF

Page 33: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-.. - l ~,.·" '

•• .. 1 ~ .

.. ~. ~. l;.f

,:{-...

"'

::;::r---···.

15

inputp::wer will no longer result in a corresponding

increase in output power. The TWT's amplification process

is then said to be in saturation. This relationship between

input and output power of the TWT is generally known 2s

the amplitude modulation to amplitude modulation (AM/AM)

conversion effect.

Apart from this ,AM/AM effect, the input drive power

level also effects the velocity distribution of the electron

bunches and therefore results in an amplitude-dependent

phase change at the output of TWT. This phase shift as a

result of input drive level is known as amplitude modula-

tion to phase modulation (AM/PM) conversion effect. At

small input signal level this relative phase shift is small

but it increases as the saturation level is approached.

This is to be expected, since a large velocity change of

the electron bunches occurs wie1 the input is high which

in turn results in a large phase shift at the output of the

TWT. The plots of phase shift and output power versus

input power level for a typical TWT (Hughes 261-H tube) I

is as shown in Fig. 1-3.

In general, both AM/PM and AM/AM conversion

effects cause nonlinear signal distortion at the output

of the TWT. When a single carrier is present at the ~

input, unwanted harmonic signals, whlch are frequency multiples

of the fundam~ntal signal at the input, are generated at

'

Page 34: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

~ '·

________ , ---·- ------

-;;-re 0::

! ~ § 0

10

PO-lER 'l'Rl\NSFER aJJM; 5.

0.

OUIPUI' PHASE SHIFT

-5.

-40. -35. -30. -25. -20.

INPl1l' POlER { dBm)

Fig. 1-3. 'l1le single-carrier dlaracteristic of an

Intelsat r.v 'IWI', Hu:jles 261-H.

16

35.

30.

........ (I)

25. [ -8

20. ~

t H

15. 55 ~

~ 10. 0:

~

5. § o.

t

Page 35: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. .

...... -.......

':: ... ... ; .. -....... ' -........ ' . /1 ~--·:-;­" ,:

i7

the output. In the case of multicarrier input signals,

the output signal usually contains the intermodulation

products that are displaced in frequency on the high and

low side of the original carriers. Both these harmonic

signals and intennodulation products can severel~distort

the output signal especially when th~ TWT is operating

near its saturation point.

1. 3) SCOPE OF THE THESIS

The analysis of the effect of TWT nonlinearity on

the performance of coherent phase shift keying (CPSK) is

examined in some detail in the thesis. Other impairments

caused by multipath propagation, amplitude fading, carrier

recovery, bit timing recovery and frequency translation in

the satellite will not be considered, however, as each of

these defects does create a number of new problems. In

most cases, provided the nonlinear distortion effects are

properly accounted for these other problems can be handled

by well known means [9, 22, 36, 53, 55-56].

The satellite repeater is assumed to be nonregener-. ative and its main function is to amplify the signal, trans-

rnitted from an earth station, prior to retransmitting it to

another receiving earth station. Therefore in this thesis,

the satellite conununications channel will be modelled simply by:

Page 36: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I l

-~ ~-~ -- ...... ___________ ---- .. - - -- - .. ~

18

(1) additive Gaussian noise sources on the

up-link and the down-link paths.

(2) a wideband TWT exhibiting a nonlinear and

frequency independent gain and phase

shif~ characteristics.

This proposed communications model approximates the PSK/

TOMA case with wideband transmitting and receiving filters.

Furthermore it also represents the PSK/SSMA case where

the channels, other than the one being1monitored, can be

regarded as independent equal power white noise processes

[ 4].

A review of the analysis of coherent phase shift

keying (CPSK) systems through the linear additive noise

channel is' given in Chapter 2. 'Ithis analysis, though

not directly applicable to the system of interest here

yields a bound on the attainable performance that can be

used to compare with that of the nonlinear channel. In

the latter part of Chapter 2, different existing models

of wideband TWT's are described and compared concurrently

with the development of a new and simple quadrature model.

This novel model is most useful in that it is well behaved

for all input drive levels and requires the choice of only

four parameters to obtain a good fit to the actual TWT

characteristics.

In Chapter 3 the optimum bandpass nonlinearity that

maximizes its output signal to noise ratio for a certain

Page 37: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I . f

.· .. ·-

I

' ' '

.. ,-

... '

class of input signals is derived, ·and different methods

of compensating the TWT to approximate this optimum band-

pass nonlinearity are investigated.

The performance of C~SK systems through nonlinear

charnels is examined in Chapter 4 for ~oth the bandwidth:

limtted and the power-limited channel. For the latter case

a single sample detection and majority logic decision

receiver is assumed, and the bit error rate is determined

as a function of up-link and down-link bit energy to noise

spectral density ratio.

0 In Chapter 5 the performance of a binary CPSK r

signal transmitted through a p~rely amplitude - limiting

channel is considered for two other types of receiver.

These are:

(1) the linear integrate and dump correlation

receiver

(2) the nonlinear maximum - likelihood receiver.

19

Finally, Chapter 6 presents· conclusions and suggest-

ions for further researdl.

..

1

.l

I J I i

J

l 1 J f

I r

Page 38: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.I t

-J I

• t

l

' f

1 I

CJ-IAl>TER 2 ... ---P>RELIMINARY DISCUSSION AND CHANNEL MODELLING

/' In this chapter we fixst, briefly review the per-

formance obtainable when M-ar~ coherent phase shift key-

ing (CPSK)signals are transmit~ed through a linear channel.

This performance will be used, in the subsequent chapters,

as the basis of comparison for the performance of a similar

CPSK system transmitting signals through a nonlinear channel.

In the latter part of this chapter a novel quadrature model

of the TWT is developed and compared to other existing TWT

models.

2.1. PERFORMANCE OF COHERENT PHASE SHIFT KEYING (CPSK)

At high transmission rates, coherent phase shift

keying (CPSK) techniques are the most widely used of all

digital modulation methods. This occurs because they are

efftcient from the point of view of ,

(1)

(2)

conservation of bandwidth ...____,,,.,

the possibflities of using very simple

techniques for transmission and reception.

The performance of a CPSK system in an additive

thermal noise channel is well known and can be found in

most texts on digital communication [20, 53, 76, 79]. I

20

-,-,

Page 39: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

•. ·~ . ~· ·,

21

Nevertheless, we shall include the review here for the

sak~ completeness.

In the case of an additive noise channel, the truns-

mitted signal in the time interval O ~ t ~ T, where T is

the symbol interval,can be written as

where

+ 6.) l.

0 < t < T

s. (t) = l.

\ O elsewhere

i == 1, 2, 3, .... , ,,!. ( 2 • 1)

1) E is the transmitted signal energy per symbol

2) g(t) is a unit energy pulse shape, which in the

3)

4)

additive noise case may be conveniently taken

to be rectangular

~ is the angular carrier frequency which is 0

assumed to be a fixed integer multiple of

Where T-l . th b 1 t is e sym o ra e or 2 rr w >>-

0 'l'

e. is the transmitted phase and assumes one of l.

h 1 21T i · 1 2 . . h b 1 t e va ues ~· 1 = , , •••• ,Min eac sym o

interval.

Assuming that the ith symbol has been transmitted, the

received signal may be written as

x(t) = s.(t} +n(t) l.

0 < t < T. ( 2. 2)

where n(t} is narrowband white Gaussian noise which may be

written as

( 2. 3}

Page 40: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

J r

1 (

t I

t •

~ . .. \

... . _ __/' .

where n1

(t) and n2

(t) are both zero mean, statistically

independent white Gaussian noises, with single sided

power spectral density N watts/Hz. 0

Within one symbol duration the received signal

may be written as

- ~(t) sin wt 0

(2 .4)

Assuming that e~ is equally likely to have any one

22

of the M possible values, demodulation is readily accomplished

by forming the quantities

~ fl T x f x{t) cos (l) t dt

0 ( 2. 5)

0

ff T and y = I xct> sin wt dt

0 0

( 2. 6)

which.are then sampled and passed, at time T, to a decision

device which makes a decision on the value of the transmitted

e .• A block diagram of this receiver is shown in Figure 2-1. ).

Conditioned on the knowledge of 6., the variables l.

X and Y are statistically independent Gaussian random

vari:ies with means~ cos,, e . .;_n~ sin e. and common vari-i ). ' .

a nee wat·ts. The conditional joint probability density

function (pdf} of X and Y given ai may be written as

= 1 . ,rN

0

/

/

CY -.JE sin o1 /]

No

(2. 7)

Page 41: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.;,J,( :.; ~· '

/'.,.'~-: --·- _____ _,,_,___ I •• , 4 lh A •.flillfil1's M.¥ .......... ==i

!.J,

J ros(wot)

. Si (t) + n(t)

IOCAL OSCIUA'IOR

~

~ ei

a 90. ~

sin (wot)

J

SAMPLE AT t c kT

Fig. 2-1. Block diagram of a correlatioo receiver for CPSK systens.

i ~yi; ... ,-.l'-,a,;.1r4:~a,1.11r:·,.,.,,,,~u re-··.;.~Ji ;rr ... ,'i1';,:~·~--.,.... • • ..,..~.,. .,,...,~ .. ~ .. .-~ ...... --~ '•~ ~ ,,._. ~ ,, ' ~

N w

I

• !

Page 42: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.I

·, ,.·1 .. ~ -~· ""~:;.:..~ .. '' ~ ... .:. ,,:-: . j

. .

'·,,.

Now define the new random variables Rand e: as

X = R N cos e: 0

Y =RN sine: 0

(2.8)

In terms of Rand e: equation (2.7) then becomes

p ( R, e: I e . ) = B. exp { -[R 2 - 2 Ro cos ( e: + e . l + / j } ( 2 • 9 )

l. 11 l.

E where p = N is the symbol energy to noise.power spectral 0

density ratio.

24

Since the values of the transmitted phase e. are equally l.

probable, we can take e. to be zero without loss of generality l.

' and the symbbl probability of error is given by the probab-

il.1. ty tf\at I e: I>~ which can be written as

P (M) = l­e f 0

"' p(R,e:je.=O)dR de:

l. (2.10)

Substitution of equation (2.9) into (2.10) yields after some

manipulation

2 Pe(M) = 1- n

0 0 (2.11)

It was shown by Lindsey [54] that equation {2.11) can be

reduced to a readily co~putable expression as

p {M) = M-l - !. erf (p . 1T1 e M 2 Sl.IlM-

l p sin(tr,M) r 2 11 r;-0

exp [ - y ] erf [y cot M) dy (2.12)

. . - / ----,.. --.--

Page 43: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-~ ·1 ' -,., ~~,~.: .... ~--·

I ·1

,

----------------- -------· -- .

-t2 e dt

x f is the well known where erf (x) = 0

error funct:ion.

In the case of binary phase shift keying (M=2),

equation (2.12) reduces to the well known result

(2 .13)

where erfc (x) = 1 - erf (x)

It is also possible to evaluate equation (2.12)

in closed form for 4-phase CPSK (M=4). The result ·is

given by [53].

p

p (4) = erfc [ - 0- ] - .!. erfc 2 [ 12 ]

e ~ 4 (2.14)-..

In the region where p>>l, equation {2.14) can be

approximated by

= erfc [ ..£_ J 12

(2.15)

In the M~ary case, if we encode the equiprobable,

source symbols using a Gray code [56], which has the

property that only.one binary bit is changed in going

from one symbol to an adjacent symbol, then the average

bit error probability Pb(M) is related to the average

~ymbol error probability, Pe (M) by [ 77] · ...

p (M) e (2.16)

25

Page 44: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'y .. .,.

•,

where each symbol conta~ns log2M bits of in~~r:mation.

Hence for M = 4 and from equations (2.15· - 2.16)

1 2 erfc [ _P_]

12 (2.17)

But the bit energy for 4-phase PSK is half that of binary

PSK. Hence for equal bit energy to noise power spectral

density ratios, 4-phase CPSK and binary CPSK have

identical bit error performance. This result is signifi-

cant since 4-phase CPSK requires only half the bandwidth

of.binary CPSK for the same transmitted power. Fig. 2-2

illustrates the symbol error performance for M-ary CPSK as

a function of the bit energy to noise ratio defined as

p

=

2.1 MODELLING OF SATELLITE NONLINEARITY

In order to analyse the nonlinear effects of a TWT

on the.performance of conununication systems or to com-

pensate for this nonlinear distortion, it is first

necessary to develop a relatively simple, analytical model

of the tube.

In recent years considerable.effort has been made

to develop analytic expressions that app~oximate the TWT

nonlinearity. In an attempt to investigate the effect of

ipt~rmodulation no?-se caused by TWT nonlinearity or the I

26

i~tersymbol interference ef~ect (caused by adjacent symbols),

.~ ..... ~.·,·. -.:-r. -. -. ':"',;-.,':"'. r";-''f':(------~:""':"'-"."""s' ........ ------ - - ...

Page 45: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,· ,. ·,

. ',

1

p (M) e

10-2

-5

27

M=2

·,

·.

O 5 10 15 20 dB, [Fb/No) .: "

Fig. ·2-2. Word error probability vs ~~O' M-ary .CY~.

Page 46: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-. . ,

----------

28

different models of the tube have been developed [11-13,

25, 31 33-34, 51]. Basically these models are either the .

cascade combination of phase and amplitude nonlinearities

as shown in Figure 2-3 or some form of quadrature envelope

nonlinearity model as depicted in Figure 2-4. However,

the models developed earlier [11-13, 25, 31, 33-34, 51]

only approximate the tube characteristics over certain,

restricted regions.of tube operation, as dictated by the

amount of the peak-power-limited interferences at the input

of the tube, and the characteristics of the tube beyond

saturation are not critical. However, in the case when

up-link noise is present at the input of the tube, these \_

' models can lead to an anomalous be~aviour of_ the equivalent

noise statistics at the output. This occurs because the

noise is not peak-limited or bounded. The cascade model of

the tube in the presence of noise at the input has been

considered in reference [80].

In this section we introduce another approximation

for the env~lope nonlinearities in the quadrature model of

the TWT as originated in [31, 51] 4nd depicted in Figure 2-4.

The two envelope nonlinearities Z {R) and~ {R} in the .• p q

in-phase and quadrature paths are assumed here to take the

form 2 2 Z {R) = c

1Re-C2R I

0[C 2R.]

p (2.18)

2 2 Z {R) = s

1Re-S2R I

1[s

2R]

q (2.19)

.\

• \ . ., i 1

... . • 1 .. ,

., '

Page 47: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

}. ' 1

,y. '4·~~,,, ~~--- I -{,,.1:·.~,. ,. , .t · , ..:~ , , ,., unJILl,ft.;,#,#Slez~• ... •wa: , sa1Z!Sd! ... ec .... .«:~ ff.-... .... « ..... -...~ ............ '"!lf,

NARR:mWID NOISE

,·-·-·;;-~~~VE ~-·-·-1 I

CX1IPUT SIQZAL

AWPM AM/AM

I I f ( R) cos ( w0 t + e + £ + g ( R) )

L ______ _ ·-·-·-.J ~

TRANSMIT.CEO SIQq\I, INPl1l' SICW\I, Rcos(w0

t + e + t; + g(R))

Acos (C110 t + e> Rcx>s_(coot + 6 + &)

Fig. 2-3. Cascade 11XXEl of '!WT

~:r~~--:-.....--•,r• •5"•• r.• ltiiwGA~-· ... ,w•+a«J ,, :? K:«Mt:txfj'( '• id,~;-~·~··, .......... -~·'-+.1~f&il-~r___.......... .. ~,....--.-·-"'~ ·~ -·- --- > .. ,,. .......... ......

,',(:·,:. ~··:".::, :\·, ' /: :, ,• , ' : ,, :~. ,' :·,: · .. :.; ,.-· --·"I ... ,,_ ' -

rv '°

Page 48: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

J.,., ," -~: '•' • 1:· , '• .ti ·,I•

, ... 1,/ 1 (1j': "' ' WJ.::UC ... £2$ Wt a ""'-" Jllil WJIII reA o 4 - • t ___....... _ "· ---

'•I .,

NARR:MBNID ~ISE

INPUl' SICNM..

('

AcnsC1110t+e> Roos(wot+e +£)

90·

z ( .) p

~-..

Fig. 2-4. General ~ature m::>001 of 'lWl'

~ .~~

- ~

,:; F. ..·~ ..,,.,.,. .. ~ .. r:C,r :aJll$1$f¢ ~~;;;;.--wt·(:"1&:"'-.a-Jtllfl'"Miilwf-Mitrii'~~~~Mr¢11111••~ 91,i;.-+--,

.-;; _,,.,.~.;",<;"' -· . .,.,~ •.

z (.) q

( ',

Zp(R)c:os(w0

t+e +£)

OU'IPt.rr SIQW.

f(R.)oos((IJ0

t+e +c +g{R) l

Zq(R)cos(w0

t+e +c)

' ' ...... -'*::. ....,_,.r ... ~- .......

(.;J 0

Page 49: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. I

. ..

where In(.) is the modified Bessel function of the first

kinct of order n and R is the envelope of the TWT input

signal .

The coefficients (C1,~,s1 ,~2) are computed from a

conventional optimization subroutine as described in

Appendix A, so as to yield a least squares curve·fit to

the actual tube nonlinearities and are found to be

c1 = 1. 6.J.245 c2 = .053557

s1

= 1. 71850 s 2 = .242218

31

for a Hughes 261-H tube as used in the Intelsat IV satellite.

Unlike the other quadrature models [25, 31, 33 - 34,

51], this Bessel function approximation only needs a few

coefficients (four as compare9 with sixteen in [3l])to give '

a good fit to the TWT nonlinearities up to and bey-0nd

saturation. In addition the model is well behaved for all

Rand permits straightforward evaluation of the TWT output

noise statistics. For very large R, equations. (2.18) and

, (2.19)

and

can

lim

R -+

lirn Z (R) q

R -+ co

to give [2].

= (2.20)

Each Z (R) and Z (R), as shown in equation (2.20), p q

\

I .t \

t 1 J

,.,

Page 50: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ! l

' '• ,,

32

is asymptotically constant and therefore well behaved for

large R. This distinct characte7istic o' our model circum­

vents any anomaly that may arise in eval~ating the statis-

tics of the interference terms at the output of TWT, subject

to the up-link noise at the input.

For small R, Z (R} and Z (R) can be expressed as a p g

power series in R. Retaining only the first term in such

power series expansion, we get (2).

Z (R) q

S R2

1 -2- (2.21) ' f

I

The nonlinearities in equations (2.18)• and (2.19)

are plotted and compared with the measured characteristics

of the tube (Hughes 261-H) in Fig. 2-5. It is obvious from

this figure that the model proposed provides an excellent

approximation to the actual, tube characteristics in the

region of interest for tube operation.

This quadrature model of a 'IWI' as described by equations

{2.18 - 2.19) can also be extended to include othe~ types

of nonlinear amplifiers exhibiting gain compression and

AM/PM conversion effects. Examples of such amplifiers

include Klystron power amplifiers and crossed field amplifiers.

Table 2-1 summarizes the existing models of the

traveling wave tube (TWT) I that have been used so far in the

~ .,-~'

L l

! I I

( I

Page 51: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

33

4

l ./

0 Zp(R) ,.._ en 3 ~ "'l

0 > .........

>-f-0:: <t ..... w z ::i

i z 0 ... z 2 l

j

w

I .-. I 0:: ·, ',.. ::::>

-~ 0::: Zq{R) 0 <( 1 ::::> 0 0 0 .. 0 .,

:j 0 ,;\ z

1 <(

w U) <(

o MEASURED VALUES I 0. I z - BESSEL FUNCTION

APPROXIMATION :

0 0 2 3 4 5 6 7

INPUT PEAK VOLTAGE R (MILLIVOLTS)

Fig. 2-5. '!he noolinear dlaractoristics of 'non' (Hughes 261-H)

c!!ld the Bessel fmcticn approrimaticn.

; '\?,·,. - ,'

•,.: .:

Page 52: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

f~;_u~~l~?,;~-~ :n

-,

··.

:.; ,··

M:ldel type (originators)

Cascade

(Beman & M:ilil) l _.. .;'• }:

.< Cascade ,••,

'· (Thanas et al)

Cascade

(Schwartz et al)

Quadrature

(Kaye et al)

<:uadrature

(Eric)

Quadrature

(Hetrakul &

Tavlor)

j •,., ,-:· ' i ~,,. ~ .. ~.

Table 2-1: lvODEL.5 OF TWr

z (R) or f(R) p

z (R) or g(R) q

Fourier sine series E,q:x:,nential plus.quadratic

functicn

-Exponential and linear Er:pcnential plus quadratic

functioo functicn

Hard- or soft-limiting Zero phase shift

envelope nonlinearity .

Series of Bessel functions Series of Bessel functions

of the first kind of order of the first kind of order

cne one

Odil. polynanial of R Odd polynomial of R

1-bdified Bessel functicn M:xlified Bessel function

of the first kind of order of the first kind of order

zero one

---- _..,,,._, . '

Peferences

(11-13)

(80]

(4, 48-50,

59 / 70]

_[34 t 51]

! [25 I 31, 33)

I I ( 42]

I

I

w .:::.

Page 53: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

j

I I

' · 1 · ... ~ '

I

I

-----¥ ·------ --- ... ___ .___ ·------ --- -- -·

analysis of satellite communications systems, and provides

som{ indication of the advantages 9 nd disadvantuges of the

various models.

35

The specific overall channel rrodel for the ccmnunicution system

considered in the thesis is shown in Fig. 2-6. The input

to the satellite repeater consists of a single carrier,

M-ary phase-modulated, constant-envelope signal and zero-

mean, stationary Gaussian noise. The bandpass filter

bandwidth, unless it is stated explicitly otherwise, is

assumed to be wide enough to pass the signal with negligible

distortion and to limit the up-link noise tb a bandwidth

that is small compared to the center frequency of the filter.

The traveling wave tube amplifier on board the satellite

exhibits two kinds of nonlinearity, namely the AM/AM and

AM/PM conversion effects as described earlier. The TWT is C followed by an ideal zonal bandpass filter that confinesthe output

spectrum to essentially only the fundamental band of the

signal. After passing through the iatellite repeater, the

signal is transmitted to the receiver and independent thermal

noise is added to it on the down-link. The receiver processes

the composite signal a·nd extracts the information-bearing

signal coherently using a locally generated carrier refer-

ence signal. It is assumed throughout the thesis that

carrier and bit timing recovery at the receiver have been

achieved .

. The system model depicted in Fig. 2-6 is also valid

-·-··--~---:-,---.~"':"""-~~-:""'~-------""'"!"..,...,_.,_....,....,_ _________ _ -,·,,,.,._

Page 54: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' • .J ... ~ ,, --~....:.·~~ .... ~~~~~ ·1 !

·1

·Ii •

1 ' • •• .J

·l 1

u

OP-~ OOISE

MTA IN' M:>lXlrmOR

M-acy a>SK SIGW,,

"' ...,,.-..........,............-- ....... ,_. . . .. "' -----

\ ...

~-LINK NO!Se

BANCPASS 3A'.IEILI'IE BANDPASS I:EM)Il.JIATOR & ..

FIIJIER ~'IER FIL'IER IECISIW CIFCUIT

~

~RelKE SICNAL

Fig. 2-6 ~ Block diagram of the ccmnt.m.ca~ syst.em.

""""--·-

o:it"z~cr~~~?:,artc .. ~·ra:,m;,..,,_::;,;.,-:;:;;;~.;:::;;4:~,1·····--'!'·• .. '4-. .. rtf • r,rlrii ...... ..:.~. ;~a, ..... ,. ;.4 -"••• o' • ... _ "·---.... M ~ijif -~ • L. ·~~- •

--- --

~ ... ~

a,r

ti

w O'I

Page 55: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~·....-.:

•' .-

.. ' ' ,, •,

' .)

for the analysis of M-ary CPSK signals transmitted

through a linear channel with a limiting front end in

the receiver. In some practical applications, insertion

of a limiter in the receiver front end may be desirable

from consineration of dynamic range requirements .. In .

such applications, we only need to disregard the down-' link noise component in our model and replace the satel-

l4te repeater nonlinearity.by a hard-limiter.

(

..

l

'"~,f ~ -;' '"I ~, .._ - ~ .• t ~ • ' '·--:-, °':',--":"-"'"'l""_,,_. _________ _ .•

37

1 ( ..

!'. i ' }

Page 56: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

''

0

" .

r ., . ~(,:

' :,z,; .. ' tl, -,",',ta s ,,, :• ·: .. ,. .... ., ...

' \,: :,, / ·y,·': .. •, :

,. -,',,

•'

CHAJ?TER 3

COMPENSATION OF SATELLITE NONLINEARITY

The signal distortion resulting from the non­

linearity of the trav~ling wave tube (TWT} amplifier has

presented a number of problems to designers of various

multiple access satellite communication systems and has

been a 'significant factor in determining communications

system performance. The ~volution of multiple access

-techniqu,es from. essentially an~log frequency-division

multiple access (FDMA) to essentially digital time-division

muft.b;le access (TOMA), though in no ·small measure mot~vated

by tbe problem of nonlinear distortion caused by the TWT,

has not res~lted in complete elimination of the problems .

but merely in a shift in emph~sis. For example, the basic

characteristics of nonlinear power transfer and amplitude

dependent phase modulation (AM/PM) conversion producea by

the TWT operating close to maximum power output result in

the px:oblerns associated with intermodulation and cross-

modulation distortion, gain suppression, large signal

capture (small signal suppression), and harmonic distortion

in systems employing multicarrier FDMA techniques. However, ' . these same nonlinear characteristics of the T~ also cause

.single carrier waveform distortion, co-channel interference

38

l

l 1

i ),

) ,, !I ~ ,l

i1

l t

Page 57: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.: I I I

• I

(

as a result of spectrwn-spreading, additional inter-

symbol interference and reduced error rate performance

in systems employing single-carrier TOMA techniques.

In this chapter d~fferent means·of compensating

the TWT, in order to alleviate the degradation caused by

TWT nonlinearity, are investigated. In section 3.1 an

expression for an optimal bandpass nonlinearity that

maximizes its output signal to interference power ratio

(C/I} for a certain class of input signals is derived.

This is followed by a qiscussion of three main compens­

ation techniques which can be used in conjunction with

the TWT so that the overall transfer characteristic of

the tube approximates that of the optimal bandpass non-

linearity •

3.1 .a.

OPTIMUM BANDPASS NONLINEARitY .

39

To .simplify our notation without loss of generality

we shall. consider the case of an unmodulated sinusoidal

signal of amplitude A, plus narrow-band Gaussian noise at I

the input to the general quadrature model of the TWT

(depicted in Fig. 2-2). In terms of the envelope,R, and

phase, ·t, the input signal can be written as

x(t) = R(t) cos I«»o t + , (t> l (3 .1)

The joint probability density function (pdf} of·

the envelope, R, and the phase, c, of the input signal is

.;: i

;:_!

' .. ' ' ,,

Page 58: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

...

... . •

then [67]

[ -A

2-_2A_Rco_s e:+l] exp -

202 (3.2)

p{.R,e:) =

for O s R < "" and O S. e: S. 2n

h 2 . th . ' . were a is e 1~put noise variance.

The pdf of the envelope R can be obtained by

integrating equation (3.2) with respect toe: and can be

shown to be (67]

p(R)

(3. 3)

where r0

(.) is the modified Bessel function of the first

kind of order zero.

Simil'arly, the integration of equation (3.2) over R

would yield the pdf of the phase, e; , as [ 6.7 J

-p IP° . 2 p(c) = ~,r + coi t I 1r e - pSJ.n c erfc {-./p cos £}

p = = equivalent input CNR and the complement-

ary error function erfc (x) is defined as:

erfc(x)

40

• <, \

Page 59: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,,

,,

..

41

For our purpose, we define the. optimum bandpass

nonlinearity as the nonlinear device that maximizes the

output signal power subject to a constant signal plus noise

power at the output. This criterion is equivalent to ~

maximizing the output SNR. The joint pdf of the envelope,

R, and phase, c, and the pd~ of the envelope, R, are assumed

to take the forms shown in equations (3.2) and (3.3). This . criterion di optimality, i.e. maximum output SNR, has been

shown by Jain and,Blachman [18, 49] to correspond to the

minimum probability of error for the case of a binary CPSK

signal transmitted through a nonlinear, purely a'mpli t.ude

limiting c:nannel. ·

In th~ case of a nonlinear channel with AM/PM con­

version as depicted in Fig. 2-2, the signal power and the total

signal plus noise power at the output can be defined as [ls]'

(3.4)

and

where ZP and zq are ·the in-phase and quadrature env~lope

nonlinearities in equations (2.18) and (2.19), and E~ (.) ~. c

denotes the statistical average over Rand c.

* * 'l'he objective is to determine Z'P ( •} and zq ( ·) ,

,\ . ... _:-~:, -,-,~-------. -.-.. ---...... ,-1 --------------~

'.

I

Page 60: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' . .... , '~ ,~

,, •, j .. · ,,'

42

the optimum in-phase and quadrature envelope nonlinearities

such that Sis maximized subject to a prescribed, constant

value, C, of S + N. From equations (3.4 - 3.5), we may

then define an unconstrained objective function as

"' 2n co 2n J = {/ f zP (R) cos tp(R,e:) dRrl£}2 + { f I

0 0 0 0 ... z (R) cos q tp(R,£) dRd£ }2 + A {2C - f rz; (R) + Z2(R)]

q 0

p(R) dR}} (3. 6-)

... where>- is the well known Lagrange multiplier.

By taking the integral in equation (3.6) as the

Riem:mn sum and equating the differentials of J with respect

to z (R) and z (R}, for fixed R, to zero, we obtain the p q

following necessary conditions defining the optimum

* • envelope nonlinearities, ZP (R), and Zq (R) as

c 2u }· #,. • = f fZ * 2 ). zP (R) p(R) (R) cos E: p (R , c ) d R • d e: 0 0 p

{ r cos c p (R 't) d ~} (3.7)

and - . & r 2n dR dJ " * * 2 ). Zq · (R) p(R) = f" I zq (R) cos c p (R, E:)

0 0

{ 21T

·} I cos c p (Rt E:) d (3.8) 0 . .

1

! ..

Page 61: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

') . ·,

. ,,,,.

\

43

where

* s = = { ER [ Z * (Rl cos c] }

2 + {ER [ Z * (R) cos e: ] } 2 ,t p ,t q

2C 4C

(3.9)

From equations (3.7} and (3.8} it is readily .. evident that

= (3.10}

for any real constant B including zero. The case when

B = 0, however, yields a trivial solution for equation

(3.7} and merely indicates that the characteristic of an

* optimum bandpass nonlinearity is that of zg (R).

In general it is then nec~ssary.for the optimwn

bandpass nonlinearity to have

(1) an amplitude characteristic satisfying

equations (3.?) and (3.8) to within a multiplicative

constant, and

(2) a constant ~utput ~hase shift, independent

of the input envelope, R, which may therefore -be set to zero.

Substituti9n of (3.9) and (3.10) into (3.8) yields

* { 211' ~a f ~OS c p (R, E:) l+S O

(3.11)

\ /•~ '

Equation (~.11) is now identical to [eqn. 31 of tis)],

except for a nonzero constant B. There fora, _by using the

same argument as in [18), the optimum quadrature amplitude.

* response ·c~aracteristic, Zq(R). can be expressed as

J ,.

J \

\ '(

1

. I )

j

l ! I

·' • ~ ,,1 ",.,

,::::~ •' . .., : :~s ~' '• '"l

' ~· . · ..

Page 62: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. -"

...... ' ... ~ .

:;~~··}:~~ .:.:: "'

' . ' ,.,

'' J

', .. ~ " ' .

', .·\ . . \ : ... :.,

..

.... ·~. '' ... - '

44

(3.12)

where K =

From equations (3.10) and (3.12), the overall optimum

* envelope transfer characteristic Z (R), is then obtained as

z*(R)'= yrz;(R)] 2 + [Z:(R)l 2

= c I 1 [ :~ J /Io[~ J c = Kf l+S

2

(3.13)

where

* The function z (R) increases linearly from zero and

rises asymptotically toward the value c for large R. This

behaviour closely 'approximates that of a piecewise linear

limiter. Also the larger the up-link carrier to noise ratio,

A2 , the more closely this limiter characteristic. approaches ""2 €Rat of a hard limiter. * Fig. 3-1 shows a plot of z (R) as a

function of!.... for different values of input carrier to noise A

ratio define~ as

fCNR) 1 .,. ;:z p

The results obtained ~n this section confirm the pre­

vious conjectures (44, 51, 82] for the optimum transfer

characteristics of banupass nonlinear saturation devices with

AM/PM coversion. To facilitate the compensator design

presented in the subsequent analysis, it will be assumed that

(l) amplitude dependent phase shift at the output is

·:1 •. ~ .. '* _ .. -~ -- -----------

Page 63: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

:-} .. .. •.;

i· .. ,

1~

;J

z•cR)

:-~. ;":~~/}~:~

1.2,------------------------

1.0 ,,..------ -

( ---.--·-· . ,,,,.,.,. ·-

{ / ~--··-··:..==-==:.-

/ _,.. .. ~ ··-.8-ll / ··-·· ,.-

/ i // ___ ,,.,,,,----------···-···-···-···-···-.6-H I I ... / I ~ ~-,~

.Hf.; ,I /, I ........ ./ .2-11.·/11 .......... ·····

I: ......... ·· .. . ..,.­

•' . ,, a## •• ,·· # ..

o~········· ...

0 5 JO

.. ..,..,,.·. .­...

15

- R/A

.... •" r•• •

······ -.... ···· .... -... ····· .-·· ·-·······-· ,. ...

20

(CNR)1 = -15 dB

-10 dB

- 5 dB

O dB

5 dB

10 dB

c=I.O

25

Fig. 3-1. T'ne optinum envelope transfer characteristic

....,_ ....... _,.. • ,.. • •,•.,.~ ... ,~.~-_..,._.,o,..._,_,,.,...._ ·~ ,.._, /.,~."' •v _.

30 ~ (Jl

Page 64: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,·­''

" .·,.,.

' ,,

completely eliminated.

(2) the envelope nonlinearity should npproximate

that of a piecewise linear limiter.

This choice of a design objective avoids the

problem of designing a compensator whose characteristic

depends on the input CNR, p. Although it is only an

approximation to the optimum transfer characteristics, it

has been shown to yield very good results for the case of

rnulticarrier signals [51, 82]. 1'<J

3.2 TWT LINEARIZATION TECHNIQUES

In order to compensate for the signal distortion

caused by TWT nonli'nearities, various linearization tech-

niques have been attempted in the past. There exist,

fundamentally, two different approaches.

The first approach takes advantage of the fact

46

that the satellite usually contains a number of independent '

TWT's which together form a multiport transponder of n

inputs and n outputs. By the proper design of an n x n

Butler matrix phase-shifting network precedi_ng and follow­

ing these n nonlinear devices, the effect of intermodul-

ation noise generated by each TWT nonlinearity can be sub­

stantially reduced [19, 68, 82].

The second approach is to alter the nonlinear

characteristics of the overall compensated TWT by means of

j 1

' ,(

''

Page 65: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'l

~-

I, ' .

47

input-signal predistortion or feedforward correction of

the output signal. Other methods include the equalization

of AM/PM conversion effect by controlling the helix voltage

modulation [74, 86] and the control of basic frequency and/or

spatial characteristics by proper design of the slow wave

structure of the TWT [81].

In this section we shall first briefly review the

maln compensation methods, namely, Butler matrix, feed-

forward correction and signal predistortion method. A

procedure and novel implementation of the signal pred·istort­

ion circuit is then suggested in section 3.2.3.

3.2.l Butler matrix transponder (BMT)

The basic configuration of the BMT amplifier network

is shown in Fig. 3-2. It consists of two complementary

(n x n) Butler matrix networks which precede and follow a

set of nonlinear amplifiers. These networks perform a

special phase shifting o-peration on the signal at the input

and output of the amplifiers and cause a substantial frac-

tion of the intermodulation products (IMP)appearing at out­

put ports to fall outside the frequency band of the trans­

mitted signal. Consequently a significant portion of the

IMP can be reduced by proper filtering at·the output ports

and the amplifiers can be operated closer to saturation for

a specified output C/I ratio. More details on the mathemat­

ical description of a Butler matrix transponder (BMT) can be

)

------- - ' --- - ------- .... __

..

t : ' ~

Page 66: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'~~. • ,I

". l.·~, .. T>..~ •;>,. , . . ....

.,£,

l

2

0 0 0

INPlJIS

m

rum

BUTLER

MI\TIUX

1------1 'IWT

0 0. 0

BUTIER

MA.TRIX

Fig. 3-2. m-Olrume l Butler Matrix 'l'ransponder

• l ', '• ~ ~. • i

l

2

0 0 0

Oll'IPU'fS

m

48

.l 1 ' • :I

1 ) ' ·~ 1,

: J { .I

i , . l

..

Page 67: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,. 'It,:~ . '

· .. ..

• ". \~.. _, ,I;

found in [68]. In addition to its main feature of reject-

ing the out of band IMP, the BMT also provides a means of

increasing the RF power per channel in the case when the

number of inputs to the BMT exceeds the number of existing

channels. Furthecmore, under non-peak loadin9 condition,

the BMT offers a power sharing capability which·allows

some channels to operate with a greater output power than

others without C/I degradation in any channel.

However, in the case of single-carrier operation

as in TOMA systems, i} has been pointed out in [68] that

the BMT loses its power saving qualities and more distort-

ion could occur. The other disadvantages of the BMT

include a required increase in the transmission bandwidth

as well as the obvious one of requiring multichannel

operation.

' 3.2.2 Feed-forward technique

This method of linearization makes use of a sub-

sidiary TWT to help in the compensation of the operating

~~mplifier tube. A schematic block diagram of the feed­

forward linearization technique is shown in Fig. 3-3. The

input signal to the transponder i~ divided into two

portions. Part one goes through the main amplifier, TWT1 ,

and a sampling is taken through a directional coupler with . a coupling factor cl __ whore

ssl signal in-band gain of TWT1 .

)

, .. ,, ;

G981

approximates the small­

This sample is compared with .,.

49

~\ t

Page 68: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·..• ~--\::~;~:;~~~:-:(;' '. . .

0

ll:2l1l l "-

'• •

't"l

. A+1 · 81 a

~_.........,_. .. _ - .... --~--~

~~--cz

,. -~~-~ ...... ~

k3

I ... ' 4-- . "'2 ll.+z -----,------·----~ Ern>rT~lr-~-.- ~-------------·-·-·-'·--?::>

L

Varia>le piase shifter

Error Suppx:essial Loop ..

Attenuator

! ! I !

b I

I

[7~] . Varl.able attsruatx>r

}

I • --Lr

Pig. 3-3., ~loop feedfo:tWaJ:d anplifier _rrr::,cel.

~::~~~,,;~.......-liillll\)Ui~-~~~· JJ9Ji:N, •• ,, l • t~~~_.t.....~??~~.., .. ~..._ .... ~~~----M·l--------· •·•

Lossless delay line

V1 o.

Page 69: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I I :,

(;

'\ j, ....

,.

the reference path signal whic~ has b~en delayed by a

time t 1 , equal to the propagation delay of TWT1 • The 1~ ' phase and amplitude of this delayed reference signal is

adjusted by_ an amount 6~1

and s1 by means of a variable

phase-shifter an~Jn attenuator. _ T~e time ... shifted error

obtained is then paesed through another attenuator, s2 ,

and a phase-shifter and amplified by a subsidiary tube,

TWT2 , whose small signal gai.n, ~ss 2 , is such that the

error is restor~d to the appropriate level to c~ncel the

error of the main tube. The linearity of the compensated

tube i~ achieved by the proper adjustment of the variable

phase:shifters· and attenuators C71 J; "An appropriate time ' ,,.

delay t 2 equal, to. the propagation dGlay of TWT2 must also

51

be provided in the main amplifier path in orde~ to achieve

synchro~ization~f the two paths." The fixed attenuators

in,the main and reference paths in the final stage represent .... th~ iosJ in th~ directti>nal couple~s and the delay line.

Th.is method allows the output signal and the sample of the

input signal to bo compared and corrected to any desired

degree of acquracy [11-73).

The main advant~ge of tho food-forw~rd tochn~quo . ·io fta simplicity. ·Tho subsidiary tube, 'l'WT2 ia usually

operated at very low level and c~n be uood as a standbf

amplifier in tho sat.ollite. Furthormore,. as distinct

·from feedback tochniquoa the foad-forw~rd TW'l' amplifier

'does not contain ~ny closed loopo and honoe is an inhorontly

Page 70: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' ):,-·

. '

•'• ,, ' ,, .~ ... "': ' . ~-.f.

.. •'• '.

,•

' ' .. .. '•' .. .

stable sistem.

The main disadvantage of the feed-forward tech-. . ".

nique is that of requiring the second TWT and two extra

low-loss delay waveguides. This may put a restriction on

the weight o...f the compensated tube. Furthermore, the

degree of reliability of this technique depends on the

balance of the two.loops which may be impaired by several

long term effects, such as, aging and temperature effects,

temperature difference of the dalay lines and shift in

TWT helix supply voltages. The latter factor is critical

because the TWT characteristics are sensitive to changes

in its helix voltage and the feed-forward technique there­

fore requires a highly regulated power supply [7).

3.2.3. Signal orodistortion techniqu~

The technique of signal pre~istortion has recently

been applied to the compensation of traveling wave tube .

amplifier nonlinearities •. Tho design.method requires

accurate knowledge of tho tube • Kayo et ~ [51) have

initiatod tho dovolopmbnt of two difforcnt ap~oache~ to

tho synthesis of a prodistortion compenaatot in cascade

with the TWT. -r;s· •

Tho first ~proao~ consists of separate

QnV~OpO ·and.ph~s~ predistortion notwo~kS connoc~eQ in

oascado. '!'ho prodistortod onvolopQ of\~ho input signal . , . .

firot dotoctod and then applied to tho input of a phaao-• l

corroction notwork. "A oimplo !mpt~montntion of thi~

t

is

52

I

{l r, ~ t l ' ~ '

~

:'~ :, '• .J ·.~ ,,, ' ·'-

,; ... 1: ..

} ~

(

.~ ·"

Page 71: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

technique has been reported in [75].

An alternative approa~h is to simultaneously pre­

distort the envelope and phase of the input signal by

using two separate envelopo nonlinearit.'ies, one in the

in-phase path and the other in the quadrature path. In

53

the 'subsequent analysis we shall describe a design pro­

cedure and a possible, novel implementation of a quadrature­

rnodel compensator and the performance improvement attainable

for the case of single carrier, binary PSK transmission.

Fig. 3-4 depicts a predistortion compensator in

cascade with the TWT. The quadrature model of the TWT is

as described in section 2.1, in which Zp(.) and Zq(.).are

assumod to take the forms.

..

• -s R2

S1R o 2 I [S ~2] . l 2

(3.14)

(3.lS)

For our purposos wo shall seek a sot of envelope

nonlinearities, GP(~) and Gq(R), tho in-ph~so and quadrature

components of tho componsation notwork, suoh that .tho over~i1, r

transfe~ oharactoristios ~pproximato that of a piocowiso

linear onvolopo limitor .with zoro onvolopo .. dopondont pha·ao

ohift as doocribed in ,cction 3,l, In torrns qf Gp(R) and

Gq(R), ·tho doslrod onvolopo· and phaso shift at tho output

•, ,,

·:.\ "' ') . ' .. '

~~ ~? ~- .1 \. ~

ltt~.\ • ·.~ 1 ~· ;

'

Page 72: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' I -.i Zp

. Gp(R)cos(co0t+E) ! G'(R)cos [a,J+€ +9><R>] {G'CRJ~os[

Reos \CO~'i"EJ \ -'

Gp(R) l: Zp(R} - • /.. I -... . , !4of+E) -· -

' .

~ ' 900

· . .

, - Gq{R) Zq(R) I , \

Gq{R)sln{ca0t+E) I I

Zq{G'(R)}sin["'of+(+cf,(R)]

- -_J_ T\VT

.--....-..-.....--.. - --- ... ·--.--.-----·-, --·--C0!1PENSATOR

Fig. 3-4. Predi.storti.m a::npensator for Tt'1l'

, (--.,.........----~~~- --·~- ..... ~ £;::!:Stl4l((f'6 ' ~r==..:A ~~~~--~~-~~-,--J ~ < &•-

VI ~

Page 73: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. '

::.""

'.

:; ':' .:: : 1

~ ' ,'

~ ', _.

' .. ' ... ,,, .

" ..

55

of the compensated TWT can be written as

-C [G2(R} +G2{R)] f (R) = ClG (R) e 2 p q I [C {G2{R)-t<;2 (R)} J

p " 0 2 p q

and

-C2[~ (R)-+G! (R)] 0 • ClGq(R) e Io[~{~(R)-+G~(R) }].

(3,17)

The objective here is to determine G (R) and G (R) • p . q

such that equn~ions (3. l.6) and (3.1·7) are qatisfied where

,f(R) i~ a pioaewise line~~ limitot .oharaduo~istio dO"fined by ' . '

& ·Ro R 0'!1\!Ri ~ '

" . f(R), • (3.18}

"' Ro R > !\·· .. .

whore .i0 ia tho TW1l' output satur~tion'volt~go.and Riis tha

~nimurn volttig~ ·~orr~sp~ndi"'ng to~ aaturo.tion of tho. limiter.

Tho oxoot aolution of thoao oquationa i~ ~ vory difficult .. . . problem, and in ordor to obtain a tracta~lo problo~ from

' .. whioh maaningful rooulta c~n bo ohtainod,· ·wo t\pproximato

. .

Page 74: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

· .• !

..

.. ~.

·, : 'j

... \< I

'.r -. . , . . '" •"'... . ...

·'· ·(

' '

"'

Gp(R) and Gq(R} as· the polynomials~

) -

(3.19)

(3.20)

where the coefficients ak and bk are to be determined so

as to satisfy equations (3.16) and (3.17) in some optimal

sense. .

The coefficients ak and bk can be determined from

a conventional optimization subroutine [e] such that

equations (3.16} and (3.17) are satisfiod in a least

squared error sense. The required coefficients ak and

~ for two different values of Mare tabulated in.Tables

56

3-1 and 3-2 for the Intelsat IV tube (8ughos 261-H).

Corresponding to these sots of coofficionts tho resulting

?Ptimal compensator charactori~tios aro as shown in Fig. 3-5

and the overall compensated onvolope · transf.or .and phase

Jhift characteristics aro shown. in Fig. 3•6. It io ovidont

from tho plot in Fig. 3-6 that tho over~ll en\fi?lope ~ransfor - " .

ohar~ctor!stic o~n be mado to closoly approxim~to that qf a . . pfocowiso - linoar onvolopo - limiting dovioo by incre~sing

. M, i,o. moro comploxity in tho componaation network.

rurthormoro~ ~ho amount ot AM/PM conversion offoot ia ..

ovidon~ly roducod at tho oxpanao of inoroa~ing phaoo•olopo

I

i rl

Page 75: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,,

. ' :,',

,',

TABI.i&. 3-1.

The cooffiai.EmtS l\_ and ~ for the ~nsators (~t-4) *

k ~ ~ millivolt/(millivolt)2k-l

1 1.04931 ';'l .29116 (-1)

2 1,03959 (-1) -9.40475 (-2)

3 .l -8.30888 (-3) s. 99492 (-3)

4 1,44441 (-4) -9.81332 (-5)

* Too. nogativo integer in ~thElses follCM.i.ng each entry in t;nQ tuble represents the powor of ten by which the entry shoU].d be multiplied.

57

..

Page 76: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

:· .~·: ·:. ' ..... ... 1

•. I

' '• ',

.. '.,.. ·.~·.:

... 1 ~

''1 .. 11. ... ·.• , .. ~ .. , .. ,_ •\..,:;

'· .. " ' .. ,·' I

c'

' '.

. ,_,

! / ~ ; ~ ... : ;1-_ .: . ;,

: ... :~ /. -i,•, ...

" \\ ' fv

..

'l'AULE 3 ... 2 •

. The coofficients of ~ nnd ~ for the carpensators (f-\-6) *

*

k

l

2

3

4

s

6

~ l\ mUlivoltl {millivolt) 2k-l

l .OQl8l1 -1.06837 (-2)

1.53746 (-1) -1.76412 (-1)

-1. 64945 (-2) 1.88326 (-2)

4, 53263 (-4) -7.70929 (-4)

1.8116514 (-8) 1. 31865 (-5)

-9.50101 (-8) -7. 35811 (-8)

'l'he negative integer in eare,ntheses following ea.ch entry in the table represents the power oft~ by which the entcy

. should be multiplied.

8

..

58

! i i

I i i I l I

' i ! I l l

i J i

Page 77: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·l 59 '!

Page 78: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

r•, ,,, ',· I•· .... ". '\ ,., ~-·

.. . , ·.

,. ,:

3.5

3.0

en 2.5 ti g

w 2.0 ~ tj g ~ <t 1.5 w 0..

5 f: ::, 1.0 0

.5

'

ENVELOPE NONLINEARITY

At, SHIFT

A· UNCOMPENSATED

o COMPENSATED M aa 4

a COMPENSATED M • 6

60

24

-(f). w LtJ

20 er (!) w 0 -

16 t: :i: Cl)

w 12 ~

8

4

-4

:c a..

t­::> a.. ...... :::, 0

----.~-~---r---.---...,.._--.,---,----,----,.~-.----8 o .G 1.2 · ,.a 2.4 3.0 3r6 4.2 4.8 ~4 s.o INPUT PEAK : VOLTAGE R ( mllllvolts)

Fig. 3-6. The Elinglo C'1rrior charactoristiai ot tho ~na~tod

... l

l I ·' i ,\ f

f

I

Page 79: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I•

j

11 ' ....

variations. These phase-slope effects are undesirable as

they t~nd to spread out the output spectrum. However, they

can be mitigated by determining a set of coefficients ak

and bk such that equation (3.16) is satisfied in the

minimax sense subject to appropriate inequality constraints l

on equation (3.17). ~

An implementa~ion of the compensation ~k based

on equations (3.19) and (3.20) would require an envelope

detector preceding a set of power law devices. An altorn­

ative ~ethod that doea not require the envelope detector

is to pass the RF signal directly through nonline~r

If ~P(u)nnd Nq(u)denote the in-phase and quadrature

nonlinearities acting on the instantanoous signal u, wo can

express Np(.) and Nq(.) as tho first order invorse Chebyshev

transforms of Gp(R) nnd Gq(R) [l~. This results in instant-.

aneous signul nonlinoarJtios of the form (Appendix C).

M 2k-l t\, (u) • l i\ u ,

~l

M 2k-l _Nn(u) • r l\U

'11 k-l

• J~· (-l) k-j-1 [ ·2l<~l l ~

22(k-l) [2(k-j)-l]

;,

(3.21)

(3.22)

.. ,•:

,f

., I ;,

' ,, c

Page 80: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

1 ,·

r J I

I

l \

k-1 k-j-1 [ 2k-l l l (-1) k1\_

~ a _j•_O~~~~_...j..._~-

22 (k-l) r ~ (k-j) -1 ·1 \

• A schematic diagram representing a possible imple-

ment~n ot the compensator is de.picted in Fig. 3-7. This

co~ponsator may be, implemented with a. set of power-law

devices or aiternatively with RF multipliers together with

appropriate ~ain elements.

62

The performance of this.compensated satellite channel

has been investigated by means of computer simulation using

a general purpose satellite simulation program, [231. The

results of the simulation· are shown in Fig. 3-8 for the case

of a binary CPSK systom operating in a single carrier per

channel mode and in the absence of up-link noise. Tho trans­

mitting and rocoivin9 filters are ohoson to be idontical 4 . pole, ~d~ ripple Chebyshev filtors with as MHz bandwidth.

Throughout the simulation, porfoct car9ior recovery and bit

timing are aseumod at tho recoivor. For differen~ valu~o of

tranomiooion ratQ, it io ovidont from Fig. 3~8. that soma mar­

ginal gain, about 0.3 - o.s dB, in ayatem porformanco can bo

obtainod no a rooult of tho componaation. Thia ordor of improvo­

mont comparoo wall with moaouromonts obtainod b; ot.h~ro (21~·

For tho caoo of multicarrior oignalo it io wall known [Sl, 82]

that thio overall transfor oharaotoriot!oo of tho tubo oup­

proasoo tho intermodulation offoot and can provide up to 10 dB

l ' •' !

j . 1

<•' '·

' t

Page 81: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. , ' ~

,,

I ,,

,.I

,. '

.. •.

-w + -0 s -Cl)

8 0::

INPUT

r--·- ·---·--·-·-·---

(. )~

... + • • • • • •

( • )2M·1

9Q• i-·-·-GP~ .. -·-·­

-~ + -0 s ...... c ·rn 0::

( . ) , ~ I

.

I + •• • .

I • • • • .

-}-- ( • )2M·1 B~ . G ( • ) L._._.L._._._

-

Zonal Bandpass

Fiiter

-to

TWT

Zonal Bandpass

Filter

63

II

.. '

,l ,,

;

]

r l", '

Page 82: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.

i ~ : •,

,1

,! J l I

\'

l p ' ', , ' !

i

' . l ' f

..

·t !~ i'·: :.,..{ ~,~.:~ . J.r , . '• '/""I.

\ .. .J •

.. ·'

·, .

. " ...

,' . .

r,. ~·

10·1

,o-

64

Chobyshov flltor. ,, TWT oporatlng ot ·1 dB lnpu, pt>wor backoff

di •• 1 • • ,.

' . • • 0

.. . · 4 . , · · . e a. -. · .. · 10-

. . ' \: :·. Bit' .o~or.Qy/ N0 :·. Jda) : .

' ~°' ; • • • i'iiJ,. 3-0, : . . ., ot '. . ' ·. . . ,,, .

,,.. .

l l f .) . . I :J•• •

' . ,. . . I

t-i.

I I· ,•'

t i l l

' l - . t

Page 83: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

It

l ·, 65 .

improvemoht in carrior to interference power rtltio (C/I) r

i whon the 'l'WT iD opor.(lting At 6 dB input power backoff /~

J

Q'"

l f i

' ~ ! 1 ! .) . 1 1 ~

. l .,.

'" .. !~~

., ~ . •: ;

I >:,

... ~-;.

:\,'<>\ , .. t· '

111" '\.~

... .. -; ~ -. .. \

~· I t

;• .. I } ~.:

.. l ~ l .. , 1L,

' f: . r:

,, .. :j i>;

{) .. : , .,.,_: . . · . .

ti ,• . \ ~ . '

.. . .. a

l· . '

\ ...

' .. . ' • . ,

'i .,. ...... , . , ~ . ..

/.. . . ..

' . . ' ..... . . , .

,, -.. . , .. ,. . . . \:

J .... \ . i: •, ·, :~ ·'

i:,.. \ ,_ .;, ~ .. ~' ... .. ·- . ,;..i :

' . •' . .. . .. '' .. . . .. ' :,.: . I .. . .. . ~ ..... ",. \ ;:.~ \( . . "" ,\'' .-. • I ~,"' I ., •, . ... ',,, ' • .

:· " ' ~* "/ .

; ~' ·. ,• .. ' ~ ... ·~ ~ ' ., . ,... ... . . . ..

-~

Page 84: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l • f

Q;

.. ,, ','

/

..

' ,'

'11\Q offoot. of U<\tallito roptX\tor nonlinoM'itioa on tho por~or ..

imnoo of digitnl cam~iCAtion oyatcmrt hM bcezl tho oubjeot of oxtontdva . .

otuay [4·6, lO, 23, 29-301 4l, 43, · 47; 49-SO, 59,. 63, 70], 1'B <mrly

eatollite tranopondo:o woto pc:MOr limttodt it wM·no~eu:y to oporato

tho tmveling ~vo tubo (\Wr) anplitior near m\tura.\:ion ® M to obtain .. ~ trMal\\ittcd PQ.'l'OX', UndQr nucn cx:indi~ona « hw.'d-limi tor. witho\\t . , . . . 'cnwlopa d,ponoont phaDO.-ohift:. w:ta found to lt¥.Xbl ,:ro~a.bly ncc:uratoly

' ~ th'.l aa.tollito ttanopondor [4-S, lO, 47, 49, Si. 701, ~~. in· . . . .... . ~n \t\.q,ll°"'tiel)o [70), tho ~Wl' WW'l pro~ hr ft ~o A~ limi--

tor in o=r t:o ko.op tho en\'Qlopo of tho input ~;na:i to tho ffl at. o. .

~tant lovol Mel thotoby to olirnt.nate tho \1.n~airod affect of'~N .. .. . . • .'I".

\

o:m~oh ... ~tne~ ~Qt~ -that favcm .. thi.a n{\Xd--Un\iting' trodol in tho· .

W\lyOi~' of eeSK af~lo tianomit.~· thi:o~il\ tho G~to~i;t.o trMC~~. ',· . . ,;. . . io i~'m..i.then\1tiex\l ~~atabi:lity, lt\\r~ it'·ol0,.;~ ~tea

' ' . tho QPtim.'ll. ~~a nonUnoori~ ~ tho :a.:v:a ~ ·~ih ·~link. ~icr

tp noieo ·~ mtio (~R) CQ ·c.uaQUQCOO ,Ul. ~~~· 3, . , ' . . ' ~ ... \ '

. - .lm'Q.vor, -~.~~t; tbvo~'t Of ~'Jhor ~ a~t.ol.Uto)wr~ct, .. / . . . \ . . , . ,• ' '•

And tho in~~ in k~·demind :to- <\=co..th;;' .. c;tal.Uto le~ to tl . :. , \

..

_/

' . . .· ....... ~ . . . ~

b."ln.~iat:n-·r~thor than·.~ ~Nimi.te<S :channoi~ : · o~ .n-oauiatif;n, · · ... · · . . ' •• 'j ' ' '.. ' • • • :. .. :: • ' • ~.:. - ·:: ·,,~ '.·, ./ •• _;' > .: ·.': ·.;:_.\··. < . ' ·.

\' ......

~ . ~ ~ .. ' . •; !•

~ .t ~ ,• •

:: .·, ;··Ga . ' .· .. ~· ' ,' .• \ . . . . '

.. ~: . : . .:

l f

l l

. ! . 1 ' , f ':

I l ·1

Page 85: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

••

I,

,•, ,..,;, . '•

,.•.: . ·\~

; ' ,: .... ,,.

~ tcchniqooa th.at utilize band.-/idth m:>rQ offootJ. voly thM binary CPS!<

(for Q.'CMPle,' ~ o.>SK (~co oootion 2,l)) than nocd to bo c:onaidered,

In this oono tho h~·limi.ter no longer t\QCUX'(ltely n'Odola tho a~tollitc . '

tranopondor sinoa tho offoot of l\W'PM convorsion M dioeu8sed in Chei,.oter

l bocc:m:io ll'Ot'O nignifio.,nt (l~, 23, 32-33, 41, 46, 63), Unfortunately, . .

67 I

tho ana~oio of p..,ndwidth-~~tod syutoll'o involvoo o~u~tini tho ·atatia-

ti.CXl of the into.rsymbol intorforenCX> (ISI) , . Evon for tho c~o of a Unoar

cho.nnol it io var; diffic:ult. to <btoxmi.no tho ~~ty don_aity funo-

ticn of tho into~yrrQOJ. interferon~ in ol~ form OXQOpt f~ a vori

f<M ~oial C."U';QfS (46] t Md ~B grc"tly CQlplicatoo tho ~alyaio, Tho

~on«) of a ~dpo:lo nQlllnoari.ty ~ tho chC\MOl furthQr QalPli~tea

tho Mt\l.yo1o and too'· uou.~ ll'Othqcl of M(l).Y,Ul\g ouch n ccq,lox pJ:Oblem ia . . . '

~ ll'OMO ct oonput.or oirrulation [23, 41, 63] or in OaTI.') ®Cea tho' cau-. . ~. ~ WJO of m,uror~CK\l .and bnal.ytj.~l rrethccla .(lQ, 32-33), .

. .

ou.r · objoativa in thio chapter 1a to in.vooti.v;to too affoot of

tl¥l ~~o~ ditlwtian °"'u:cd by ~ TWr on tho PQr~eo of ~

~t ph.~oo-obif~ ~ini . (~SR). &ya~,· _Saro. carp\\~· ~la~cn. ' . .

• • ' '1 •

i:eoulta, ~~od. by ct.horn,. .en thQ i,ortott\'MO'l d...~nck\ti.cn, ~ .a :oow.t

· of bMdUmit.elti~. ~ob. ~uo~ xsi> ~~ 'llt.r ~~e~ity, al'Q din~;.od

· . ~ ccct4on 4}1, Thi~ ia. th~ fol~ by ~~;~~ ot ~O ~-ea

· · · Of C).lal.( ai9ntllo tronQmit~ -~· Cl ~r-~tod ca.tcllito d\Ml\Ol

~ol~i· tm o«oct ot no.tea in ~th tho ~Unk Q.nd ~-link path~~ . . . . .. ~ :· . ' . , . . . ,• . . . . .

. O\U' obj~vo·1n·ccc~9n_4,a io. tq cn~;~m)int\ly~~,1 mo~-to.

·. hcn419: ~ ~~i nonlinot\r ~tol.~t.q':¥®~:-~~-.inrA~o· both ca~ ':~:,:•',\: • ,·,· • ' • • • • ': ,o \:-:': • ,/<,,:: ... ', ' .. : • .:. ' •, I \o '

', , • "' h 't' • • ~· ,' •• ' ;,\ - "•• . : ,' ". . . .:: . ' ..... ' . . ... . . ... \ .... ~ ·,; . ., • ,: • + I: ,

-.~•, ,. • • • " r ,I • 't :,,::·,,,:',:..• •,. .... j ' ; Ii(• '/.t 4 I'•'.,,,, ' ...,. • ' • •

'. ': •• "', •• • : •• :·. ... .. ' ' ••• ~·. • ... ·:' • •• t -l ••• . . •,, •, . ,": ~~ ,:·.:,... •' .... ;.··;-· ~ . ... ... · .. '-~·' . , ,• · .... : .... ·'.·~·-:. ·~ ·. 1:_:.". ~ •: ' .. ·•·. .. .• ......... , ' .·• t ..... ·• ~..,_,~.~:,.. 1,, t' . .. -~""; . .:.. .... ... .. ~ .... ·; ... -

1":_.;.\'

... "

Page 86: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.~.

l 68

4, l) SIMUml'IOO STl)l).'tES OF Bl\ND t.IMITllt'I~ m'EC'l'S

'l'ha oatellito CXUll\1.U\i~tiona link of intoxcot in thio ooet:ia, io

ll'CXbllo.d as ohc:Mn in Fig, 4-1, ln ontellito 0Qffl\\1llio.'ltiono, tho mgular .... ~

=rrior·~o:( Wo is much l~ thM the traoomittod oymcol ro.t.Q, ~,

* and c:aTplex bMcbN\d cnvolopa funcUona ( 83] CM be uood to rcpro~o.nt

both tho trMCll\'l~t.od Mel rceoivcd oignnl, ~t tho Qa\\>lox ~ onvo-. .

lcpo of tho trMoroit.te.d oignal Pl ·,

l)

o.(t)"' • l &. ca (t-l'W) I t ct.-nr) o n .. ncl ··

. f(t) • l

• o atno.twico . ' .

( 4,-l)

(

. 2) · 9(t) . ia ·tho W{WO~ of tho ni;nalinv- pw.co WJcd. in th.o'I ~ .

oyutcm to tmt'~ tfiQ ph.aco vnria.tiQ'>. ·I

* A bol\~tl aignalt -~(t), .With. ~i\\ltlr o:ntot~Q'i, WQt

end .it4 Will?~ cnVQ~~po f\\not:t..~. O·ttl, O,J.\1 l"Qlatcd by · · ,.. •' ' T ... ' ' ,

.. . / · · · , · Q·tt> _.. ~ . ~·ta.<t> a j,.,,0'\ : c · ... :

·, ~.~}~l\O~!l ~ ~al.part ~tl\Q·.~ .. ~\\J\~~,· .... • • ' ( • • , ' • \ < ,. : • ''II : ' ' ••• • f ' '

•• 0 • T

.. -\. . •• • T

' '.". ' .. '

•' ~ .. ,, .· ... ... . : " . . . . . . . .. . :.· ·':' .'~ · .. ;· .. ::.· ... · .. ;'. ~ '. .

... •, .. •: \ ~ ,•'•, ' •, .,, r ,/''

' ' : ·'' .~ : ,".' '• ' ....

' ... ..

'. ,.. • •• l • ' -. ~ • ~ ·, ••

-· . , ... t \,··.· /·· , .... . "•

.; .. . r " ' ,' ,. ..

'

Page 87: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

.• '

,....._,_,.__ ...

/.

. , ..... '•.

~ '; .... ..... ~. ....

·· . -.... :

. .. ; . . ,.

-· ,---., ....

~

.f. f

' , ..

(

'!>\

• 69

l

tl .@ I f. (U

I r"-

O J ~-

l ,,,

...

. ' '

. . '

'f .;,\

.,,, ..

Page 88: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I 1

I { . 4

I "" I

. < .. .,.

' ..

.. ---·· t

• ~ ~ • Jt rtlJ 7 E U!;"f., •

I _3) on ia tho trMamitt.cd,ph.aco during tho nth s~l interval . .

Md'ia Mflum:x'i to~ tl'¥l cqual.ly likely V~l\\Otl

on Ci) • [3.i - .ogn (i) J R

M M i • ·r, .. ••\f -1.1, ....... ., r. foJ:'M.o~ ...

ond

Cc.Pl (i) • . sign of i

lot h(t) ®nota half ·tho cc.arpl~ boOclxu\d M\!Qlopo of tho ~ '

o.i.o~ trancmitt.ing and channol filter ~co =~Q given by l .

70 •

whozo tho oub:loripta o md a ~a~ tho in·~~ end quodNtum CXX\l?Ol\OnttJ, ~ . .

· h. (,t) ia \1:lu:tlly 'obt{\1.noc.\ mil\ ~ invarca roui'l.or t.rontlfolm ol .. ' , . ' . it:;l ·~opon~g ~tOX' tun~on. . lt((ll)_ · . ~Rn~ a.:( '

,~ ~ ' .. /,

- . . . .it~~o.>· .. ·.:·: · .. :·. =: <. ,l~L < ·~-:

, . U(C\lf • , · ... · • o. _ · a1ea-: · · ·(4.4> .

. '. - .... ~ ' ' . ·" ··.:~. :l·,.:".··. ." .. \:, .. · .... : .... ,· -~ ~ ta~. ~l. ~~ cqµly"'1~t:lC!~ -~·44.tl\,- ~~: U(~). ~O· .. ·.

~- ~ ~-i~~~ ~~on ;f:~-~;~~ ·~t~ ch~l· .· ~. · ·· · : fi~~r/.: ; '.;, '/ t ·: .r . .. : : :: : :,> . ; ~ . · , :· :· ·:::· f ;~> <\:· ...

· ·.-~ ~~ QX.\~W9 ·~·:.tn_i:fei~~t.:e;,.u:~ ~~c. Qt ~.ng\~. ·. ·' ... ·

. . ... .,-

I I' • l

• l

j . t }

t \ I ;'5:;

l

I

Page 89: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\1

11

,•

... :

tQ

u <t> • / o (t-t) h. h > ch - -· ~ -

~

• 11\, (d t (t.•n'l'-t > GOO 1 Ong (t-n'l'-'f' > l dt ~

... - _£ ~(tl _f(t·nT-t) ~in!Gni(t.-~'l'-t)l dT

••• • I hc/d ~(t.-~t) e.in[Ongtt-n'l'--r) l' ~t · . -- . . .

. . . ' . . + J ~tr) f (t.•nT-t) tco:i [On9·(t•nT-t) l dt .... . ' .

'.·

H tha l\Q\&Qt\r ~vi~ ia ~cent.cc\ by '?bO ~4\tw:o rrccbl

· 41.c~od in ~tar. 2, tho -~iox ~.cnVQl.C{JQ ei~l. nt. ita , .. . .

' . --- -

(4, ?~.

71

. ',

Page 90: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.

l I

'

If h.l:\lf tho ocnf?lox ~d onvolopo of tho illlJulso reoponoo

ot tho. reCQiv;t.ng filter io donote~ by

(4.9) \ ..

then tho carplox bacoh."ul.d cnvolC{X) of oignru., v(t), pluo cbwn-link.1 .. I

noico, n(t), QftQr ~oin9 ~ugn tho reco!Vin9 filter io .. ~

r(t) • f {V(t) + n{t)l p(t•t) dt .. - .. .. ..

• A{tton 1) + jD{t1·on 1) + n0

(t) + jl\a (t.) (4.10) c c .

whoro Gel

.A<tt°ntl) • ~{ I V(T) p(t~t) ~T} -.. .. •

B(t,on~~) • Im( I V{t) p{t•t) d,} .. .. . ... . end

• nd(tl • · &1< I nh> ptt~t> ·ctt> ~·- ..

~ -- ,

l\i (t)' . lm( I -ntt) Pl~'t) dt l (4,ll) •• . . . .......... , qj. . -.

,I • • ' , ~ • •

. ~ ~ Md :tm d:;nQto thQ l'9{l.l. 01\d ~g~ -~ ~ tho. ~lox

~intiti.O!J, M<1 n(t} .:I.a ~ · ~~ ~.n~ cn~i~ of t.hQ ~ffi~JJ.nk. ~ '\ , . . ,•

If ..

~in~· thil in~\\\ · o ~- -~ ·s .1.: ~ litJo\ltQ at ~ roQcii\W' that

72

.. .' tJ\O ~~.ncmt1;~_·ph~o i.a. o0• ~4 thA\ i~ ic ~t.oa~ ~ ·a~9 ·~ · .. ,, ' I , - ' . . .· • . , .

..

}

! \

I !

i

· ;Q~~~~~~\~ .. \~. o·.< \~., ~·~.i.ni ~ ro~yc"-Qi~Ql ·

. ~~- 4, i4o: ~~t. w~~ ~. ·~~ ~~· · - .1:.1.~ (4,lQ) I : ::::. . • ' : \; ::: • .,: '/ : < /,: • ' : (: : ,- :, \/.. • • • : . • ' • ,::· : : . • • : • :. l

· c, ·,:.,' \) ::: t: · , ) . t\\(i){:' ;/.:):~ c,/{ / ... ,·.... : ·· \. ;::- ... , . '/ . . . .

Page 91: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' \

! ,

73

(4.12)

Thon tho phaco anglo at tin'o t 0 M'cbtotml.nod nt tho reooivor io

given by

(4.lJ)

kl _tno a.iczn~l. ia ~ecd through thQ fil~ in the oyatcro it.

~ccmw cbl~ in t:irro and diotottod in ~web and Mi~ paoooa . '> th1'cWi1h tho trnvo-lin; W:lW t.ubo it uncbrgQOO an ~itucb Ml)lifi<Xltioo.

Md oimultonool.Ulq·nn on~lcpo ~pcn~nt rotatic:n of tho O\ltput. ph"ao·

with ::capaot to ·tno. input pnMO, · G:1Gl'Otri~l]¥, tho 1'lCOivod oi(Jllnl t\t.

ean-pling ·titro t 0 ~ ba ~proo~ntod Qtl ~ ·~ Fig, 4•2, . In Fig, 4~~ . . tho mQOi ved phr.oo • (to)' '.if1 '(\QQ~c.\ to fall into tho co=cac dooioioo

lQ9iCl'l_ 91~ t:helt. o0 ~ i i~ ~,nomt.ttcd {f«' tho cacQ of oi;ht~t1co

m (M-&l) ,. · . '

~~ tho O.n'o: ~ _cco~ to.be 1:MdcJl\ v~i~co.uni~

. diotrib\l.~d ~~ ~ V.Al\\Otl (14 - - ~ ·tho ~~U~ of QQttQQt ., .• ...

<btoc;i~ ;p.·ii~ ~ tooi~U1:y tb.a.t ·+tt0> lieo ~- ~~dQci•_ ... ' "" • , ," ' ' , > • ' , • ' ~ '

~al.:. thl"Ool\Old.1 ~ ~ ~~ttcd pfio.co o0, .t..o;i ft,ll ~~Q 0010~ ~-

:.,~,t.t.~ ~ .·c..in !» ·~~04 ~ . . . . . ' . , ' . .,

' ' ·: ·.

' ' .... . . . ~ . . ' f.

·.' .' · .... . . ·' ' ...

•, , ~ . '.,_' '' ....

,, ... ' .• . . . . . ., ' . \ .. '

,•. 1:

~ . . '• ' . ..

' ' ' • v ...... ••• • • i, : . ·. • ' • JJ

•' < •••

. . . ·, .. ' '

: .'·. I • ,t . . ' . . . ·"' ~ .. t · ••

•. I ~ : ... ~ . . '

l ... ' ~. •

. ·' : .. ,

' ·,,

,. ,. i

' :, l

" : ' . '

·, ;,

{, • '

f l t

j I

! I

i

I l ?

I

J

Page 92: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

• • n

74 r •

Im I I no I I

no

~

,,

I,'

_,_\_ .... ______ ,.

!'' .

. · om ~ ~DLXNI~'l'lttf &

NOICE~~~·

'. fiCJ, 4-a,, ~lOlC t,ltM,. =~~ta.~ai Of 1:hc>. ~coiwd

ei\,i\a~ ('t.. \ , ·(K-0~ i .

',i.· .. · .... "'

• ~ I •

. • ,·.

.,

.. ;: /,

'l

•' :, \'

=· . . • ,. J:

l'

li I ~ i

~ I ,; '

I ! '

~ ,, '

r ( 1''

~ ' ' ;' !

I I

I I I

. !

I \ ; t • • j

,1

Page 93: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ "

7!5'

W2 • ft l Pr{Oo(i)/ - ~ < ,<t0)< o0(i) + ~ IOo(i) l

i•-M/2 {4.14)

un<br tho hypoth.ooit1 that tho throohold lowla ~ (i) arc

(4.l5)

(4.16)

.. 'lbo di!fiwl~ in thG an.alydcal ovaluatic:n ot tho ~lit:y

of 01:ror in cqut\titn (4.16) ic lnrgol.f duo to tho fAot tlu\t tho probabili­

ty diot.ributicn funot:.icn of tho intoroyl\'CQYintorfotenco io Wr'J hw:d to

obt.oin oxcx:ipt. for G VOrJ tew opecit\l CXICQO (46), md ovon if it ia !Olewn - .

a\Q ~ to c.btomino tho ~l.1.~ diat;:1bution ~oti'X\ after tho · . ' .

CQTpl.ox nallinam: ~~Ua\, In i»:inoiplo, it tl¥l ~ nunix.w of . ,.. . • J .

rendan variaoloa CX\U'lin9 tho in~l intorfo:eno:2 io lU\~ and 1a . . ~ . .

ftnitQ, cquGUcn (4,14) QM ba OVQ.l\ltlto.d by ·_c,.n oxh<tUQt.iw, dimat. cnu• . .

~t\UQl _ovo.,: thcoo ~dell\ va.riablaa, Uowam, t1u catp.ltQtknal ~ort

ia ~Mblo Din=~ n\Jl\blr ot peooiblo o:xl'binaticna of ~co rMdCl\\ . . . . .

V<lri4blco ~o Q~cmtial.ly with their nUllixu:a, Xn. Cl,\ ~~tcnl?t. t.o, rcd\lco

tho M"CUnt. ~f nco:oom:y ~\l~AUcn, roioina [3aJ h~ o~woatod thQ . . . ,• • ' I

~<\tJ.on ot d.imct c.nunm:a.tion and. ~nUcn l\'C.thodo, 'l'h.it'l. l\'Cthcx\ , .

~~ awlic4 tQ. tho ~ of foU.r-phoco CPOK withcu~. ~ ~ccivin9 fi1tcJ: • • • ' 'o

. ' ~

/,

. " :. "

'

' :, J : ~ .·

-~

' J

·1 l

a t s~i

~ \ •• lo'

}l . t

i ' l l I ' '

I

f ~ !

i ; I

l

{ j l

I I

' l t

.'; ( .-t

I t

.(;) l ..

J ' l I

' .

Page 94: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

: I I i . f

I , I l

' .

•,

• \

N)d with no T\WPM caivoro.ton. Hcwover, tho rcculttJ nro obt41nct1 with

unknown aoouraoy Md tho nrrount of oorrputntion noooomuy in the direct

onuiroration pnrt ~o otill oubot.nntial. oopooinlly for tho · cane of tiewre

intorforenooa in which tro effoot ot int.oroyrrbol intorfcronoo oxtendo . O'A'll' many bit poricxltJ, Donodotto Ot al [10) h:&VO DU99Qllted tho UOO of

"\ tho Gnu:lo~nclrnture form,ln [ 9 J in ·ort'b.r to redu~ tho n~oooaa.ry oat't'U­

tlltic:n. Tho ll'Othcxl, howovor, otill recJUirco tho '4'\laulatJ.oo ot variouo ,.

rraronta of tno randan variabloo uioino Aral\ tho nonlinollt' trwiofol.imtion

ot. tho intcroyni:x)l intorforencx, M ooown in CCil'-'ntion (4, 7), 'l'hia m:mont

QQJ.oulntion, aa it io na\rocurnivo, in ll\bO.riow, aopooit\lly when.high

nocur<\oy io required, 'l'ho loot rouo.r-t in to ovnl.u(ltc tho portorm.incc ot

ll bond·Umi~ CPSI< oyotcro through a nonl.inQAr Dfitollito c:mmnol l:l'J rroontl . . ot <XllpUtor 1Jinul&tiorw (al, Gll, Tho ll\.iill foatuxca ot t:heca uim.llatJ..on

' pqrwro-' {\J.'O oimiw to c~dl othol:, *"'°var, tho nmular torm ot tha ' .

dnuln~on program in [23] offort).nm.-o fl<»d.l).i.llty in QOOl?M"inCJ di!fw:cnt . :' ~ <

~a of m:>dulnt.1.on that m"O tippU~lo . to oa.t:olli to OQlll\UUC{lt.icaa, '!ta

l'CO~lta cota..tnod f~ tho ~utor oimllat.ian to: CPSl< oyatcm'l (dcocr.ibed ' ~

· ,i.n m,ro tbtatl in ·(all) am till ~ in fipotl 4.3 to 4-o· t= M-2, 4 Md ,J • ' • \) • •

o ~poet.t.wiy •. i»th tho ~ttin; encl rccoi~n; filtoro. m.-o M~urrod

u, bo i(b}tio..'1 4 po~, >t dI> t4,?lo CbQbyaho.v f~ltol:tl with 0!5 n1111, 3 40 · b:nd'tridth Md Oyttm)ttio:\1 toopCllCO With rQOpcot to tho midbMd an;u_laz:o.

' ' ' • " • l • •

a.m:.t.ar-~~ '°<>' 'lwo opo~t,i.no CQ\d.1.ti~a ~ tho 'lWl' M'C ~cd,

cm with ~ tubQ··~ting at catum.t.ton (l.. 4n· ~ut pc\','Ol'.bne.'tQ!t*) . 'I • • ~. ' a.l 1, I I

/ · •ieyut p)WQl' ~,cko# ia dof~4 M tho ~ff<ll'd\Q:). (in dD) batweon tb:l ~otUQ.1. 100m j.nput ~·of.tho ~«tQd ei~ol en~:·~tit l"CQ\U.M to oat~to tl1Q t~. . · ·.··.. · . .· :·

' .. ,.

. .

t t } . {.

l l l

· f

Page 95: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

1 i .. ~ I

l I ··,

l t •

I

t l ) l

' i l ~ L

,

,..--)> ,.

:"!

,.

t

1 --l'"----------------....--------------------~----------,77

"'

l

\"o t!t

10-l

\.

. "' '!

o· ~

0

1 • ' 4•3,

IdcmtJc~l trNmmitting Mel n:1ooivinq filtom, 4 ·polatt, halt ell\ aquirit>r,ln Chf'..byohov.

05 ~tui, hMc1widt.h,

'lWl' opar<iUnq nt 12 <lU inrut ~r backof 1'.

Di t rnt:an. in ~nbi tn/000,

I

J. 10 ·u . I, of Mt'. YO JU. ..

20 ·40

60

70 90 90 !)!J.

~o ~ A .•

·-

~ .

I • • ..

as dLl ·,~ol ..,

Page 96: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

#

'

J

-{ i

1 f

1 ..

\ . ·\

I~

Identical transmitting an<l reo.:?iving filters. 4 poles, half dB equiriople ,Cheb'fshev 85 ~:z: bandwidth.

'lWl' operating at 1 dB input pc,.-1er backof f.

\ . \ •

\ .

Bit rates in rregabits/~c.

------40 60

70 lL:U----- so

L----91)

95

\. \ . \ ' \ .. \ . \

Withoot I.S.I, 1

0

i:>ig.

\

\ \ . \

I

\ 5 \ 10 15

4 ... 4. Pro'1f"'ility cf error vs rht.-1,,, i

29 25 dB

' ' j ;

l ',

l I l 1 l

Page 97: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

ri

f ! I' I

lq ii n r, I• I

'! l I

. t :1 I l ' l i

I: ' • I

' f

I

;

,.

I ,,

l

p e

10 ... 4

1 -s

-5

Fig .•

Identical transmitting and reoaiving filters.

4 poles, half dB equiripple Oiebyshev.

85 Mhz bandwidth.

operating at 12 dD input pa,,er backoff.

Bit rates in roogabits/sec.

60

ro 120

140

160

1 ro

....

Without I.S.I.· . \ • •

\ • \ . \ . \

0 5 10 ' 15 20 dB CVNo1 4-5. Probability of error vs ~O' 4-µhase C'PSK

79

.,,..: 1

·, ', ., ..

; ' ' '·

Page 98: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

1

p e

10-3

1 -5·

-5

Identical transmitting and reoaiving filters. . 4 poles, half dB equiripple Olehyshev.

85 Mlz bandwidth.

'!WI' ooerating at 1 dB input power backof f.

Bit rates in negabits/sec.

~o 80

120

140

160

180

/ /

Without I.S.I.

t

0 5 10 15 20

··'' 80 '

· 1 , !

:· f .. .,

Page 99: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ I . . f

. ~

·, .,

. {.

'

I I

I I

I-

1

p e

~

Without I. s. I.

0 5

. -\

'

·. \ .

Identical transmitting and reooivinq filters.

4 poles, half dB equirifl)le Chebyshev.

85·1-'hz bandwidth. '1Wl' q,erating at 12 clB input '"pc,,,er backof f ..-.

/

Bit rates in negabits/sec.

120

135

150

180

\

\ , \

10 . 15 20 dB [~0J

.. Fig. 4-7. PrdJability of error vs y-10, 8-phase O'SI<

81 ·

·, 'l > 1

; ' j ' \· ,, ,. :.~

I ' . \'

~'

' '. ,.

, . i I

' i l ' f l r ' l 1 I

i ~ ;i,,

• I i { I

iJ ! '! i ~

.,

~ ' 1 •

r i .. J. ·: J '~ !u ,;

Page 100: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I I

I ! I

l l I

t {

' 1

: f

,, '• '>

..

. ...

I f l

p e

' ·~ ''\

"\ . \ . \

Identical transmitting and receiving filters. ~4 poles, half dB equiripple Chebyshev.

\ . \ \ \ ' .\

85 Mlz bandwidth. '1Wr cperating_ at 1 dB input ~r bac.t<of f.

Bit r~s in megabits/sec.

120

135

1 so

...

. \

\ . \ . \ \ •

\ Without I.S.I. I

\ •

\ .

' \ 0 5 10 15 20

82

·) .,

i'

,, ,,,

{' .

f i

i; ,\

r i (

l i . ' '

Page 101: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

, t

~· .,

•" ,

!

I

83

and the other with the tube operating in the linear regiai (12 dB input

power h>ackoff) of the pc:Mer transfer characteristic. Figures 4-3 to 4 .. 4

soow the probability of ex,:or of a biruu:y CPSK system (M::2) as a ftmctioo . . .

of bit energy to noise power spectral density ratio, Yo J , and for

various transmission rates. The performance degradaticn increases as the

transmission rates approach the filter bandwidth. However, at high

transmiss~ rates and high fEi!Nol, t.m perforrrance of the system with

the ~.q;,erating at saturaticn is slightly superior to that when TWr is

operating in the linear region. This .is due to the fact that, at satu­

ration, the phase shift at the rutput of the tube due to input emielope

fluctuation is _relatively ccnstant and can be ccnpansated for by a

<Dhe:rent .reoeiver. on the other hand, the phase shift at the output of. the

'lW1', operating in the linear regicn, is rrore dependent en the input I

signal envelope fluct:uatiais. It then beoones m:>re difficult to trade

this phase variatiai with a cohemnt receiver. Similar results can be

obtained for the case of four- and eight-phase CPSK. In all the cases

rot:1Sidered it is ~t that the ~rfonnanoe degradati~ increases as

the transmission rates increase (as the bit rate approaches the filter

bandwidth) •

:i:t is well kna,m that the transmi.ssim rate (ireasui'ed in bits/sec)

of M-ary C1'SK is ]Dg,Jt tines that of biruny CPSK. However, the

~tted power .r:equi.red to attain the sama ~l error probability

· does not var:, 1:fnearly with the transmission rate.. ,or exanple, if_ we

. require a syntx,l 'error prcbability of 10-3 and a fixed synbol. rate of 60

· Megasynt,ols/seccmi with the '1'Wl' operating at 1 dB input pc::Mer ba~off,

~· •,

' ' '·

,;

\' ,•

. •, ,,

•, .. , •, '

" ' ,; '

,

~ ,· ..

' ' 1 f' ,,

( ~ ,. ''

' . ~ ' ' I

l •. ,)

Page 102: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. l

. l

; ' ' -~. l , 1

, ' i ·.1

t

1 1

84

cntparison of figures 4-4, 4-6 and 4-8 indicates that the foor-phase CPSK

system requires an extra 2 dB in the transmitted pa-Jer over that of the

binary CPSK case. However, the eight-phase CPSK requires an extta

transmitted p<:Mer of approximately 12.s dB.

To cx:nclude this section we point out that, to date, the analysis . of bandlirnited CPSK signals transmitted through a bandpBB's ncnlinearity

is still vei:y incxnplete and quite inCXl'lclusive. Alt:l)Ough oonputer sinu-

1.ation imthods may be used to assess the perfo.onanoe of such 9¥9tems, the

accuracy of the results obtained is generally unknown. rurthe.more, in

actual satellite ocmtl.ll'Ucatiais system:!, the effect of up-link themal

noise disturbanre nust be included j,Ji the analysis. This effect can not

-be readily :investigated by rreans of rorputer sinulatioo without the use

of veey large aroounts of oonputer tine. .

In the follcM.ng sectioos we shall disregard the effects of

intersyrrbol ~terferences and shall cx,nf.ine. our attention to the nailinear

analysis iri the presenre of only up- and down-link thennal noises. Such . .

a sinplified nodel not only yields a mathematically tractable prd:>lem ~t

also the solutioo leads to significant further insight into the effect

o1 bandpass ncn1.inearit1es on t11e performance of M-axy CPSK systems.

4. 2) EFFECT OF THE1M\L NOISE DIS'l'URBA,.~~

our objective in this sectiai is to investiga~ the effect of up-

link and dam-link thenna1 noise distutbances ai the performana! of a

~t phase shift keying (Cl?SI<) sys~. . A block diagram of ~

c:mm.mica~ai system oonsidered in this sectioo is shown in Fig. 4-9. On

-! 'I :1 -,i

., :,

I'

. :

,. f

,.

' ' ' . ; \ ; J

l i . f

f ii I t~

"

Page 103: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

A cos (c.,0

t + ei)

Op-link noise

l\.i {t)

i & fl, •••••• ,M}

Bandpass

Nonlinearity

-----x(t) = R(t) Cos (<a>

0t + \ + e (t) ~

Ibm-link noise

nd(t)

~ ,...........,

+ a:tiERENr

R&:E1VER

'\.\, \c.

z(t) ca r(R) Cos{C) t + e. + c(t) +g(R)) .o J.

~g. ~-9. CPSK transmission~ an~~ . . .

,.

'l

A

~

''1~~_......,~ __ ...._, __ +'<\~\I ',,:.J"'t; - .. " (' ....,.., •• ,..., 1 ""1;1'-....,. ~.._. ..-~"' ..... '., ... .,... "').,-'\.-... tr•-..,-,. ,..,.:. • •."'~'• ~ ~·-.:: ."-~ .. ..._ • "'°'!!,' ._. "'• •.., >,, ""'\. ,, < "· ::-... ,. ~ ... • _ ... ~ ... T, .. • • ,':..... ...... =,·!, ~:...: -~ -· ... , .-......"£:-.• .... ...':~_:_2,::. :· •. ~ ....... •

Page 104: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

" ...

: ·, f.

..

I

I

I l , I

l I f

86'

the ~link path the transmitted <;J?Sl( signal ar)d the thermal noise are ,,

added to form the input signal to the satellite mpeater. The bandpass

filter preooding the 'IWl' is assurred to pass the sigrutl without'4storticn I

but to restrict the up-link noise to a finite bandwidth, w. The signal

after passage through the filter is. arcplifM:!d by~ 'lWl' andtretransmitted

to a ground station •

. On the dam-link the retransmitted signal is furthei; corrupted

by indeJ:tendent additive the~ noise. to foxm the receiver input signal.

An ideal coherent receiver with an appropriate CPSK.decisioo circuit is

assuned.. One pos~ible inl;,lerre.ntatioo of such a receiver is shc:Mn in

Fig. 4.10. At the xeceiver the RF signal is <.bm-convert:ed to baseband,

where a is the average of the AM/PM. effect in~ced by the 'lWl'. The .

baseband signal in eacn branch is then integrated and sanpled every bit

duratiai. 'lhls is the well-known il)tegrate and dunp (I&D) filter. '!his

reooiver structure is a specific fotm of a oon:elation reooiver. It will

be assurred throughcut our 'discussion that phase coo,erence and bit

timing xeroverj have been achieved at the receiver. . . In an attenpt to detexmine an upper bound on the probability of

error for biruu;y CPSK spread spectrum signals txansrnitted throogh a hard­

limi~ satellite repeater, Aein [ 4-6] approximated the integral ~ dunp filter by a sanple and sum c4tector., It was pointed out~ [4] .

that for the case of an up-link noise limited channel with small down- .

link noise distw:bances the error probability oould be cx:nputed by the use . .

of the axiplem:mtal:y er.rqr functioo as if the cor:relator output statis-

tios obeyed the nonnal distrlbutioo law. By ~ting the in~ate1

and dunp filter by a san:ple and sum detector, Davissoo et al [29-30} have

I

'

, . • I

'• ,,

·, . '

!

, . )

l i' i } .

I I

} l I

I ' J

I: j,

t .[

l I

Page 105: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

- ~ .. ,'t. . ' ... h'- ·""· , '," .. --.~:-;.. -,. ... ·, -~., ... ?"-,'!! ·, -~~,..;.,,,,._.,,~- .......... lo. ~ _,.·,.,"": ~"'-~' ,:- .... - -

• I --·~- ·,_,.~ ..... .....--~-'t( , ,,= • : )· •. ,' .. ,~.... -·~... £ -- ..,.__..~-.....

"

z(t) + nd(t) .._,,...

leoeived signal

. C)

't cos (ti10t - B)

sin c1Jl0t - e>

( \

' I i ·----t> l

sanple at t ::::::r kT

Fig. 4-10. A co.'lerent +eo=iver for CPSR system

- ~ --., . ...._ .. , ......... "~.~""'- ."'::."' ~ .. ·~. ~,. "'..~ll---,,.·'if.J'""'-"~---~--r.., .. -.._..._._ .... ~~- -· -

Phase

Detector A ei-1"> ...

Detected phase

~e

co ' -..J

Page 106: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

',. ·.• 't•

·~ ...

..

calculated the probability of error for b.iruny CPSK signals transmitted

through a pieoowise-Unear envelope-limiting repeater. H~r, their . " ' '

rrethoc1 requi.ms the direct ntmarical cx:,nvofuticn of the probability

density functioos pf the sanple and sum detection outputs and is vecy

tedious recause a large nl!Jl'ber of sanples must be used in order to give

a~ approximation to the in~ and dunp filters.

In view of the difficulties associated with the integrate and

dunp filter or its aw~tion by a sanple and sum detectioo, Jacobs

(47] originated the substitution of this pre-detection integratia, by

88

a single sanple anc;l majority logic decision devi03. The probability of

error is then related to the single sanple detectiai error which is

cxnsiderably sin'pler to evaluate. Lycns [57,59] put forward a method of

charact:erj.zing the noise statistics at the output of the general bandpass

ncnlinearity·. Essentially, in his ~thod the equivalent (desired) signal . .

cxrrpcnent at the output of the noolinearity is defined as the statisticaj.

averase of the output signal'ccnditiaied oo the Jc:lCMledge of the trans­

mitted informatioo. Onoe the equivalent signal ccnpment is defined the

effective noise cx:llp00e11t is sinply the_ signal at the output of TWl' less

tne equivalent signal ~t. Jain arid B~ [49] have expressed

the probability of error in tenns of infinite series of nodified Bessel

functioos of the first kind for the case of binary C!'SK signals transmit­

ted through a hard-limited ~ter with a single sanple and majority \ .

logic receiver.

In section 4.2.1 \..e make use of Lyoos's approadl (57, 59] to

' ,.

, f ~

i

' r : l

l I

i l If . $ \ ~-J f. d,

Page 107: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

J

. l ' I

!

I l l

· 1

.. ,.

..

. 89

. characterize the in-phase and quadrature noise and their statistic.a at

the output of a pie03Wi.se-llnear soft-limiter. Based on these statistics - I

the prooability of error for a rereive.r with a single sanple and irajority . logic detector is carputed; A similar approach· is applied in section

4.2.2 for the case of an actual 'lWl' channel (45]. HCMeVer, due to the

CXJrplexity of the 'lWl' n01linearities, the analytical e,q;,ressions for the

equivalent noise statistics are very difficult to obtain. In this case

wa expand the probability density functions in te.tJT\9 of Gram-Olarlier

series as us.ed by craner (28]. OUr enphasis in tltls section will be on

binary CPSK systerrs althrugh the nethod in general can be ext:enc1ed to the

M-ary CFSK case. . I

4.2.1) Piecewise-linear envelg?e limiting ~ter a

I.et us assune the transmitted M-ary CPSK signal, within each

synb:>l duration, to be of the form

' (4.17)

·A = signal anplitude

WO = angular carrier frequency

T syrrbol duration ,.,.,,,

=

ei = (21-1) !. i = o, 1, 2, •••• ," M-1 ' M

each value of e1 having equal probability of being transmitted.

l .1

J , 'i

.. '

I

·i l

'

Page 108: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l 1

f l

.. ,

'~ ' '

' ·.

. , .

' f

l

..

... ' . . Than the total ·signal at the input of the noolinear devib3 nay

be written as

' where n1 (t) ruy n

2 (t), representing the in-phase and quadratfu?e. noi~

~ts, are zero nean Gaussian randan variables with variance Nu

~ watts.

)

In tellllS of envelope and phase relationships, (4.18) can be

wrl 'ten as

~ x(t) = (4.19)

R(t)

and

c(t) a 1 [ n2(t) J tan... A + n

1 (t) (4. 20)

The signal at the output of the pieoow1.se-linear enve]q,e-µmi­

ti.ng repeater then beCXJTes [43]

z(t)

where the limiter ncnlinearity is described by

f(R}

,­('

R r.

1 R > >.

(

(4.21)

(4.22)

90

Page 109: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

" .

~ t ' ' ' ' ' I l {

i i I

/

I ,. ,.

\ l ·. t .:,

>,

1 t i

1

~ 3 JISJ I Z

91

The cx:nstant A is known as the limiter softness factor. When

A is equal to zero a hard-limiting envelcpe nonlinearity as discussed in

[59] is obtained.

Follcw.ing the \'.Ork of Lycns [57] the effective signal cxnp::nent,

s' (t) at the output of the ncnlinear devi.oe is defined as the a::nditional

average of equaticn (4.21). Tl1e averaging of z(t), a::nditicned on tne

Jcno.,,,ledge of the transmitted phase a., is made over all the randan l.

fluctuatioos 4ue to the up-link no~ cntpenents. We can then write

s' (t)

wre:re A' is the effective signal anplitude defined by

A' == E...._ [f (R) oos e:] -R,e:

(4. 23)

As s!n-t;n in Appendix C.2, this value of A' for the piecewise-linear

envelope limiting repeater can re written as

A' == / ~e e-p/2 {I

0[p/2J + 1

1 [p/2n -

1 2 2ye -P f (1-x}x e -yx 1

1 [A>.x/Nu] dx (4.24)

0

where . ~,e: [ • J denotes the statistical ave.raging over R and E:.

p == A2/'1Nu is the ~link carrier to noise power ratio

1ri (. ) == nxxii.£ied Bessel ftmcticn of the first kind of order n

y = ·/12N u

., ,'

' ' : j

' . ?·\j

,.

' • l.. .•

Page 110: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

:, ;, ' ,!: ,·

\ .

..•

92

The first tenn on the right hand side of equaticn (4.24) corres­

p:nds to A' for the case of a hard-limited channel ( A = 0) and was origi­

nally derived by Bladllnan [17),. the seCCX1d term represents the correcticn

tenn due to the 1imi ter softness factor, A.

The effective noise a:npcnent at the output of the noolinear

&wire is ili:m obtained by subtracting (4.23) fran (4.21) and is given by

n' (t) = ni (t) oos fwat+ei] - n2(t) sinfuut+ei]

where ni (t) = f(R) ros E - A' (4.25)

~(t) = f(R) sin£ (4.26)

NCM define

A+ n1 (4.27) . x = A

~ (4.28) y = A

The .\7ariables x and y, as defined are Gaussian rancbn variables with

means A/>. and zero :respectively, and both with the sane varianoo Nuf>. 2 •

In tenns of x and y we can write

x ... A'

n' 1 = .. x ,- A'

I x2+y2 and

y

n' = 2

y

/x2+,)-,·.

2 2 Oix+y ~1

(4.29)

(4. 30) ~

"

-~

(

,•'.

. '· .. "

' . . , ' ,.

'• ,, ::

. I

I '•

.,

"

Page 111: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l I r

' . { ! ~ I

l . > ; ' {

"'. ' l • l

i ~ ;

' >. f

.. : ... ;'

,· (

J

93

The prcbability distr.ill,tt:icn ftmcticn of ni can be ootained by

.iJltegrating these Gaussian randcin variables, x and y, over the appropriate

regioos in the x-y plane (see Appendix C. l). Once the prooability

distribution ftmction is obtained the rorresponding probability density

ftmction can re evaluated fran

p , (a) = dd rPr{n1' < a}] n1 a (4. 31)

Perfcmn:i.ng the .iJldicated differentiaticn .iJ1 ~ti~ (4. 31)

yields (Appendix C.1)

Pn' (a) 1

~(x}

=

=

IT ""P G ~ [Ha+A.->21]

/ l - (a+A 1)2

A(a+A')

IN u

t[ A(cri-A')- >. l hi u

I cri-A' I > 1

j c:rtA' I < 1

(4. 32) Ir--

' . ·; -i ·i :1 ;;

-·· I 1

.. ' ::

'• ',

; ~

/

,. '

,, t

t

' •' , .

.. ,•

' '

,_ ; ,, l , I , I

:, i .. I ' '.! / \

' ' -·-

Page 112: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.-.

94

and x

t (x} = 1 fexp I-a 2 /2] da = ! erf c I-x/ r'2]

ff.i

where erfc ( ·) denotes the carpl.enentary error ftmcticn.

Using the sane procedure the follc:wing exp:ressicn can be derived

for the,prd::>ability density functim of the quadrature noise ccnpa,ent n2

0

_>._

IN u

I al > 1

(4.33)

Figw:es 4-11 to 4 ... 22 illustrate the behavior of p , (a-A') and nl

p0

, (a) for different valtes of a no~zed limiter softness factor, - 2

* ). = >./A, and different up-link bit_energy to noise po.,.er spectral

* density ratios. The plots indicate that for ). = O, _oorresponding to

the hard-limited ~l, the ~valent quadrature noise a:npcnent

. \•

) 'i

" .. •' .,

•,

.. ,

,' ..

' , l

Page 113: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,..;..-... ;~··· i(' • ~ .• ......: . v· I 5 tf i" . )-' . ._,.· ,1!( ll!!:e£.SC... • .... "" 4 ~ .. M l>l:111 qr W l £± .... - - .... ~--· .... ~~." ... )'I ... ~ ..... - ...,.-·~"\>.£,... • ... -..-... ~- ... ~ .. ,..- .... '>\,"'-~,·~ ..... --...~~ ... ~-... ---"t.........,..._,.. ....... - ........................ ......-........... _ ..

5.64 ___________________ __:_ ______ 11

4.70.

3.76

2.82

P , (x-A') nl

1.88

0.94

~/Nolu = 1 dB

~ ::: 3

.•

). *

* >..

* ). • 0 ....

* >.. • 0.5 '1 I I \

* - 6

>.. • 1

* >.. • 2

J~ ~ --, o.oo_

1 ==*:::::, . 'C_~ -1

1.0 I I

I

-2/3 -1/3 0.0 1/3 2/3 1.0

x

Fig. 4-11. Shifted pdf of in-phase noise fran limiter, p , (x-A'} nl

~

, ...... ~-~ ... ~,. -~. ,,,, .. _.~~, .. _ • .,,.,..,,..,. .. ,. :- 1., .... ~·:-~~- "'","'··~ ... :>•,,.' ....... !' "~···'1 ... "'-'·'r'~,.., • .. ~ .. "~\t:."~ .-~;: __ ..,,\ .......... ~ .... _}",.~.)~ .._,;.:,} ......... ~~ .• -=...,-.-t. ... ,_...i,,;-~ ... ·.·:-..:\ .,~_.,.,..,....!!. "'-~~ • .-_.,... ., .....

~~~~":'--.!r'~~": .... !"'!'~~ ..... -~-

\0 u,

'

........... __

Page 114: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

--_..--.-..... ' ,, ~ ·~;..1,:.· --~..,--------- . - - .,..,.,.c.,

~ . .....,_. ---......i--""'_"" __ 4'_,,~,.,._,..,.._., ,...._.. .... -~ .. ,,. ..... __ .,. ~~-.,.,....___...__.\...,. ....... $.-JU J t!!!l!.!!ll!tStt,).IS.S&.ll!fE. ... -..- .. .,. ... _~ .... "'"..,..;<. . ..__ .. ~.~....__.r---.J,-

1.44.T----------------------------

6,2 ~olu = 4 dB

wr = 3

4.9

* ). • 0

3. 72-i . I \

* * •9-f >. p (x-A ') I n' \ >. • 0.5

1

"'"" .. ~"""" .... ···· . .,.,,~~ · ......... ~~---

,·. 6-1-1 \\ * - l >. 2.4J * >.

* >. I I I ,,,. \ \ ........

1.2

o.oo 1~ · ~ ~ :=>2~. -~I -1.0 -2/3 -1/3 o.o 1/3

x

Fig. 4-12. Shifted pdf of in-phase noise fran limiter, p , (X-A' nl

2/3

.... -,~~" ... ,;:. .. ,- ..... t•'; ~,, .. ,-~·-\,;· ..... ·f~·-:'I<. .. ·-,'!>.~, .. ~, .. ~ ""' :·: ".:: !: ; .... ~: .... ~ , .. ', .... ,: "':.•.•, .-:.•! .... ~:.-\_•·~·..,,_,,,.,,.,.,,.!'l.,;,....UIII"~~·~.,.~ -,.,~ .,.,._,..,_,.1<.~•._,•..._ .. ,, ... ~~t,•._~•

1.0

\0 C1'I

f t, ,·

Page 115: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

10.02

8. 35 .-1

6.68 ·1

5, 01 -/

Pn' (x-A') I

1

3. 34 -I

1.67 ~

o.oo

-1.0

Fig.

') ..

Yolu = 7 ~

WT = 3

(\

* I ' ). • 9

' I

I ~

* ). • 6

I I \ \ ;

*

I I I/ \ " -

-2/3 -1/3 o.o 1/ 3

x

4.13. Shifted pdf of in-:phase noise fran limiter, pn, (x-A') 1

< .,._~ .............. ~ .. ,... .. ,""" .. ~ ~ ... ,c, .. t.:: ........ ..., ..... ..1&-........ ~ .... ,,..._,. .... fi, •• ~'I...0,1'"'.,J.<1. .............. .,i .... ~ .... ,:1--_,,,..~, ... ;a;,,..Jc_,,.f~#~-~~.-...~-· .. ---::.1.,..• ..... ~A..,'R"',,· ... - ----- . - .... ..._,.1,• ........ n-'l'.• .. ,_~ ........... 4

• 3

A

. -

' ,:,

,,.

* }. • 0

* }. • 0.5

* >.

* • 2

I

2/3

• 1

Ji I

ll I

I

1. 0

\0 -..J

,,

I _.. .

1:,

, .. t -~· :,

-~

Page 116: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

j._ "''I. t ~ ,n ""' - f ) J .. ZM I -------... . ,,.,. -:a• u z It a :c .. 1.dr'' ·· £_,,*'_ ...... ___. ........ _ ........ _ ........ .,,a. ......... .,, ... _..,._ .... ___ ~--- ................ ·~ ... ....... , -· ........... _~_.,..,,,....,, '"'""""~-·

13.so-·-r~~~~~~~~~~~~~~~~~--~~~~~~~~~~~~~~--

11. 25.

9.qo

6. 75

Pn' (x-A') 1

4.50

2.25

~/Nolu = 10 dB

wr = 3

..-..

9•

* A • 0-------

* A - o.s I * A • 9------'

* X • 6 I , A~- 1---+t

- 3

o. oo_J ~ J.?< \ s :s::-=::; ?::<:. ----1 I I I I • . .

-1.0 -2/3 -1/3 o.o 1/ 3 x

Fig. 4.14: Shifted pdf of in-phase noise fran limiter, p , (x-A'} nl

2/3 1.0

\0 00

- ___ .,. ...... .,,.,, ... -~ .... \ ... '~ '• ....... '\,, ... ~........ .. -·~·«, 4. '•,.... ~ .. ' ,-: r' 44 , ... ~,, :-•,..,;,•.._~'.~',, ..... _,. ~""' " ..... ! ..... ,,., '!- ·.i ....... ' , .. ·.#,:,.::"_.. ....... '-, '• •, ,,• './: "t.i:..:.~_•:._•,:_n~,.;:.,,"*1ft:'.J;!f_•._ . ;. _,..-~,c..,. ·~ .. ~~~~ ... ~.,:-·~ ....... ---...,~, ...... ,. .... •. ,:·~ ~ -

~·.~~~1~"}* ...... ~~'t .. 'r,',Fj',1,.--...----

Page 117: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~~~~~·~~~ ....................

18.00·-r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

15. 00 ·-

12.00.

9.00.

~/N0Ju = 13 dB .,,,,,

wr = 3

* ). • 0

111 * }.. • 0.5

p (x-A') n'

A•.91 h * 1 }.. • l

6.00 * ). • 6 I I • ). • 3

3.00

0 00 . I // ~ \, ::::::::S ::::::>S::---- I • I l ! ' '

-1.0 -2/3 -1/3 .o.o

Fig. 4.15. x

Shifted pdf of in-phase noise f:rcrn li.mi ter, p , ( x-A' ) nl

1.0

s--..-.,: .. ~l" lr,r,-.-.,..,,.-.,.;. /..' ~'"/-"•~,''\_. >-~",y•- __ ,_.....,~o,;,.-:;, t 4, ...... ,, .. ,.......-a.~.,.._~ ...... AL,.,_...,_.._ •• -...,., ... £. __ ._ .... * ,-01. .,e -•~

'° "°

I .... '·

)

Page 118: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·.·~.

22.2---____;;.._ _________________________ l

18.5

14.8

11. l

Pn, {x-A'} l

7.4

3. 7_

0.0.

~ 0 J0 = 16 dB

wr = 3

'A* - 9~ I

* " - 6

* >._ .. 3

-I

-l.O -2i3 -1/3

' I

0.0

Fig. 4.16.

... ·~ '"-•~ , . r ... ~:~-:,.~ ·:· -,., ,- ,, * ~·,,.

x

Shifted pdf of in-J;:hase noise !rem limiter, p , (x-A') nl

•, .•'t .. ',..T\;\'·""'~ 1~'-!t/(~""!~:- -~, .... 1·, •, -~ .. ~ -~ ., ....

* >. • 0

1r 'A • 0.5

1r 'A .. 1

* "! 2

2/3 l. 0

..., 0 0

. -~-~~ ':_',., ,:--~ .. ____ .._., __ •. ~L.::.. ... ·t.~.:;.,...,,__~-"'u.~-· ,.,_ -~-·_,'.,..:J

Page 119: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

':

::--· ·~ ~,

'

6

'

3,30~~~~~~~~~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~--,

2.75 -

2.20 _

Pn, (x} 2

1. 65

1.10 -1\

I\~ 0.55

~;N0 J0 = 1 dB

wr = 3 ,

* ). - 3 "-

* "' / I .A ••

I I IA'

I

- 9

* ------A • 6

~ \ \ 1'.\

I \,

* ). - 0

* ). • 0.5

* ). - l

i----- r::::::::::: -<':" "'-- ---- --1 O • OO I I I _ __ I I I .

-1.0 -2/3 -1/3 0.0 1/3 2/3

x Fig. 4-17. Pdf of quadrature noise fran li.rni.ter, p~ (x}

.,,., ..... ,~···"!, ... .,./.,~i,...~,~, .. • ~ ... •• : ~ • • ~ 4,-,,. ·,.:'•,, -h :·,~·,~, ~·~·~~~::.~::~ .. ~:;..,',~~'-~~~~:,. ... ~~~~~--.::. __ :~~~·

b ......

.:

Page 120: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·'t: : '..; • f ,'"':'. • .: • .... l ~.:--.,,:~:~'\( . -•· ! E t p !!Wi.i!!!!S!!J£ZN&!IZE411 a ct & ... SZ!ZLCA tdCZ!~-· .. -·-4! ..... --~ ----"""-"'-·-·-·"' -·~· .... -....-

1 I

>

4.67-r~~~~~~~~~~~~~~~~~~...-~~~~~~~~~~~~~~~~~-,

3.8

3.0

2.3

Pn, (x) 2

1.5

0.7

~

~olu = 4 dB

wr = 3

* >.. • 9-----,

>.. * • 6 ----r-1

x* • 3

ft >.. • 0 ------..

0 00 ,--- ----- _/ ./ '>. ':-:---- ':::::::, ~ ---1 • l I I I I l 1 -1.0 -2/3 -1/3 0.0 · 1/3 2/3 1,, 0

x

Fig. 4-18. Pdf of quadrature noise fran lirni.. ter, p 1 (x} n2

...... 0 N

~ • y • ,,. ,~,. ; . ,._ . ·~ ~ .'.,.. . ~ ~-~':~-·-'I,.~~~---~..........._. ............... ~~ ··""~~._··~· t r · · · ·· ·• · .... ,,.. ·· · ,. · I ""'~!OIJ~ ..... ~ ..... ---...-~------

. ' ·~ ........ ,.. .... ~. ~ ..... '~·'> ........ ·. ..- ·~·"'

Page 121: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I I

...... , ... "t !;£ :cc:.::::::• !Ii! 1 ~ - , .,:;., •• .........__ __ ,..__,, ___ , ~,- .,..., '--...- .. , ... ~,~,.....,.,, ..... r-~ t

6.6

5.5

4.4 ·

3.3

Pn, (x) 2

2.2

1,1

o.o -, -1. 0

~JN0Ju = 7 dB

wr = 3

1t X • 0

-2/3 -1/3 o.o )C

.,. ___ ). - 9

.,. ). - 6

- 3

- 2

Fig. 4-19. Pdf of quadrature noise fran limiter, p ;• (x) . n 2

1. 0

I-' 0 w

--,.,...,.,,, •.-" :: < ,.,,. ,..,;:_, • ... • • ~~j,'-i,.,., r'~ ;,.~ t_.,,.... ,, \o,.• ..... ~. ·~·,,_;• -... ·~-•," ~ .. : ~: ~r:~:~~'>'~·;_;,,~-:';•(._..~:.;,, ,.~::... 'lo:~.._1\-'"'l',...,... ~~-~-... ,,~ :.~ • .._ .. ':. ,,., .. M • ..,,..:~ • ~ ~.1, -~--~~·

·~~~w.~~ .... , ..................... /' ~~....,. ~ '"'"111'"1'~t· .. ,'!tT-l'+i'°'--~- ~------~~~~ ';·~. • - • ·"'· I ... ·-·:... • • • • - • I•• • •• • It. "'" ,.. __

j

'

,:,'\J

• -~ • .t. • .......... ~ •

\ f

'{ .,

Page 122: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.-:-~~·"SJ.·_:;,~~.~~· ; l L....... - • .... , •,,${ .. ·£.:~-.!j" ::; _.,.. ...... _,, .. M._ ... , .......... .., ........... ,>J"- ••• <,,- ""''•'"''" • .,,, "-'""' -··-...----~ .... ~ .. - .... 0,0. - ............ 2:"-::=::5

9.30,------------~--------------

Pn, (x) 2

7.75

6.2

4.6

3.

1.

"

CEiJNolu = 10 dB

wr = 3

* >.. • 0

* >.. • 0.5

* >.. • 9

* ._). - 6

~ p~ u

""-

,; ; ~LI ~\.,.~ ;! O,OOj ' I 2/'3

-2/3 -1/3 0.0 1/3 1.0

Fig.

x

4-20. Pdf of quadrature noise fran liroi.ter, p , tx) n2

.,/'

c

t\• • <,,' ··"'~~"',, ,' ' ................... ',* •• r 1-t,'....'.'t'"•"• ',' ! ;,_,:!•• :.tJ. ·~ "~~'" t\ .< ... ·: "'.!''~t->J_~ , ·~~·· ~H _ ,,.,:_/ 1.-~';.._, -\,,_...,_; • .,.. .. _.',o..;l,,• .. -'f•'>_,""L,,.,z ... ~ ... ,J,'I,.~' ._-,rr~1 .... •.,,,».'~ ... \••••fl i-'"O • .,...,.-, • \,~ .. ·~ f.'..-"•t...~•"•• ]'~,,.. ..... ...,. -- F,. ~- ·-.,'!!,, ..... _......:...-...._.:~-., - "• - ,.,.. ., ·-• ~~ - -• •

..... 0 .i::,.

T -~ ~·-·

Page 123: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·::==---------------~ ~l_..-""' .... '"',......_.......-,..., ........ ~ ...... , ___ 11,1_•tt prq • sat ._, "'•"'•~~ .. -....,.....~:fl.Wf$,,......WM Wif __ _ e~5""'"9t ... ai.c •:sses ... ...-"!l''f4:'!.:~,.~ ...... --~~-"',~ .. , -J • t··-~--""'·-..,~.,~ ' S .. •.t'"" '" '·, • • ""T ... ' ..-~ '. • ~ l

' l I t

"

J

13.2

I ,

11.0 1 -.

a.~a-

6.6·

Pn, (x) 2

4.4

2,2 I

o.o· 1

I

-1.0

,.

~OJU = lJ dB

wr = 3 I I *

* >. • 0

* >. • o.s

~

-2/3

Fig. 4-21.

>- • 9

I I

·* >. • 6

_113 o.o 1/ 3 :x

Pdf of quadrature noise fran l.irniter, p , (x) n2

11f-<4 ,.;,,, f-.1,,_. ... ~,'l-··-:..~"-t'°F·:.!'..:'!'lol"' :,.!'~=- .. .-,,.,,. .... ;::,1.-~ ... ·,11~·1·,,:;~-. ,•t ........ ~ ... t•/-!t-,., ·:,~::;.,~"'"': 't.~~.; .. ~::.:_ i,,',····~:-~.~.;~':t."''~ ... .,.\.· ..._

2/3

.... ~ _.l>,,,..

1.0

>--' 0 u,

,.,. .. ,~•;..• .. - ,.t· .,,:.'lc.l !l •, ,,,.,!J..•~ .,1 •• 1.~! :..~1

Page 124: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~-~~---~;;; .. ,... ... _____ ,.. ~. - :::;:.;i:il'8'---¥.::...-,~ ..... --t~ ...__,., ........ _ ..... ,r :-~·'-~--~ .. ? ... ~ •t. _,, ,_ ---'-~S-J ,!',.,•._~ Jut: -~---d-·-«~ *!' ~~"".:._j-·

18.6.

15.5 .

12. 4

9.3

Pn, (x) 2

6.2

3.1

o.o I -1.0

.-

c~!N0J0 == 16 dB

wr == 3

,,· ,/

*

,,,.

* r---X • 9

* --->. - 6

- 3

>. •O---...

* >. • 0.5

.:2/3

Fig. 4-22.

- 2

x

I

1/ 3

Pdf of quadrature noise frcm limiter, p , (x) n2

- 1

2/3 I

l. 0

\-' 0

°'

:;::-~,..;.;;:~:=.:.~: ,{:,··/·•'"•" •' ·:·'•""<•V, •,,_, .. ,:,,,, • •' ,. '.. ,,,,,•,•> ~ ,.· ~ <"','• ,~, •;:,.~.,,;.-_./-,·-'·' •·-~ '• ··---#'-'••'".......,._,,,.,~_.,, '• •

, , • , J .- _,_.,., - • ,, ~-.-•'1"•-,,·-=--~-•-•~"..-'"'""'--a.,..._,,M,-..,.,,,._, ___ -, ...... --..-.~..,._,_..,.... . .,.-.,.,,..-. "'-->*•~·

..... , ....

I

I \ i 1 .. ! '! -,

·:!

Page 125: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

IL~ {} ll i

' i 1,'

l !

i' ,, ', ,, , I

l i J

!

I lJ ·---

,."'11'!."'M!!l!'!-!!'!l!--!\I'*'"""~--!!!!!!E!'e!~~!!'t:!!'P'l."':~~!'!'!--~·--&o""';•"!l'!±!!!<!-tffl>""at-•----•---'"'h-•-w,..•-•:.,---. -'"'-~---·-111*---.. -- ~-,,._,_..,.__.,....-, · ...,,, -~-1r~ 15-""

behaves in a siJnilar manner to Gaussian noise at large up-link [Ei,!Nol,

!nvever, at srrall up-link I~0], both pni (x-A') and_pn2 (x) behave like

1

*

107

As ). increases, inplying that the channel beccnes nore and rrore

linear, 1both p 1 (x-A') and p 1 {x) tend toward Gaussian density functions nl n2

for all values of up-link bit energy to noise pcwer spectral density

ratio.

In oroor to obtain P , the receiver error rate, we rrust take into e

account both the noise a::inponent of the limiter output due.to.the up-link

Gaussian noise and additive cla-m-link Gaussian noise. Let us assurre that

(1 and t 2, repre~ting the in-phase and quadrature o:np:ments of the

aa.m.-link noise a:xtpe.nent, are zero nean Gaussian randan variables with

vari.anoo Nd watts. We may then refine the total in-phase and quadrature

cx:mpcnents of the noise at the receiver input as

u = ni + f;l (4. 34)

(4.35)

The probability density functions pu(x) and pv(x) of the in-phase

and quadrature noise cx::rrpcnents may then be cbtained by convolving the

oon:esponding density ftmcticns o~ ni and f;l or ni and t2 respectively • . For exarcple the in-phase prooability density functicn pu(x) is given by

'

,,

I 'I

l

.. .

,, I -~

..;; l

:

Page 126: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

; '-'l . ' \ * !

l\ ~) "

. '

•,' ~·

I t

i ,

l

_ ""I l!!!!!W---•-....;;..---•ta-:e ... Je .. •-•""*4-+w-•...,---•-• _,,.,,..,,,,_, -·,---.... - .... ~~,..,.._.. .. _,.~·. -,,..,.._..r~-..t

1-A'

pu(x) = I Pn' (z) p~ (x-z) dz 1 1

(4.36}

'4) -1-A'

where

pf; (x) p~ (x) 1 2 = = exp I-x /2N dJ

1 2 /2,iNd (4. 37}

are the prd:>ability density functions of the in-phase and quadrature

noise cx:::llpOnents, ~land t 2 , in the dam-link. The probability density

fm.cticn of the quadrature noise, v, may l::e similarly ootained.

108

Sincl:! eadl sarrple of the signal at the input of the '!WI' is

statistically independent and the 'IWl' itself is assurred to be rreno:ryless·,

it then follows that the sarrples at the output of the 'IWl' are statisti­

cally independent. Using this assurcptian the ronventicnal integrate and

dunp detector will be replaced by a single sanple detector and majority

logic decision device. The error prooabili ty is then given by the pro­

babili ty that nore than half the, wr = 2.e.+l, baseband sanples qre detected

in error (47], when: Wis the system bandwidth.

Using the binanial distributicn, the error probability can then

be carputed fran·

.9. P = , (2.e.+l) ! 2t+ 1-j' (1 ) j

e l (2R.+1-j) ! j ! P -P (4. 38)

j=O

:En this expression, p, the probability of cne sarrple bemg in

error is given by the prd:>ability that u and/or v, as defined in equations

(4.34-4.35), fall outside the rorrect decision region. It can be shown

-, l .

j j i

\•'

·' ,. ,,, .•,

' ,.

Page 127: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I"'

i :

' i l

' l

•:

·: t~ '; · . ..:

that 159]

p = P1 + P2 (1-pl)

-A'

pl = Pr[u+A' < O] = f P (x) dx u .....

p2 = Pr{ lvl - u tan ~ > A'tan ~ lutA' > O]

To detennine p1

, wie first define

y = x + A'

'!hen substituting equaticns (4.36) and (4.41) into

0 1-A'

P1 = f f Pn' (z) pt (y-A' -z) dzdy __, -1-A' 1 1

(4.39) yields

Now define ilie new randan variables a and e as

y = 13-1 13+1

z. = sin a

(4.39)

(4. 40)

(4.41)

(4.42)

(4.43)

(4. 44)

Substituting equations (4.43-4.44) into (4.42) and in~ating

over 13, yields after sare manipulation

109

'

:I • .; ;,

i t } 1

\ ' .

; ;,

i ,,

I •' '

Page 128: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I

..

' ·-. .,.:./,.· ; ,.,...

... ~ !, .. ._!.~~" .. ,,': .~., ,;~.

.. • ..

{ r

i ! '

(4. 40)

A sin ("n) 2

l"N u

[

A sin(°lr) 4' 2

- {N u

(4.45)

\

Similarly,. substitutioo of equaticns (4. 34-4. 35) into equation

yields after sane manipulation 1 1

*

P2 '!::! ,r2 I I p [-A'-sin(mr)] 2 n' 2

0 -1 l P [sin (611')] • n' 2 2

~ cos(-) cos(-) [

sin (~ll') sin(~) + sin (~,r) cos(~) J cm 611'

/N: 2 2 d

(4. 46)

110

F.quatiais (4.38, 4.45-4.46) allow us to calallate the prcbab:i.lity

of en:or for ~- M-ary CPSK system operating over a soft-limited dlannel,

where the integrals in { 4. 45) and ( 4. 46) Im.1St be evaluated mmerically. I

In figures 4-23 to 4-25, the probability of ~, P , is plotted e

as a :flmction of davll-link bit energy to noise paver spectral density

ratio [ (A 1 ) 2wr;2Nd] , for different values of noma.lized limiter softress ·

. * factor, ). , and different up-link bit energy to noise ~ spectral den-

sity rati~ IA2rll'/2N ] . Also shcmn in these. figures is the plot of the . u .

correspcmding probability of error for the linear channel us_ing .a ma:trl1ed

filter reatlver, the optim3.1 ~ceiver for. linear channel. The results

in figures 4-23 to 4-25 indicate tHat for a majority logic receiver the

--- .... p-----·-------------------------* 'fiu.,; is v.n a'°:l"'l,. ro:d..1i.c1.ti01 b.:--~=.·1 r».1 ._ 1 --' ind ,L·,· "' • ., , -.c.· ,...,'°.. ·.r. .... e ,1SsU1=.. 1..!;Jen~,ce OJ. n I. a.i1u n 2 •

Page 129: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

) )

' ',! . . ;

l '·

. ~

p e

10-3

[Y,,01.i = 7 dB

= 6

MAJORITY IDGIC ROCEivER , wr '= 2.') 1

• A ..., 1

MATCHED FIL'IER Rro:I\1£R

-·---,· SOFT-LIMITED OI1'NNEL

10 14 18 22 26

Fiq. 4-23. PrcbabiJity of. error vs EJ!N0

, 2-p.~a&! CPSK

111

l l $ l ;

t

) .,~

l '

) ~~

' • )

! ]

'i • ~ . j ,, ,! I;

Page 130: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' . .. i > ' l

p e

10 14

LINEAR OiA"JNEL

* ).. = 9 ).* :::: 6 ).* = 3 >. = o. 5

µNEAR CIA~ ).* = 1 . ).* = o.s ). = 0

LINEAR O@NNEL

=-

MA'.lOIED FIL'IER RECEIVER

18 22 26 30

Fig. 4-24. Prcbability of error vs ~O' 2-phase CPSK

112

\ .. l ·~ ,I,

~ ~ . ,!

I ' , f ' I <

l,

' · .. l

! . .

\'

> •

I . I _; I ;. I

~ J

u

Page 131: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.· ~ ·.

I Ji )

'

' >

! . . I

i

I I

p e

10-6

10-1

10

wr = 3 wr = 201

* * -·- ). = 1 ). = 4.5

* * ·- -· ). = 0.75 ). = 3

* * -··- ). = 0.5 ). = 1. 5

* * ---- ). = 0 ). = 0

Ml\JORITY WGIC ~IVER, Wl'=201

MAJORITI LOGIC J®:EIVER, WI' = 3

MATCHED FILTER ROCEIVER

_' 14 18 22

F:i.9: 4-25. :Prcbability of error vs EiJN0

, 2-phase CPSK

113

a

!: ... " .. . , .: •,

~ '

l

Page 132: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

? \ .,

I •

presence of hard-limiter or any fonn of soft-limiter can .inprove the

perfonnance of the system. Ostensibly, this superiority in the petior-

mance of the limited channel may strike sare cx:xmunicaticn theorists as

ananaloos. Ha.,,,ever, we point out that our claim of this inproverrent in

the performanCE of the anplitude-1.im.:i.ted channel can only apply to the

case of the single sanple detection, najority logic reaciver. This sarre

ronclusion has also been rrade by others [ 49, 59 J for the case of a hard­

limited channel. The generalizaticn to tpe piecewise-linear limiter is,

however, new. Heuristically cne can justify the afore-mentioned perfor-

nanre inproverrent by ccnsidering the anplitude-lirnited channel as a fonn

of regenerative repeater. The "soft-averaging" in the piecewise-linear

envelope limited channel tends to recover the signal phase fran the up-

l.ink in-phase noise, the only source of inpairment for the binary case, . 4

and thareby redures the degrading ef feet of the total noise. H~ver,

without cbv.n-link thennal distumanre, such inproverrent is cnly marginal

l:ecause in this case the limiter in the repeater will na-, be cascaded

~ly to t.'1-ie hard-decisicn devire in the reooi ver and the corrt,ined ~. '

effect is the sane as if we were· to ronsider the linear dlannel.

Figures 4-26 and 4-27 depict similar results for the case of 4-

and 8-phase CPSK where the up-link and dam-link carrier to noise paver

ratios are defined as

(CNR)u =

(<NR) d = (4. 47)

To cx:nclude this sectim we .restJ:ess the fact that a majo-

114

. '

Page 133: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

4 115 3 4PHASE CPSK

\ 2 (SNR)u = 13 dB t

; 1 WT = 3

10-• fCR>

\ 1 \ \

> \. 1 \ \

X R \ ~ \ l

\ ' - ?

\ -I i i \ ',i }

~ \ \ \ j \ X=6 } \ ;~

'

Pe \ t \ '

,>

\ ., -·

_, \ X =4 ., \ ·--.,.

;

\ : ~ ~ ·•, 10- \ \ \ ··, \ ,:

\ ~ \ X =2 !

\ \ X =O f '

\ '(~ : \ • i

t l

\ ,l ' \ \ 10- \ \ 1 ' \ :

---- Without Limiter \ ' \. .,

,1

With Limiter ' ' :, ;,

' f l ' ' ·· 1 ' ' ' ' 10-~ ...............

0 5 10 15 20 25 30 35 (CNR)

0 , dB

~-Fig, 4-26. P.rd)ability of error vs ~ 0, 4-phase CPSK

I'- . - ----- --.......... ,. ' •,

Page 134: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.

"

.. '•

\ ~

' ' ' :

' ! i

; )

; ' 0

. 1

10-1

X=4 -r-

X=O

'·'

... , ' ' ' ' ' ' ' \ \

\. \.

\ \

-- With Limiter

Without Limiter

f{R)

\ \

\ \

\

R

\

\ \

\ \

\ \

\ \

' ' ' '

8 PHASE CPSK

(SNR)u = 16 dB

WT= 3

' ' ' ' ....... ........

.............. --

116

,o-4-+-~~~-,-~~~~~~~~--.-~~~--r-~~~--,.--~~~--.-~~~~

0 5 10 15 20 25 30 35

(CNR) 0 ; dB

P;ig. 4-27. P.rcbability of error vs ~O' 8-phase CPSK

----------------

Page 135: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ ;

J

l

117

rity logic reooiver is not a good approxi.matim to a matched filter re-

ooiver for a linear drannel f 47]. The perfonuanre of the rrajority logic

rea:i ver is general}¥ _p:xrrer on the linear dlannel than that of the

matched filter which is the optimal receiver for the linear channel. The

main reasm for using the majority logic receiver in the present work is

to avoid the difficulties associated with evaluating the stochastic inte-

gral arising in tie analysis of the rratdled filter receiver. Any a:nclu-

sioos reached in the case of a majority logic rereiver shc:uld not be

assurred to translate to the situaticn when a matdled filter is used.

Further investigations 01 the perforrnanre of an cptimal rereiver (in the

naxinum likelihcxxl sense) will be deferred until Olapter 5.

4.2.2) Actual 'lWI' channel

In this section we shall apply the saIIE rrethoo to analyze the

performance of a Q>SK system through a nonlinear channel o:ntaining an

actual 'IWl' anplifier. A typical rrodel of sudl a cx:mn.mications system

is as shown in Fig. 4-28. The noolinear quadrature m::x:lel of the 'lWI' de-

' velqied in Cllapter 2 will be assurred throughout the analysis. Similar

to the argurrent leading to equatirn (4.21), tre signal at the output of ......___,,,

the TWl' anplifier then becanes

(4.48)

where Z (·} and z (·) are as defined in equatioos c21.1a~2.19).

p q .

,O,~--.... -.-~------~-----~-"""""--""!'""--..,...-..--.-----·------~----~ .... ~ ; ~ . ,: '

('

' ~ i

I,

{

Page 136: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~· ·-~ :~

;I

i

UP- LINK / DOWN-LINK

NOISE NOISE J r----------, PSK- r I

SIGNAL ZONAL I I A I COHERENT f ESTIMATE ~ BANDPASS AM/PM AM/AM

Acos tw0 t+8l FILTER I I I'-./ . l DETECTOR \ OF 8

B·~{ 0,1r} . I I L ___ TWT_ ___ _J

kT st<(k+l)T x(t) zlt)

Fig. 4-28. M::ldel for binary CPSK transmissioo through a satellite type channel . '

f I•

···~

/

... - ~~-

..... ..... CXl

( .. : ....

Page 137: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

i i

<{"---' \..

119

. The effective signal o:npcnent, s' (t) , at the output of the

nmlinear device is defined as the axiditiooal average of (4.48) over all 'i ,,;

R and c • Hence V""

(4.49)

where A' and f3 are the effecti~ signal anplitude am. pha.se shift oofined

by

A' = A~ [Z (R) ros e::] }2 + {~,e: [Zq (R) ,e: p

and

-1 ~~ •• {zq{Rl =sd] f3 = - tan ~ {Z (R) cos e:}

, e: p

where E_ I. J denotes the expectatim over R and e: • --il, e:

(X)S e:]}2

C)

(4. 50)

The follcwing equality is ~ in deriving the ~ressicns for ,

A' and f3.

R [Z '(R) sin e: ] ...... ~,e: p = ~,e:[Zq(R) sin e:J = o ...

( 4. 51)

~ on the specific quadrature nodel of 'IW1' as described in

equat:icns (2.18-2.19), the values of A' and e as cefined in equatioo

(4.50) cari actually be evaluated in cl~ fonn as shCMn in Appendix D.l.

The effective noise at the output of the 'lWI' is then cbtained by

subtracting (4.49) fran (4.48) and is given by

I

a •:.w:. a '-t S •\, > .. ~r 4( .. ~ a , .!f ... J .. *' ~ ' (

.. , . , . ' •;.

-:: i ~ I °' I I I •,

} ' t ,, ~ ' ' , ' I ·,, I

J; '

' ' . , J

~

•' •

Page 138: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ,

120

= Z (R) CX)S{e: + S} - Z (R) sin(e: + 13) - A' p q (4.52) ,

~{t) = Z {R) sin (t + S) - Z (R) cos Ct + tl) p q

(4.53)

txJe to the a:nplexity of z ( ·) and Z ( ·) it is very difficult to p q

find the prcbabili ty density function, p , (x) , in closed form. H~ver nl

ni as defined in ( 4. 52) is a bounded randan variable and zp (R) , Z q (R) are

snooth.ly cx:ntinmus noolinearities. Ccnsequently the prooability density

functicn of ni nust be of bounded variation and can be expressed in terms

of a Gram-Chartier series expansicn as [28] 2

Pn• (x) == l

1

I 2nN' u

x - 2N~ co 11ic

e I k! ~ k=O

[x/lNT] u (4.54}

where N~ is the variance of ni and 1\ (x) is the Hennite polyncxni.al of

degree k satisfying

Hic+1 (x) = x Hic·(x) - k Hic-1 (x) _(4.55)

Too He.nnite polynani.als up to the twelfth degree are as~ in ' ' ,,,

Table 4-1. ,, ,,

Page 139: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

n : '

\l '

' t ·} ;, > ; ~ 1

tt0

(x)

H1

(X)

H2 (x)

H3 (x)

l-14 (x)

H5 (X)

HG (X)

H7(x)

H8

(x)

H9 (x)

HlO (x)

HU (x)

812<x> ...

Table 4-1: HEFMI.TE POLYNCMI:AI.S

1

.... x

2 - 1 x

3 3x x -

4 2 3 x - 6x +

5 10x3 + lSx x -

6 4 45x

2 - 15 x - lSx +

7. 5 3& x - 21:x + 105x - lOSx

8 - 28x~ + 210x4 - 420x2 + 105 x •

9 7 x -36x + 5 3 378x - 1260x + 945x

10 8 6 4 472Sx2 - 945 x - 45x + 630x - 3150x +

. 11 - 55x9 + 990x7

- 6930x5 + 1732Sx3 -).039Sx. x

x12 - 66x10 + 148Sx8 - 13860x6 +5197Sx4 - 62370x2 + 10395

..

121

' .·~

' .. . { I

' l

' .. < :....,;

.. i . 1 " ' \

Page 140: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

f l

· .. \

~· . . , ' ~1; ""': ..

I ',

122

The ooefficient ~ in equation (4.54) is calculated as the inte-

gral

= f H. Ix/INT] p , (x) dx a· -x. u nl (4. 56)

where n is the range of x and correspc11ds to O ~ R < 00 and -n .:: £ < n •

Substituting (4.55) in (4.56) ~ obtain a recursive farm for\:_ as

= 1\-i [x/ ./ N~] pn, (x) dx -1

(k-1) I 1\-2[x/./ N~] Pn• (x) dx ,0 1

(4.57)

fran which it is readily seen that the evaluation of each successive~

requires only the evaluatioo of the kth narent of the random variable n1 as given in (4.52) sinoo all other terms have been previously calculated.

It should be noted that the first three coefficients may be evaluated by

inspecticn as

hi = 0

For the remaining coefficients l',c,, k ::-_ 3, numarical integratioo techni­

ques (for &tails, see Appendix D.2) are used to evaluate the required

m::mmts of n1 and hence the coefficients 1\.· An identical procedure is .

foll~ to obtain the statistics of the quadrature noise a:np:>nent ~·

''kl<> _________ ...

Page 141: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. Jl '~ )

..

r·"'

' \

I ),

'

. . The results cbtained fran the evaluation of the variances of ni

and n2 indicate that at large values of the input carrier to noise ix,.-.er

ratio (CNR} I' defined as

(CNR} I =

123

the equivalent in-phase noise is suppressed by the limiting acticn of the

'IWI', and henre there is an increase in the in-phase CNR at the 'lWI' output.

'lllis is shown in Fig. 4-29 which depicts the equivalent in-phase and

quadrature noise varianres as a functioo of the input carrier to noise

~ ratio (CNR)r Also shCMn in Fig. 4-29 is a plot of the ratio of

the in-phase 'lWl' output CNR to the input om where the 'output CNR is

_given by

<CNR>o =

I

This curve is ccnparable to .results obtained by Lesh [52) for the case of

an error functicn type of limi. ter. This i.nprovenent in in-phase CNR at

the 'IWl' output suggests that sarewhat i.nproved error-rate perfo.mance,

' cx:mpared. to the linear channel, may be obtained for signals which a:n-

tained no quadrature energy, as in the ca,se of binary CPSK signals.

In principle, the performance of arrJ M-ary CPSK system can be eva­

luated, similarly to that in secticn 4.2.1, ooce the prcbability density '

functicn of ni and the joint probability density function of ni and n2

, . . ,

.,,'

L,

Page 142: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

• !

. ~·~·

,. ,,

,,'

' ' ~

I ; • . /

'

\ ,, .+ f

0:: w

0

~ -10 a..

w en 0 z w 0:: :::::>

!i ~ -20 <( :::::> 0

0 z <(

w Cl) <( :c a.. ~ -30

-- NOISE , POWER

o o (CNR)0

I (CNR) 1

124

--0:: z u -......... _o 0:: z u -

10.

5

0

---,-~~~~-y-~~~~--,~~~~--,.--~~~~...-~~~~4--2

-20 -10 0 10 20 30

INPUT CARRIER TO NOISE RATIO (CNR)1

• dB

Fig. 4-29. Variance of equivalent in-i;ilase and quadrature noise and ratio of

output to input CNR (2 .. s, dB input ~ back.off) •

Page 143: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

} i

' -l l t . I ;

• I ' ' .

•' ·• .

,.

. . ·~ • 1, ~~ .. ::-(., ,,• ,'

'· I

l

J i

,

a.re known, albeit in an infinite series e}(J?,ansirn fo:rm as in (4.54) •

Havever, the o:xiputation becares rather cx:rrplicated, for the case of M

greater than two, unless &m; fonn of bounding technique is used [ 85] •

In the subsequent anaiysis we shall cc:nsider cnly the performance of a

125

binary a>SK system. transmitted th.rough the actual 'IWl' channel. Folla<lng

the.rrethod ooscribed in secticn 4.2.1, the prcbability density function

of the total interference, ni,, is then obtained by ccnvolving the e::im­

valent in-phase noise density functioo in (4.54) with the Gaussian density

f\lnction of the down-link noise t 1 (having variance Nd watts) to get

\_ Q)

pl'\r (x) 1 f 2 pn 1 (x-z) exp[-z /2Nd] dz I 2nNd _ 1 .

(4.58) =

Substitution of (4.54) into (4.58) yields after sare nanipulation .

[38, W• 837)

pl\r{x) =

(4.59)

where N.r = N~ + Nd is the to~ noise variance and h1 = ~ = O fran

· equaticn (4.57).

The fitst term in equaticn (4.59) is the Gaussian term which

would be obtained in.the case of a linear channel and the remaining terms

represent oo.n:ection factors which acoount for the ncnlinea:r effects of

the channel.

Page 144: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\l ~, I l

- l

. ' . .... \_. ..

(' ~· ,' . '

1 l • i I

~

126

'!'re probability of one sanple being in error, p, is then given by

-A'

p = f pl1.r(x} ax (4.60)

Substituticn of (4.59) into (4.60) yields after sare :rnanipulaticn

[38, pp. 837)

. p

n -p .., (-l)n 2

= } erfc( /p) + ~ l n"! 11n IN~ I N.rl Hn-l [ np] 12; n=3

(4.61)

~pis the effective .received carrier to noise pc:Mer ratio, define.d

as

p =

The absolute cx:nvergenoo property of the series in (4.61) is discussed

in sate &tail in Appendix E. Suffioo it t.o sey at tli.is point that the

error which arises as a result of truncating the series expansion of

equaticn (4.61) at the (Irl)st tenn can be made as small as d3sired,

provided that Lis sufficiently large and satisfies

(4.62)

---

Page 145: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·~

127

A CXl'!pUter program has been written to a::npute the bit error rate

of a ooherent bina.xy a>SK system fran equations (4.38) and (4.61) for the

case of wr = 3 and for different values of up-link and dc:Mn-link carrier

to noise pc7Ner ratios, (CNR}u' (CNR) d defined as

(Om)u =

(<NR) d =

/ In this program the cx:ntr.ib.ltions in the ncnlinear oorrection tenn iii

equaticn (4.61} up to and incluling the eighth m:JTJmt are included in the '

cx:nputatian. This was found ~rirrentally to yield quite p.recise .results ·t~

in the range of up-link CNR o:insideJ:ed. For exanple the ~tage

ootitributian of the eighth teDn in ~ticn (4.61) to the bit~; ra~.

in (4.38} was found to be less than 2% for all up-link CNR bela-., 5 dB.

This o:intribution is still within 1% for the case of 10 dB up-link CNR

provided that the cb.-m-link CNR is kept small (less than or equal to 10

dB) • HQ,.1ever, at higher values of up-link and da'111-link CNR' s , nore

tenn'3 are needed due to the increasingly nan-Gaussian nablre of ni. Ty-\....

pical num:rrical values of the noise m:irents are listed in Table 4-2 for

different values of up-link CNR.

In Fig. 4-30, the oatputed bit error rates are plotted and

cx:atpated with the oorrespooding resUlts for the linear dlannel. using a

~ingle sanple detecticn and majority logic rereiver. The bit error rate

· ..

Page 146: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'?:- • T 't~·- 5::·1· "•@ J' WWW6*1 b '"~·...,? \ I S!Ji1!# .... !S!!.l!£-"*'42• ;Jh44UW!Jt:ae,,f(,,)i!IOC$LSS ... ¥..WL ,,; ,...;:,..,.\ ~-~ ....... ~ .. ·-.-w--. .1.,;'" ,. ........... ! .w:: ,~

,.... -- ,

.,

.. Table 4-2: NtM::R!CAL CAtaJLA'.I'Ial OF M:'f,1EN'1'S OF IN-PHASE OOISE

A 1

, S r UP-LINK CARRIER TO NOISE RATIO (CNR) U' (dB) mth MOMENT

(VOLTS)m I -10 -5 0 S 10

A1

(volt) 8.7105xl0-l 1.50309 2.29829 2.89994 3.18779

6 (radian)· -.43658 -.40186 -.36057 -.33576 -.33155

m = 1 3.3242lxl-O-~ l.49927xl0-5 -4.4488lxl0-7 5.67843xl0-S 8.73919xl0- 6

m = 2 4.58953 3.62611 1.76501 4.71406xl0-l ~.64520xl0- 2

m = 3 -S.91645 -7.50001 -3.99085 -6.998llxl0-l -6.10510xl0-Z

m = 4 4.16007xl0 3.93109x10 l.7564lxl0 1.98796 ,, 8.41965xl0 -2

m = 5 -1.09157xl02

-l.46993xl02 -7.1909Sxl0 -5.93829 -l.24416x10-l

2 , 2 2 -1 m = 6 5,10399xl0 6.63206xl0 3.2433Sxl0 2.0l804xl0 2.20425x10

{, - 3 3 3 -1 m = 7 -1.73932xl0 -2.86816xl0 -l.51070xl0 -7.43842xl0 -4.40788xl0

3 4 3 2 -1 m = 8 7.24872x10 1.29189xl0 · 7.2725lxl0 2.93126xl0 9,77318xl0

~-- .. ~~~·~ ,,•o..~~.::.~~-;:~;pt~J'07i'~'!JJJ!f', .. 1~4·f!'~~'4,;~·.~.~J~'!? ~·~~~:v'"__~ >~-_,-.-..~ ... ~- • .~~ • :; ' :' •• '. _: ~>,. • ,_.j,..-,.~-

I-' N co

.,. ~?.::'" ~··.·--~~:...:..' 1• __ :...._.~,:-_M:~'·J. .. ,.::.,h........::-::......1"'..:;~"' ...... ·i 11 .... ,. .. ~;..., ....... <.. •• ,,;;,,,.:•:1 ...... ~\.::~

Page 147: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

·~

,, I ,.'

J l

' ' '

' WT=3 6 129

UP-LINK CNR=-10 dB ~=-.-===-,,-,,.. --.-=---:..---· - -. =:-..=---. -

-- ------·--··---·--·--·-·--5d8

5

--·-5

-··-LINEAR A

--LINEAR B

5

,o-4

5 .""' .

IOdB\ -~.5dB

""'· "" ,o-~ -10 -4 2 8 14 20 26

DOWN-LINK CNR, dB

Fig. 4-30. Bit error rate for a binary CPSK system as a function of received

~ (A; majority logic reooiver, B; matched filter receiver}.

,; r. ~ ·l " '·

Page 148: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

r ' • '!'

i:: ... ~ '""'' •,

1f ~

...

'' , '.,

I

' i

I ! • ~

1 I

for th.is case is given in (4.38) with

p = (4. 63)

~ erfc(x) cenotes the a:nplerrentary error functioo as cefined

earlier, and

A2 .....

is the up-link Gffi Yu = 2Nu

= A2

is the down-link CNR. Ya 2Nd

Also sh~ in Fig. 4.30 are plots of the bit error rate for the

case of a linear channel using a matdled filter rerei ver. The bit error

rate for th.is case is given by

p = } erfc(~) (4.64) e

where YuYa wr

YT = Yu+ Ya

The plots m Fig. 4-30 exhibit an irreducible error rate far

large cb-m-link carrier to noise pa-.ier ratio due to the presence of the

up-link noise cx:::rrponent. It is clear frcm the plots that in the case 6£

a majority logic receiver, the perfonnanoo over a nonlinear channel is

superior to that over the linear channel. Th.is sarre cx:nclusion was

readled by Jain f49J and Lyons· [59] for the case of a hard-limited

channel •

130

,,

Page 149: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. i ,. t

'

, I

t

..... ,,

\. •" ' ,. . '•, ? ... 'II:.~ ."" ~

,_:· ·~· : ' . '' ..... ,:

!\..,' ,~ • .:,

'-la•: . .-·,- --

CHAPTER 5 .

RECEIVER S.TRUCTURES FOR NONLINEAR WIDEBAND

BINARY CPSK CHANNELS

The discussion of the effect of thermal noise

• disturbances on the performance of binary CPSK systems in

section 4.2 has been confined to the case of single sample

detection followed by a majority logic decision. · In this

chapt'er we shall extend this analysis to cover two other

receiver structures, namely, the correlation receiver and

the maximum likelihood (ML) receiver. The analysis of the

correlation \t"eceiver is of interest because it is the

optimal receiver for the linear channel. This receiver

structure has been analyzed in the context of a bandpass

nonlinear channel by Davisson et al [29], Jain [48] and

Jones et al [50]. However, the method of analysis yields

results only for the case of pure amplitude limiting and is

not readily extendible to the case of a bandpass nonlinearity

exhibiting AM/PM conversion. Our method of analysis will

be somewhat similar to that of Jain [48] with the notion of

equivalent signal and noise at the output of the nonlinearity

as discussed in Chapter 4.

In section 5.2 we discuss the maximum likelihood

receiver for the nonlinear channel. This receiver structure

-·~-131

Page 150: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. , I ' I . !

' i

.... ,:i.·,. ... ':::_~~ ~· -...:~\ .....

. -· ..

! ·, ' ..

. ; ....

/

132

yields an estimate of the' transmitted phase .that most

likely caused a given received signal at the receiver

over one symbol duration. It i~ well known that for

the case of equally likely transmitted symbols and a bin-

ary CPSK system, as of interest here, the maximum likeli-

hood criterion, as used in section 5.2, yields the

receiver with minimum average risk per decision. Further-

more, for the case of linear channel with only additive

Gaussian noise disturbances the maximum likelihood receiver

can be shown to be equivalent to the co~relation receiver

which is optimum in a decision theoretic sense. However,

it is usually difficult to calculate the performance of

this maximum likelihood receiver and we resort to approxi-

mation techniques in order to assess its performance.

5.1. CORRELATION RECEIVER

A block diagram representing a conventional cor-

relation receiver for a binary CPSK system is shown in

Fig. 5-1.a. The receiver cross-correlates the received

signal with the reference carrier. The output of the·

cross-correlator, assuming that a~l the harmonics higher

than the first are suppressed, is then passed through an

integrator. The outpu~ of the integrator is then sampled

at the end of each symbol duration and fed into a thres-A

hold detector_ which yields the detected phase e .. J.

To simplify the analysis, we approximate the inte-

gration operation by sampling qnd weighted summation as

shown in Fig. 5-1.b. The choice of scaling factor, ~1-, IWT

:·"'-s.-:·----'::""""..,._..,,_ ___ :':'l""_...,. _________________ ~----~----------......

Page 151: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~~~~-----------------........ ---.............. -=-=;;;;..;.=---;;;;;;;;;;;;;;;;;;;;;:;;;;:;;;;;:;;:;;~---------~----------~~--=-.~ ,·. •• ~ ..... ,_ #4r • ' .,

1·,~~ .t; :l;.•,r."' : • ~ , • ·,~,~..._-, 'I"':,,,,,.......,,. ' _> ,_ J ) i1'<±UW~

,-"'.............,. • ~,:'·:. ~-~., ... :.,, ... ·~-;,. 1 _;.,_ f [tt4 M!!2!Jl - . ¥@ £!3.M.43:f:" £~ .... £.t,.;_.;ePwa:wJ-,,, .J.JWWW1l!P,? . ..,..o::.-...;,.,-• ........_,,..,.,...,.,. ,..,,(~ : : ··(rt$> >·.···>l .... ~ ~-··r., -· --- ~- ... ~ .... - -

z(t)

.

z(t)

nit>

/ (

nit>

\ ... . 1--;AIA~-~~ - ;

I I UMP= I ! J FlL'IER

I L

I

--' ~

~ ==~J ·~ J wk

-~ .----- -- ---- ,•

cos(w0

t - 8) sattple at

t - kT

Fig. 5-1 a. Actual correlati.m receiver, (k-l)T ~ t" kT

,------ ---, '

I BALANCED I:EM)OOLMORI I I f ~ • H1' ' I .. lt--,,-1 ~~ ~ I I( w j i wr z '.IHl&5HOID e i I""\. A J o- FlL'JER j j hl'l' ~l wj I . IE'.IrolOR : •

I ' I

L --·--- --- -cos(,;,

0t - 8)

I ..,_/

I ! .I -1

sanple at

t = (k-l)T + _j_ w

sanple at

t = kT

Fig. 5-J: b. ApprOX.itrate rorrelati.cn receiver, (k-llT" t ~ kT

I-' w w

"""'

() ·:

Page 152: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

}

' }

·'• ,. . . '· .

'

·~

'•

is optional and is used here only for notational con-

veniences in the subsequent .analysis. In Fig. 5-1.b, the .

output of the cross correlator, after the lowpass filter,

is samp~ed every 6T = ~ seconds over the whole bit dur-'

ation. All WT samples are then fed to the thr~shold

detector. The transmitted phase, e, can take values of

O or n, ~ach with equal probability, and the probability

of making an idcorrect decision does not depend on whether

O or n is being transmitted within any particula~ bit

duration; Hence we shall assume throughout our discussion

in this section that e = o· is being transmitted. The out-

• put signal, z, to th~ threshold detector tnen becomes

z = WT 1 l W(jtiT)

IWT j=l

= /wT' A' + l I WT

WT l [ni(j6T) + , 1 (j6T)]

j=l

( 5 .1)

(5.2)

where A' and ni are the effective signai amplitude and the 0

equivalent in-phase noise component at the output of the •

134

bandpass nonlineari~y. The berm ~l represents the addi~ive

down-link Gaussian noise component as defined, in section 4. 2.

We now define

= WT }: · n' (jtiT)

j=l l cs.. 3)

• •. , .,.. ___________ o'.'!'i-____________________ _

' ·,

Page 153: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

~- l

~ .. '

l, ~-' .~~, k·\ ·• .. •

,, , . .;. ~· .. ~ ., ... ; ,~

N 2

= l

rm WT I f;l (jt.T)

j==l (5.4)

Q

It is clear that N2 is still a zero-mean Gaussian

random variable of variance Nd watts. The characteristic

function, CN (v) of N2 can be written as 2

~ (v) 2

(-5. 5)

Since the bandpass nonlinearity of interest is

assumed ta be mern~ryless and each input sample is statis­

tically. independent of all other samples, it then follows I

that t~e output samples n1 must also be statistically

independent. If C(V) and CN (v) represent the character-

135

! I .

istic functions of the samplesiW¥ and N1 respectively, then

based on the·"statistical independence of ni and equation

(5.3) we can write

(5. 6)

\ From the Fourier transform relationship between the

characteristic function and the corresponding probability

density function [ 27 J, we can expand the .. characteristic

function C(v) in terms of ·th~ central moments of n1 as

)

C(v) = l p=o

~[ iv] P p.· lwT (5.7)

Page 154: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l ~

. l " l

l l r

~ 1

...

. ·: 1, .

...

where mp = E I(np P)

and E[niJ = 0

136

Taking the logarithm in equatio~ ( 5. 6)

.tn [CN (v) J = WT in [C(v)J l co

~ ~EJ1 = WT in [1 + pk1 p. vWI'

(5.8)

Expanding m (1 + x) into a power series in x as [l,pp. 68] ... . l i

in (1 + x) = I (-l)l.- ~ -1 < x < 1 i=l l.

(5.9)

equation (5.8) becomes

(5.10)

where µr is the rth cumulant of ni and is related to the

moment mr by the following recursive relationship [14]

r l r ! ·

llr+l = mr+l - i.:li ! (r-i) 1 µr-t-i-i I\ (5.11)

Exponentiating (5.10) and expandi~g the exponential term

as an infinite series we obtain

µ2v2/2]. [

...

Jo (WT)m [ ~ r1 ~ (v) = exp [iv'wT µ1 - l µr iv mT r=3 rr ~] 1

(5.12) ,,

The exponential factor is the contribution of a Gaussian

random variable with mean µ1 and variance µ 2• By expand­

ing equation (5.12) and collec~ing terms of the same power

of WT, we obtain

,: ~,., ... """""~-~,--~111111111 ..... ~.----------------------------------------

~ l

l t t [ i

1 I i

Page 155: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

; ' '

,' ~

.. ,'

.. '

,. .

i \.13 3 rv /wr

137

\J~ 12]+ ......... } 31104 v

(5.13)

The probability of error can now be calculated from

equations (5.2; 5.6) and (5.13) as follows

P • Pr[Z<O] e

• i .. -ir1 j Im(c (v) c..~ (v) eiA' fflTJ 2Y

<- o Nl ~N2 . V (5.14)

where Im(.). denotes that uhe imaginary part must be taken.

Equation (5.14) follpws from the statistical inde­

.Pendenee between N1 and N2 and from the Fourier inversion

rell:ltionship bet;ween the cumulative dist·ribution function

and the characteristic function of a random variable (27) •

Page 156: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. l .. I ·,

. ,,

,'.

•i . \ ·.·

. ',.•• ".

138

Substitution of equations (5.6) and (5.13) into (5.14)

yields an explicit expression for Pe with the use of the <

following integration formulae [611~

f 0

"" J v 2P cos [/WT A'v] exp [- y2v2/2] dv = ~ (-l)WT /2

-p e

2p+I . y 0

2p+l v

(5.15)

sin [r'WT A'v] exp [-y 2v 2/2] dv = (-l)WT jf e-p • y2p+2

• H2p+l ( t,p") (5.16)

where Hp(.) is ~he Hermite polynomial as defined in

Chapter 4 and p =· (A') 2WT/2·t2 •

After some manipulations the bit error rate can be

expressed as follows

Pe = } erfc[ Ip]

exp [-p] [" 4

H3(/2p) .; l + ~ H5(/2p) + WT y4/2,f 24 72y

_.ex;e C-eJ [ µ5 µ3µ4

(/w¥)3y5 12,r ffi' H4 ( {2j;") + 2 H6 (ffp°)

l44y ·

3 Ila cm>] +

\13

1296y4

+( 2

µ3 µ5 } exp ~ .. e] [ µ6 µ4 .+ ffl H~ (ffp) ll52y 2 +

720y 2 (WT) y /2u •

Page 157: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I 1 ~

! f

I J

', -'.~ '

> ,\

!, .

f ,,•,

+

where

power

total

2 y

and p

noise

139

4 \.I 3

H9

( l2p) + 31104y 6 Hll ( /fp) l -....... (5.17)

= \.I 2 + Nd denotes the total received noise

= WT (A') 2 is the total received bit energy to 2

y power spectral density ratio.

The first term in equation (5.17) is similar to the

bit error rate expression for a linear additive Gaussian noise

channel. The other terms represent correction terms due to

the channel nonlinearity. Equation (5.17) and the knowledge

of the moments of n1 are sufficient to calculate the bit

error performance of any nonlinear channel with a correlat1on

receiver. Of computational significance is the presence of

the WT factors in the denominator. · For large values of WT,

our approximate_correlation receiver approaches the.con­

ventional correlation receiver and the computational effort

required in the computation of.P0

as shown in equation (5.17)

is greatly reduced.· Equation (S.17) r~sembles equation (4.63),

so the absolute c_onvergence property can -be readily estab-

lished as in . ltppendix E. For WT = i' the correlation

receiver is nothing but. a single sample detection as discussed

in Chapter 4, and equation (5.17) reduces to exactly the s_ame ~

expression as equation (4.63).

The probability of error for the case of a hard-

• •

...

I t. .

Page 158: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ ' ' j ' 'i j t

' f ' !

'. ,0 ,, . . '

' ',

I I \ l

....

\

140

limited repeater was computed from equation (5.17) for

2 different values of up-link, (CNR)u = A /2Nu' and down-

link carrier to noise power ratio, (CNR)d = (A 1)

2/2Nd' as

defined in section 4.2, and results of the computation

are depicted in Fig. 5-2 for the case of WT= 100. In the

case of the hard-limiter~ different moments 6f ni can be

directly evaluated in closed form as follows

But

and [16]

whe:r:e

= (5.18)

l(j-2) 2 l j l COS [ (j-2i) E] + _j._! __ ....,,._

i=o (j-i) ! i !2j-l 23[(j/2) ! ] 2

j ! (,j-i)

3 l cos [(j-2i)c} i !2 ,..

j even

j odd (5.19)

(5,20)

A2 ~ the up-link carrier to noise power ratio

..

Page 159: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I I I

}

t i ' I i { l l

i

' J t l I :,

i !

l ' .

·,

1

5 - - - LINFJ\R OU\~

I-U\ro-LP1I'IBJ) 0 IANNF:L

WI'"' 100

(~R) d = -13 dB

5

5

10-4

5

crnR> d' dB

10-S

(om}d • -6 dB • -3 dB

5

• O dB

• 3 dB

10-6

-17 -13 -9 -s -1 3 7 11

<om>u' dB

Fig, 5..-2, Probability of error vs up-link. am, 2-phase a>sK where

YoJa i=i (OOU.cl + 10 10910Wr, and YoJu = C~R}u + 10 log1owr.

141

j ~ I l

J

I I I

l

Page 160: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

•,. '

. , . ' ,,

' '',

1,,,

'' i ' ,•,

·: ;

and 1

F1

(a;b; -x) is the confluenthypergeometric function

[3].

It is evident from Fig. 5-2 that the error rate

for a hard-llitlted chann~l is higher than for the linear

channel at low values of (CNR)u'but that it gets smaller

as (CNR)u increases. If up-link carrier to noise power

ratio becomes very large the error rate of a hard-limited

142

channel and that of a linear channel will approach the same

value which is dictated by the down-link car~ier to noise

ratio, (CNR)d. The improvement in the error rate for large

(CNR)u is mainly due to the improvement in the output CNR

compared to that at the output of the linear channel (see

Fig. 4-29). Furthermore, in this region of high (CNR)u' /

the major contributien.t0 the error rate is provided by the

leading Gaussian term in equation ~-1~. The successive

higher order terms tend to increase the error rate, but

their contribution is so small that Pe still remains lower

than that of the linear channel •

5.2. MAXIMUM LIRELIHOOD RECEIVER

In the case of wideband binary CPSR signal transmission

tlu;ough ·a linear additive white Gaussian noise channel, it

is well-known that the oombination of a cross-correlator

followed by ~n integra~e and dump circuit and a threshold

detector as described in Fig. 5-1.a., provides optimal

performance. In fact, it is the maximum likelihood receiver

..

Page 161: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.~. ,,

'' ,,,

,, ,,,

'

143

for the linear channeL However, this is not

so for the case of a bandpass nonlinear channel with

Gaussian noise being added to the signal both before and

after the nonlinearity. This particular nonlinear

channel may be regarded (as shown in section 4.2) as a

linear channel with additive non-Gaussian disturbances.

For this type of channel, the maximum likelihood receiver

must be redefined, and should offer an improvement in

system performi,lJlce. Such a receiver is well-known to yield

the minimum probability of error when the transmitted

information digits are equally likely. ~

Following the same analysis as detailed in section

4.2, the output of the balancea demodulator, as shown in

Fig. 5-1.b may be expressed as

w(t) = aA' + an' (t) + t(t) (k-l)T < t < kT

(S.21)

where a = ± 1 depending on whether e = O orn is transmitted

and n'(t) represents the eq~ivalent in-phase noise at the

output of the nonline~r device as defined by equation (4.54).

t(t) is the in-phase component of the Gaussian,

down-link noise which is zero mean with variance Nd watts. /

If we consider WT samples of w(t) within one bit '

duration, we can rewrite equation (5.21) at sarnp~ing instant

t • k llT as

(5.22}

Page 162: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' •'

l '

!' I

where flT = ~ We shall assume in the subsequent analysis that

the probability density function of nk and ,k are known

either in closed form as in section 4.2.1 or in a series

expansion form as in section 4.2.2 .

and

with

and

. Define the new random variables

=

:c: -n' + t k k

the following probability density

Pz+ (z) = Pn, ( z) * p ( z) k k tk

' Pz-<z> = Pn,(-z) * p (z) k k ck

functions

where * denotes the convolutional integral.

(5.23)

(5.24)

(5.25)

(5.26)

144

The following conditional probability density function

of wk, conditioned on a, can be obtained from the equations

(5.22), (5.25 - 5.26) as

p(wkla=l) = p (w -A') zt k .

and

(S.27)

(5.28)

Based on the statistical independence of all WT

samples of wk' wit~in one bit duration, the cond!tional

likelihood ratio expression can then be written as.

-----~--""""" .,__...., .. -------·-----------------------------

'

I j

j i

l i l

t f

! I t f: }.

I !

I I )

l

Page 163: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

• J I { )

t ,. ' .{

I !

1 i

~-\t , I

' t, 1•, '· ', •,

;

WT p ~f wk -A' J 1T L{ w.k : k=l, ... •.•,WI'} = k=l

p 71<[wk. +A:]

Taking the logarithm in equation (5.29)

.e. [ wk : k = 1 , • • • , WT J t £ n { ~ [ wk : k = 1 , • • •• , WT ] }

wr = l A(wk)

k=l

where h(Wk) = ln ~:::~::::]

145

(5.29)

(5.30)

(5.31)

The nonlinear function A(wK) depends on the statistics

of n' and e ~s shown in equations (5.25 - 5.26) and (5.31).

The decision statistics t [ ~ : k=i';-••• , WT J must now be fed

into the threshold logic and the decision on the transmitted

a is based on

a~ 1(0=0) if t[ wk: k=l, •.. WT] >O

Acoept

a = -1(0=,r) if t[ wk: k=l, •••• WT]< 0 (5.32)

For the case of a purely amplitude limiting channel

as discussed in section 4.2, it can be shown that

1 1 [ ( Wk-U) 2] P (wk-A') = f exp - 2N Pn, (u-A') du zt { 2irNd -1 d k

(5.33)

~nd

exp[- (~+u)2 ] 1 l p ( wk+A') • f 2Nd

p (u-A') du ZJt l2nNd -1 11k

(5.34)

j

l '• i .. ~

Page 164: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

/

j i ! ; l

I \ l

t

!

. : .... '., ·,'

" ·'~' , ... · .. '. ·r ..

< ',• ,,· !'

146

where Nd= down-link noise power.

A'= equivalent in-phase signal amplitude and p , (.) nk

is the probability density function of the equivalent in-

phase noise component at the output of the limiter. /

From equations (4.25), (4.28) and (5.33 - 5.34) we

can determine A(wk), the desired nonlinear device that is

needed at the receiver. Figures 5-3 to 5-10 describe' the

characteristics of A(wk) for different values of normalized

* limiter softness factor,>.. = >./A, and for various values of

up-link and down-link bit energy to noise,pow~r spectral den­

sity ratio. lt is evident in Figures 5-3 to 5-6 that A(wk) is

a bounded nonlinear function of wk which becomes more and

• more linear as A or up-link bit energy to noise spectral

density ratio, [Eb/N0

]u, increases. Heuristically, the inci::aiase

in [Eb/No]u essentially reduces the effect of the limiter and

in the asymptotic case when no up-link noise is present this '

maximum likelihood receiver should be the same as the cor-

relation receiver in Fig. 5-1.b. However, for fixed channel

and [Eb] , an ·increase in [Eb] implies that the contribution No u Nod

due to down-link Gaussian noise becomes less significant than

that due to the equivalent, up~link, non-Gaussian noise com-.. ponent. ;tn such a case the large component of the signal that

appears at the input of the receiver would likely be due to

the up-link noise component and should be severely compressed,

as shown in Figures s-7 to 5-10,in order to reduce this up-...

link noise effect. On the other hand, if the down-link noise

compo?)ent is larger the re~eiver characteristics should again

approximate the car.relation receiver as ~a,..,n in Figure S·l a.

Page 165: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' 1 \ . \ ~

147 ' 'J

I 0 ...,

i N

' ....._

I II

"' ,<

1 O'I ID M 11"1

rl . II II II

0 0 ~ I

I

I "' ... 11 II II LO

I ,< ,< ,< "' fj

) s I~ ,,.l ..-i

f ~ ~

ii:

,•

~ ' . ·~

• ,,

C> ·~ ~ .§ )

...... :.· §

r..> ~ (ll

~ . I ~

.t • LO I ~ 1

• ~ i8 .....

M

·~ ~ 'O;I' ~ • II II II

t ::t ~

~' d,;,,

•rl

:0:0 ~ .... fl i

1

~} I

,•,

\

.~. '

.,. !,

. .'·t • t

0 (· '>' -.. ,

..., i. -· I

·~\ • ~ • • I.I)

? Q ,. • ,',

..... I

-Cl

• ,e-

'\"-""--~ .................... ~----------------

Page 166: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l

~ 148 ;

• l

. ., 0 . -· ~ -l .,

r~ rl t .. f'- ..l It) . 0 ..

\D M N r-l 0

II II II II II .. .. .. .. .. ..... -< ,< ,< ,< ,< • ~ LO

-fj

] ·I ,s

] ~

i, ~· ~ ~

~o ,I

• ~-0 'd

'F' 1 ' 'i I

! •. ;

\

~ 'i ri

~ • ~ '' ) '

~ ' ~ 'j I

18 ~ -c,. I·. ~

~ I':

~ s . .q<

i1~ u II II Ji ,w'

t .,

s:s re, • ~ ~

$ • "o

~ .. :

~ ri. \

~J

L::.t ~ ·, .l ·., '

lo • ~;l \

0 3 .. ~ I -, ! \

1'1·

• ' ~ • • • 1 \' ) t1

(\.I -l 0 1 (\.I I ,

..i;. I I i ~ ~ I

( ' I \

I ~ i

Page 167: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

) I

' ' \ \0 M

II II «

-<

"

• ,"(

' . ·:\., '. .. ~·-'

~ ... .._

' $8 18 ...... 0 ~ ~ N u u II

",·"ii

~ ::s re:, .,_ .. r-o '"o > ... • ~ ~l ',1'

'',\t

'. .'t' • • • I 00 U) ....

""' ~ f'"

~

•',

--~

N

II «

-<

II

I'

.. "'<{

.. 0

ti

• ,<

• • • • 0 (\J ~ U)

' I I I

• 0 ~

• lO

• 0

• ?

• ~

-· I

149

-r

.-i

~ 'U

1 ~ I ., ~ M

~c:: ii ·~ ~ .§ s ~ -:§

1 ~ ' ~ • .s-

&'.>, •

j I f J .. j I

i ! ~ r ~

i f } ( ~ t

Page 168: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

-~~--=··,.·. .·;;-:~.::;;·:,?:.~.-. ~--------------, ' ~; .. ~,~ ~~·~ .. ~i}',. ~ _,,.,,-- .. , ./' ' .... ...(, ~~~"

- .... ~ - .. --~~.....- --·~~·-....... , ...... t .... ~s~ ..... - - ....... 2W!£ .. t a ....... ~ .. -.·--. ~- -

1.7- ........ ~~~~~~~~~~~~~~~~~~~~r-~~~~~~~~~~~~~~~~~~----,i

s.s·

o.

-9.5

*

WT= 201

[11/NoJu = 22 ea

[y.1oJd = 10 &J

l. = 0,

* l

1

-v. ~~~~~~~~.--~~~~~.~~~~~,.--~~~~~.~~~~~~ . .--~~~~~,,--~~~~~,~~~~~, -10. . --P· o. 5. io.

wk

Fig... 5-6. 91ari.1"ttD-liJr..elihood rntl.i.!Y-....aritv for soft-1..il!li.te<l C!larJJ"lCl

..... V1 0

Page 169: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ l ' t ! t 151

• \ 0

-I

;a 18 M

I ~ II II 'O 'O '"o

'o ~ } i.;..;;.i H

• I LO

] ·g .... i-l !,

~ 1-1 '8

', h' I:' ~r • I,'~ 0 ·~ ' .

-14 ', .. ,.

I I,:,•

''

1 I ~ IS ,a • ~ ~ M ~

18 s £ 1 ~

M 'i • I ..._ . '. c r--" ',.,.: • u II \h Ii.,•,, .. i:, rt, -, .... .. l"""o '""o • \. ~ .~. ~

l . ~~ .• i.' .. .. .

1·.-. ,, ' ~ l..:J ,., IV

i. I

• '' I

~ I I

-· l

• v: ' • • ~

i4 ,• ,· ~ • 0 1 v .....

' '.-;· /. -< '•

.. ' ; ., .' .;

·:j .. ·-, I

Page 170: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,,.:=-.... : .... , .. "-.·. .•. ... ~ ~ , =·~. ~s>>;: ;-. , . _, ., . . . . =- . -........ ,-o ---"---· ~_:: · :::::::: e J ~ -~w - ,I t > Y5!2Z - .. __ --· · _.., '~

,,.

2---~~~~~~~~~~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~~--,

1..

* l.. - 3

[1i{'liol u = lD d3

[;,,ttola = - 3 to 15 dB

• [fi/Nol d = l5 d3

Ar. I : =~ [V,,o]d ~ -3 <tl I

-2---,-----------,~--~-----,-----------,---..-------.!'----------,------------,-----------1-----------'1 -1.0. --5. · o. 5. 1.0.

wk

I • \., • • 'Pig. 5-8. ~lfr.eliix,od rx:nlinearity for soft-limited d>.n:nnel

.. -.- _ ... .,.-.. '_._.. _____ ¢ .. ~' "~ ..... ,,,"l. ... 'k:'>_..,. __ ~ ..... ---~- - -

1--J U1 ,:,..)

Page 171: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

' I

~'

• • (\f . , . '

I ....

• 1

• c:> ~

r • lO

• c:>

I

~

153

l

' ; I

l .. ; l

: I l J

i f i I'

I : I

} 1

l ' ' ' l

r l ~ ; i i 1

l

t I~ l t I~ I~

I

Page 172: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

_,

z. I I

.1.

A("Jt1

• l = 9

[Yolu = 10 dB

[yoJd = - 3 to 15 dB

------ -

[~oJd = -3 d3

O•-;---:~~~~~~~~~~~~~~~~--:~~~~~~~~~~~~~~~~~~~.....I

·O

-1. t I l~o1 d = l5 &l3

-2.J-- 1 ___________ -----,1

I I ! . I .1.0. -10. -5. o. 5.

"k

Fig. 5-1'>. Maxilr..mt-lil:eli'iood rniline;rritv for soft-li.Jriitea dlannel

.... VJ .r:.

Page 173: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\l :! I

I

~ I , I

,. ' '\

.l . ,,', ' ,, '/ ·. ' ·~· :

. ' •'• ,,

:•

Figure 5-11 depicts a block diagram rep.resenting the proposed lMX.im..un

likelihood rc0:3iver.

155

Hnving selected the test; statistics, t [ wk : k ""l, ... , WT],

the error performnnce of this maximum likelihood receiver

is determined by its distribution function, which is generally

difficult to find without resorting to extensive numericnl

computation. However, for sufficiently large WT, t as defined

in equation (5. 3~ is a sum of a large number of statistically

· independent, bounded variates. Furthermore, since the received

signal wk is a samplQd vorsion of the received signal that is

continuous within the bit duration, then t can be shown to . have an unbounded variance for asymptotically large WT (66],

Consequently, we can invoke tho Central Ll.mit 'l'heorem [37] to

ensure that the random variable t is asynptotically normal

for largo WT. It is then roaeonable to speak of the ratio of

statistical mean oft to its standard doviation as a measuro

of system porformnnce.

If a•l, wao actually transmitttod, then fran tha asynp­

totically normal distribution oft it can bo shown thnt ~

io aloo aoymptotically normally distributed with moan

µ • (5. 35)

Page 174: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ---- ... : - ~ . . .....

,· ' :- : -;. <~/' .;. 1 .,, •• ,\ • .,.

,,': ·~ .. :·,'-; , .. _...,._~_ ,,_saz_ ~---- ~-- .. ·--it M ~-tL* ~-·'--- .h..f:-?..--~

z(t:)

~-nd(t)

~ A(.)

IEMU1U{.[OX

sa:i:ple at

t = (k-1)'1' + _i_ w

1 WT -v- IA(w.) j=l J

i'-ii

Semple at

t = kT

Fig. S-ll. .Ka:ximm-likelihcx)d xeoeiver, Ck-l)T < t ~ kT

~

IE'lE:'lOR.

EL l.

t-J VI

"'

Page 175: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l I

\

I j

...

• A'

,, ,; . '

.. ': ,•

157

and variance

1 "" -w2

(5.36)

We now define y as the ratio of the statistical

mean oft to its standard deviation as

y - ·O (5.37)

t and since W is asymptotically normal distributed, the

asymptotic performance of the system ise-completely determined

by this parameter. Since the transmitted phase o can take ...

the value of O or n with equal probability and the cost of

making an incorrect decision is the same whether O or n is

being transmitted, then the single threshold to.which the

log-likolihood ratio,~, must be compared can be shown to be

zero. Baaed on the binary docision that is mado at the

receiver according to equation (5.32), the asymptotic error

probability ia than given by

P0

• -Pr{t s Ola•l}

a ! orfc (y//'2) (5.38)

• whoro orfo ( ·.) donoteo tho oomplomontary orror function.

Figura s-12 illuotrat:ao tho aoymptotio orror porformanco of

tho maximum likolihood roooivor for a hard-limited ohannol

with difforont valuoa of up-link and down-link bit onorgy to

noioa epootral donoity ratio. For omall [Eb] tho parform~nco ~d

-~------------------------------------------~

l "i

j

I I ~ }

J

' I.

I t l

I

Page 176: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ l '\ I

\ :

'.

. '

' ' ...

'.' ,·. \ .. ,

. ',l •' ·~: : ; • l ~ •• ' ' .. . \ ,,__ ..

t ••• ~' . ' '.'

, 1'.

I

: I. i

'' .' , . :,: ,·:,/•: I

•' .". •, •. I

''• ,: ;'~ ,'

p e

158

wr • 201

u •• M1\JORI'f'{ IOOIC ~.IVER

MZ\XI~ LIKELIHOOD nEO'.IWR

HM'CIIEO FILTER ~IVER (LINF..AR}

... __ . ·--. ·-·· - .. ··-··-

-- - - - --------

.. ---- ..

.. I -.... _ ___ -.;;;;.J ................... .._

>

s 10 · 1s 20 2s dO, [\.Mold Fig. s-12. l'orfor:m"lnco of binary CI'SI< trMcmiooim tht'O\XJh hard·limitoc\ channol

Page 177: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

of the maximum likelihood receivor is slightly inferior

to that of the matched filter receiver for the linear I

channel. The explanation for this is evidont in Figure 5-7

159

which indicntes that the maximum likelihood rocoivor chnrnc-

teristic is more linear for small _1?. and tho stutistiC9 i · [E l NO d

of the received noise approach the Gnussinn normal distribu-.. -tion as assumed earlier. For large [Eb] th~ performance of

Nod

the maximum likelihood receiver yields an improv~mont ovor

that of the majority logic receiver, however, it is poorer

than that of the matched filter receiver for the case of tho

linear channel. Figuroa 5-13 to 5-15 illustrate tho perforrn­

anoa of the maximum likelihood roceivor for tho piocowise­

tinaar limiting channel. Of importance is the fact that the

porformance of tho maximum likolihood receiver approaches that

* of the linonr m~1tchod fil tor caao as X incroaeoe. Intu-

itivoly this ohould bo so no tho matched filter io nothing

but tho maximum likolihood rocoivor for tho linoar channel

and the oamplod output of tho matchod filtor io a normally

diotributod random vari~blo.

To conclude thio eoction wo omphaoizo tho point that ,•

our analyois of maximum likolihood rocoivor io not r~otrictod

to tho caco of a purely anplitudo limiting channel but a.loo is

oxtondiblo to covor tho oaoo of nn actual trWT ohnnnol •. In

ouch a oaoo tho Gram•Charlicr norioo oxpanoion muot again bo

uood, ao in ooction 4.2.2,in ordor to oharactorizo .tho proba-

I , l

l\ ''i I: ! !

; i

'. l • l , I ' !

Page 178: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ f

'

. , .

I, ? f ~\ ~

. ':

-3 10 r.:>

10·4

MAJORIT'i IOOIC ~IVER

--.:::--..:::...:.-==... ---

--- ·--' ..

M1tl'OmD FILTER ~IVER __ ___,

LINFJ\R a 11\NNF.I.,

--- ). ... 0

-·- >.*. 1

............. >.*. 3 ,

........ - . >.* • 6

160

-- ·- - ·--

10·_5--"-------------------------r----------,---------.,_~-----r"'---

Page 179: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I • !

i

't

' . '

,, \ ,.,

" .

JI

., '

. -

·--· -u-

• A • 0,5

A. •• 3 ~· ~' A•• t

,

_.__ L.'CWAR Q~ . ,

10.

[rb/No1 u • 10 cm WI' .. ~ 201

. . .. '-'

• 161

;,

?

Fi9. 1•14, Port~~ of binM,y . .t:rm{ tl\inoroir1nicn tlu:o~ r.:,r~·limi.tcd Ql - ·1 "

I ' 1 ~ \

t \ ! \

1' '"l

i

l . ! .. r I I

' i •

ti

l

·f '.'

~

Page 180: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

5

l ' 1

! I l

l 10·6 1

,, ,i s . II ~

1-' ',: i

Po t ... . ~ ".: "'""-•

10·1 ..

5

10·0

s .· .

r. c:• ... .. " .. 1it9

I .l ., I

10· 10 'I ; '

l2 I

!

1.H"

• A•• l A • 2

~room numR m:iUW'J\ .

t.nmAna~

• A •·6

" A*• 3

---- . IU\m-tJMt~ CRANNm.

\

. 14 . 16 · 18 .

(F0,'N0] u • 13 '19

wr • 2()1

,I

IB

. ao ta, ~A'fot,

162

i I I l

l j 1

. ! l {

l. -

Page 181: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ,.

bility donoity function of n1. Onco thio io known, a

proo~duro, aimilnr to that davolopod in thio oaction,

may bo uood to dorivo tho maximum likolihood roc6ivor and

to aotJ(H.lD tllo por!oxm:u1<Xt of ouch n roooivor, 110'.-.\)VC\r,

bocnuoo olouod form oxpr~ooionc nro not nvailablo for tho <,

probnbility donnity function of n1 tho nooooumont of tho

porformnnoo ot thio rccoiv~r io a vory diftioult taok.

•'

• r

. ;,"

,, .I

( '•

163

I •

Page 182: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l J j

I \ I '

CHN'TER 6

6 , l) ctffl'R!llt1l'IOOS OJ? '.l'HE 'l'IW:SIS

In thin thooio an attonpt hM bocn mr.\dl to invootigo.to tho.

ofi'oct of bMdpMa nofilinonritioo on tho porfoxm.,nco of ooheront phaoo

' Dhift koying oyo~, A nood for ouch invoati9ntion.a.riooo in tho caou

of catallito cammi<lltiain whore tho trM!lmittod oignal (CPSI<) and

up-link noico aro pMeod through a 'lW1' on bcx\rd tho catollito prior to

rot.rnnomioaia-a to a rocoiving outh otntion, ~ ll\:\jor cootribu.tiono

of tho t:hooio moy bo o\llll\lrizod M toll<Maa

(l) I\ novol ~dmtuxo m:xbl of 11wr hM boon d::lvol.q?Qd, 1VJ

c:onplrod t-9 tho ot:hor oxioting m:xbln our propoooc:1 nonlin~ qu~c\raturo

~l ottom tho tol.lcwing <1dwn~at

(4) it. a\J.y nce4a tnJ ohoio:2 of tour ~taro to ~ivo o.

UOCld fit to tho natUQl tubo. na1Unoarity up to Md boycnd · ontumtion,

(b) · it ia . wo~; l>olll.\Vtld fot' 411 inp\l~ lovolo and pomu. ta

G~ghtfoxw~ OV3l.Uilti.Ctl of ~ noico stat,iotico . at ~ output ol tho

tub;l.

· (3) Fer ncnlinoor <.twi~o with AWPM oonvc:oicn, t:ho . ,,,,,-·

chomatoriotic:, of tho cpt.i.n\.'\l bM~o nonlinoarit:t the1t yiQld •

~ oicanal. to intorfor<.mco ~ m.tio ~vo .~ ~ivcd, . . '

(3) ~cd ex\ (l) M4 l2) t a po:Joibl.O in\)lem\~ti.on of ,ll

..

Page 183: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

165

oignC\l prodiotortion ca1\xmootor in CMCncti with tho nct~l 'M hruJ boon

ou99ooteid •. 'l'ho carp<montor, conoit1ti~ of a oitq:>lo nrrMgontmt of

opproprinto a.twnua.toro Md (XMOr law ~viooo, hao tx,",n ohcwn, by

, oarputor oim.llat.ion, to yield m.x)Ut l dl3 il19i:ovorront in oyotcJn pt'r!'o.r­

m..,n~ for tho c.,oo of n ningle c..u-rior por channol rrocb of oporation.

( 4) Anw.yticru. oxproaoiono for tho probwili ty dQnoi ty

funot:icna of tho cquiv(\lont in-phaoo Md qundrnturo noioo CQ'l{)OOonto at

tho output of a pioccwiao-linoar onvolopo limiting c.\:,viQ.) havo boon

c.bri vod, '111000 ~ooiono allCM otrniijhtfoxw(U'd ovolu~tioo o! tho

pxebobill ty of orror tor. M~ . a'SI< oignalo tranomi ttod thrQ.\,t\lh auoh a

limi.tor with both up- and cbm·link noioo prooont.

(5) In tho °'-"WO of an natual, 1.Wl', tho CkC\m-ChClrlior ca.rioo ox-

panoion h:la bee.fl tlR)liod to a.,~to tho pdf ot tho OCJui vulont in-ph"eo

noica OOITf?Otlent dt t:ho output ot 'lWl', Thia pdf ~ ~ uaod· to oval~to

too porto:rn.,nal ot binary G'SK oi9t1als trancmittod throucah. tho o.ot\14l

'lWl' channol with a oinglo DM\l~ d::ltoatic:n and m..,jority locaio deoioion

d:lviexl (lt tho xoooivor ao in eoyo (4). 'rhio onalyoio io ro~d.Uy oxt:on• . . . d1bl.o to tho \70,llOl"Ol co.co of M-m.y C,SK oyotom pravitbd {\ oiroi.l~

~w,icn io ~lco u:ad to ~to tho pdf of tho oqu.lva.lo.nt. ~atu.m : . . '

noico ·'tcnpcneht at thO output. .of 'lWl'".

.. (G) · ~r oxploro.tory rooulto hn~ alto· boon obtained for

tho =oo of binmy trDI< oigMlo tmtom1ttod tlu.'o~h a puroly enpli.tu=

limiting ncnUno~ chonnol with tho CC)t'J:Olat:I.CI\ tocaivor or too. m."Ud.nun­

]4kolihood tctcivor, ln tho o.:\Oo o! ei ~lo.~c:n roQ:\ivor tho bit . . ~ ~ . .

..

Page 184: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

166

t1ooowhnt oimilar to tho aloe of a m.,jority log;o roooivor. 'l'ha oxact ox­

proooion t:OJ: tho porfol.il'Mco of a n\:Udmun, likelihood roC\.iivor io gonorally

di1'1'icult to do.riw. HO't«}Wr, M npproxim.,te oxproanioo hao ~.n dori-. .

wd baood on too ooourrption that tho otntiotioo of tho output of tho

m:ud,.nl\un likolihood roooi vor, prior to tho throohold cbtootor, r:xxJY tho

nOl.'I\Ul difltributioo lciw.

6 • 2) SUOJESTICNS I1'0R IlUl\IRE S'J.WY

'l'horo <U"O m.umrouo di.rooUono in which tho procont otudy «Juld

bo oxt.ontbd, A few ot thoco aro liatod bolc.wa .

( l) 'IM Qm)l:' .r~to Molyoio of ~ ~Sl< O~il\al.O tronoroi ttod

tfm:>ugh tl na\linOM' ontcllita c:honnol with cooi)inQd Offoottl of int.el"llym-' .

bol intortorcnooa Md ndditivo, thoxm.'\l, ~~ and dcMn·link noiooo ohould

bo invootig~tod, In ~r to colw cuch. a o::rtplox pxoblom, tho choired

oignol and intorfet'OOQ) tol\'ro at. tho O\\ti,Jt of tho ncnlJ.nO(lt' d:lvico

nuot co cpocificall.y (bfinod in ouch a way that m cvtlluation of tho

ot:L\tiotica of tho intortorcnco ~ Ci.'1\ bo .reM.11.f nQQQ\\)liohod, ,\ . . .

. . . . (2) ~ o\l'OrQll t>:onofor ~O.d~iot.:Lcn ot a bM~o ncn•

U.n~i ~ ~at m:ud..l\\tCQO 1 to O\,l~\\t. .=ioi to intorfoJ."llOJ. pQ\'Ol' r..,tJ .. . ' ' .~ th:l =co of l'l\\ltti~iar ~t o1~l oow bcon ~oct\\l'Cd 151,

, • I '

92) to bo thot. of n piOa:'R,i'co-linotj: cnvcl~ limitor with com cnvolo-. . ' . .

pp tbpcn~t phaco ohift at tho· qutp\l~, Ucr..iovo;o, thol."Cl ia no oxiat.tn1 . . -. . .. . (

cn~it1 tho.t j\\Otiftoa th.to ~oot~: ~ tho coco o!.- l\\\3lticmio.r ' ..

' ' ~. ,•

' I

\

'J l I

l I

I l l \

Page 185: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

167

input. ·Ot equal inportnnw in tho ~oator onalyoio io tho har<,\,/arc

in{,lannn tntictl ct tho maul ting COlll,)('l10ntion notwo:'k and tho oe;,noi ti vi ty

in tho portotn\,nco ot tho ovor~ll C(ll\Xmontod 1Wl' an oelch catp00ont in

tho ~oation not.work varioo.

(3) '11\o h(U"('woro inl>lom:mtatiM and tho IX)rfol.'n'(U'\CO analyoio • of tho nwc:1.nun likolihood (ML) tocoivor ohould be caltii&:n.\1d, 'l'ho cxnot

<»q>rooDial for tho porfo::m.inco of ouch a roooivor m."\y not bo poaoiblc

and a\O ll'AY havo to rocort·to a conput02: oimulation tochniq\x> in order

. to accooo tha ~t in dctootability of ouch <l ~ooivor ovoi: m:,ro

eawontiori~l, oxioting roooivom, . . .

(4) . Tho porfoxm.,noo malyois of tho corrolation i:eooivor and

tho Mt. rocclvor in Ch~to,: s Dhoul.d bQ omon~d to tho ~o of M""M'Y

.. . '

(S) 'Ibo ov~luat:J.on of tho pcwor opoatr\Ul\ l.lproad of CPSK

ai~al.o ®u.cqd by 'lWl' anplifioz:o nonUnom:itica io ~o Qll ~t

prcblcm, . Exc:oooivo cp~c.d pl'Odutco <lajoeont tronopm.tbr · (or <'ldj~cx,.nt . ' . . .

ch.OMQl.) . .intol'tol'QnQO which m.,y bo unflcccpt.abl.o. ElhM"PQr filto.ro at tho ' .

aato1U to ~pontor oU.~\\t.. Md/or Clt. tho oN.'th ota.tion input:. · c.,o\\l<l bo . . '

u:o4 to.keep .thi.o un~tod intorfoJ:cnOl wi~ ~=pt.eiJ)io lovo~a. now-. . aver, it io WJl.1 knam 1-.Mt DllQ.l'Par filtom will introduea ndditicnal

:in~ intorZarcnQQ. 'lbuo, a. ~co io no~ootu.'Y, M4 in oMr . . . . to ~\b ~J\ ~t.int\1 ~"Off ~t\>.iQen int.oroynto~ intorf~rcncc o.n4

r~ao:nt eQ\~1 intori'.~al_, nn naaumta o\r\\l~tiQ\ of tho ~ror • ' • • l ... • .

QpOCtr\Ul\ cprce.d of ~ oi,~"l io jWl~ CO ~Qnt. ® M t\OtOClTOllt qf ') . .. , ,

·.~ oi~tcm'o porform.-.n~ i,n.~ p::cccn~ ~ ~tcl'Q~1 int.crfcnmo:. '

' ' '

Page 186: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

& '

168

and ttdd.itivo up- Md cbwn-link ~uoaiem.noiooo.

(6) 'lho ontiro analyoin pre,oemtcd in thitJ thaoio io OOtJ{Xl on

tho MOUlll.)tiCtl of par.foot oynchralizatioo in both C&Tior and bit timing

:rocovory, Such M Mowrptian, though groatly oirrplitying our Malyoio,

io not readily juotifiod without oncrifioo in harcworo ca,plQXi.ty {lt

tho rocx.ii vor. carrier phoco on:or and bit timing error al\l woll kna.ffl

to rooult in furthor ~rnda.Uan in tho porlol.'ffl.'lnco of CPSK trMomiooion

oyotorn thro\lgh n linoo.r chMriol. Tho invootigat:J.on at Guch oync:hra'li·

iation problem, tor tho nCtlli.noor channol Dhould aloo bo ~iod out •

\

'•

, I I

Page 187: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

1 J

J\PPENOIX 1\

Tho bMio input-output rolatic:ru:ihip of tho 'lWl' io no~lly

ob~od f-rom output pc:MQr (dBW) Md output LW'CO (dogrooa) iroaourom.mtn

f1>r VL\l'iouo VL\lu:ia ot input pcMOr (dBm) [l3, 31], Tho output daU\ l1ro

• • tnon tranafOlm!id into inotMtMOoUa onvolcpo to:- tho caoo of oinglo

cru:rior rrocwurom:int by WJin; tho woll·knc.wn rol11tionohip

2

p ·+ whore I> io tho inotMtanoour.i oignal pcwor

Md' A io tho.oi~al Ml?lit\\Cb,

'Ibo inotontMO.ow.t cnvolopo t:.rMtlfor funotic:n Z (2') and pho.co

chift, +he) arc thon aal'binod to yiold tho I\l.')O.OUl'Od qu~..dratw:o irocbl "'}

of tho ~ubo to which 4 ow.~ly ~ eot of ip{x) and Zq(x) c:M bo

dltonni.nod, Uoing oqunti?'a (2,18) and (2.U) WJ m.,y· n'"""' fOlTt\ on

\namotmincd c::bjcati~ fUnctj.on

. M . .

3 ~ Ji [ (II!!\) coo t+(3t)l • ~(~1)2 + (Z(3tl ai.n. l9(3tl I • .

. ' • , . . •q<11~.u· J. . (A.ll

~ M !.11. tho. tot:Ql n~ of. o\lb41,v.l.ai.aio. ot ~ i:onu:i ot ~ UlP\lt

. ' ',

\

Page 188: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

170

S~oo tho right hood oido of oqutition (A.l} io a oontinuouo,

diffo

zq ( •), n vontional optimi.z~tioo oubroutino oon then bo uood to mini-

mizo J by p r colootion of thoco ox,ffioio.nto [8].

\,

Page 189: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\

If o nnrrowband oignnl,

u(t) - R(t) ooo(2wf0t + c(t)J (B, l)

with a.mtor trcquonoy f 0, io fod ton rrcncrylooa noolinoar dovioo whono

output v io a tunatic:n of it:o input u at tho owm inatMt, then thio output ,.

o:ul in 90J10rnl bo wri tton .M

V(\l) • V(R (XX) 0) (D.2)

whol'o o • 21rt0t .+ c (t>

Sinoo (Jl,2) io M ovon poriodio tunoticn ot o, it io roprooon­

txid 02<Aotly, tor all o, . by tho Fcurior corioo

end

• •

V(R CCO 0) ~ f v0(R) + -L Vm(R) ~ mO m-l

(ll, 3)

ff

i ! v(n coa o) coa mo do (D,4)

r GOO •l(WR) ,cqllQticna (D,3) end (D,"4) OM llo .,

v(u) (D,5)

" ..

Page 190: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'

l I I

\

172

R

vrn(R) • i J v(u) Tm(u/R) [R2-u2J-l/2 du (D,6)

•R

Tm (x) A a,n (ll'OO!:I •1x) , io tho Chobyohov polynanit1l of

~ m {l), Equationo (B,5) and (B.6) nro gt"norally knONn no tha '--- -

Chobyohov t.rm10form pair. Equtltioo (B.G) rolatoo tho mth zono cinvolcpo

ncnllnonrity to tho inotnntanoouo voluigo trcmofor cnnrnowriotiaJ of

tho bandpnoo non.linadr dovioo. ' ' In m..,ny awo9, ~vor, tho problem is not .to tine\ vm(ru tor n

qi~ v(u) but rat:llor to find what .. v(u~ will yiold cam dooircd vm(R).

It io thorofom noCX)ooaxy t:o knew hew to invort:. tho tt-onotornl\ticn in

(B,6) fer v(u). Dlachmln (18J hao pointed out th(lt tho invoroo

Olobyohov tt'Mof'cxm toz: ony m:bitrnry m can lxi o><proacod an tt/2

v(u) • f [ (Vm (u coo ~) om (ooo ~'. +

• l. l(-l)m ,I uv• (u ooa ,~I !i tl d, (B.G) m

V~(x) • .. ~ (Vm (x) J

Do (X) • · 0

n1 (x) • l

~1 (x) • Dm-1 (x) + 2m Tm()(} (D. 7)

Page 191: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

Equutia, (B,6) holclo t.rm to within nn arbitrru:y odd (wh~n m in

oven) or own (who.11 m in ocld) function of u nncl/or MY polynani.nl in u

of cb9roo looo thM m. For tho cru.10 whc~ m • l, ~Uoo (0.6) CM bo

einplit'iod to

V(U) • ! r2

[V l (U CX>O +) + UVi (U COO +) CX>U ,j) d + (D, 9)

pluo an ntbitrnry ovon function of u. :_;.

To cxnolooo thio appendix wo ohnll work C\tt. tha oxprooaioo for

tho in-phMo intJtMtMooua voltll(Jo nonlinoari ty NP (u) that will yiold

tho ~oirod firnt-zcno onvolopa na,llnoo.rity ~(R) o,cproocod in te.xtro

ot a polynanial in R M

M c&lit.ivo ca\Ot:lnt 0.0

M'

\ (U) • Ji k°i(U2k-l

-- Uoing tho followinta integration fornuln (39]

. f 2k•l 4 . • _L k;1 (ak•l) 11l&JF'1•t=.ill1 co:i • t ~, ·j --2~ • :1•0 .

' . I ,f

~(U)

(D,10)

(D,11)

173

Page 192: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.,

174

, ..

. (

I • I

' I

.. • 0

Page 193: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

APP1:ND1X c

THE OOISE STATISTICS NID CAI.aJIATla.l OF A' FOR PIF..O:.'WISE

LrnFAR AMPLITUDE UMI:TING (SOFT-LIMJ:TING) OINMI.S.

C.l) Derivaticn of the noise statistics

The equivalent in-phase and quadrature noise ~ents at the

output of an envelope.soft-limiting repeater can be expressed as;

x - A' 0 ~ l.+y2 ~ 1

' .. n' m .,, 1 2 2 x

- A' Y. +y > 1

I x2+y2 (C.l)

and

2 2 y 0 ~ x +y :£ 1

n' 2 =

i: .;+y2 > 1 I I X2+':f2

(C.2) ('/ •

where x A+~

= ).

,, n2 y = T (C.3)

'!, , ~~

'

;, .. >'•

·'!,

175

Page 194: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,·.

176

Sinre· n1 and n2 are assurred to oo zero rrean, normal random

variables with varianoo Nu' then the probability density functions of x

tmd y, as defined in {C.3) can be written as

Px<x> (C. 4)

Py(y) (C.5)

where NI \.I, r/ J denotes the pdf of normal randan variable with rrean u, and

2 var.i.ance a •

C.cnsider first the' in-phase noise cmponent. The probability

density function (pelf) of n1 is defined as the derivative of its oorrea-• ,.

J?Onding probability distributiai function (PbF).

Pn,(a) A 1

d da {Pr[ni < a]} (C. 6) ,.

Fran equatioo (C.1) , the probability distrirutioo functicn of. ni

can be obtained by integrating the pelf's of x ani yin equatioos (C.4-

C.5) over the appl.'q)rlate regicns in x-y plane. To facilitate the

analysis~ shall sulxli.vide the range of a into.different regions.

For a+A' < -.1, it follows that

2 2 Pr lni < a] = Pr [x < a+A' < -1 ; 0 ! x +y ;: 1] +

Pr( x < et+A' < -1 ; 1 < .,l,+y2

] I >t'-+y2

== 0 cc. 7)

,I < I 'j

,, ) •, 1

Page 195: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

11,

...... _ ..... .,...

.....

Similarly for a+A' > l,

2 2 Prfn1 < a] A Prfx < a+A' , 0 ~ x +y ~ 1] +

< crl-A' 1 1 < x +y 2 2]

• 1 (C. 8)

In the range O < crtA' .: 1, the region of integrati~,,.d ", is

given by

x ;S a+A'

,d/ •

Jtl > /l-(r,f-A'~2 x (a+A')

(C. 9)

It can J:e shewn that for -1:; l)+A' ~ O, the regicn of inte­

gration, ,,J I is the cx:,nplenent Of ,,J, ~ and iS given by

x < a+A'

d =

:J.tl , /l-(r,f-A'~2

x (a+A')

(C.10)

The regions .eJ and d / are as shcMn in Fig. C-1.

_Too probability distributicn functiai of ni is then 'given by .

177

' i

,1 ~ ,

" ' ' I

,, I i

Page 196: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. '

. ,

~' i

•, . 1 •

" :, I

O c, a + A'

Fig. c-1.

178

y y

' x

d 1 -1 d a+ ,.. , " 11!1. 0

Integration of regioos u:aed in the .in-pha the dete se noise s tati rmi.na tioo sties.

Page 197: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.,

·.'

0 " < -1-A I

1 a > 1-,A I

Pr[n1 < a] • 0 < {a+A') < 1

-1 < (a+A') < 0 -(C.11}

Substitution of equations (C.4-C.10} into (C.11) yields

Pr[ni < a)

where

0 a< -1-A'

1 a< 1-A'

0 < a+A' < l - -

a+A' [ } f ~[~] t(-}..x/ 1-(a+A')i] - i dx

- 1Nu /ca+A')i; u

-1 < et+A' < 0 - -(C.12)

+ {x) 1 =- exp(-x2/2)

x

t(x) = -1:._ J exp(-i /2} da = -21 erfc(-x/lI )

Iii·~'

179

I

I I

Page 198: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

r

) I

,i

'

~--

.. l :

.. ,;

Tho probability oonsity function of the in-phase noise, n1, ia

cbtru.ned by differentiating the distribution function in (C.12) with

respect to a to get

Pn' (a) = 1

A(a+A')

nr u

t [ A(ctl-A')

l"N ·u

la+A' I ;:,, 1

- ~] } la+A'I < 1

(C.13) ..,

In the case of a hard-limited channel substitution of >.=O into

(C.13) yields

[pn' (a) J >.=O = 1

0'

A(a+A') t[A(a+A')/r' Nu J}

/Nu

I a+A'{ > 1

I tl+A' I < 1 4

(C.14)

The in-phase noise pdf as e,cpressed in (C.14) is identical to

that cerived by Lyons [58, eqn 20] •

Similarly it can be socwn that the probability distribution

180

I 1

' i

1 , j A

' l

' ' {

Page 199: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

•,

' • l . ,,.

' function of n2 is given by

0

1

l - !.Ji, Px (x) Py Cy) dY.dx

~

i : L : ,tr1l r.1,, {y) dY..dy ~.,- f\ \ l

~-~:/:' I

'

a< -1

B > 1

-1 ~ a :5. o·

(C.15)

where O < 8 < 1 ~d -1 <'f. < O are as shewn in Fig. C-2. After eorre - .. ... -

181

I ~

manipulatia,s , equatic.n (C. :Ls) can be expressed as .

0 B < -1

l B > 1

-1 ~ B ~ 0

(C.16)

j '!

,)

i I

-1 l,

i ·j

i I ,, ! '

. '

I I " ~ ,•

Page 200: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

y

' ' . • l

.,

- \

Fig .. C-2 • ·:'

II y

-1 t'I 8 -' 0

~ the determinatioo ims u:sed,in Integraticn reg statistics. .

ture noioo of too quadra

182

''-- 1

Page 201: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,

' \

183

Differentiation of (C.16) with respect toe yielda the pdf of

' p~ (8) ~ ~B {Pr(ni < 81}

0 I al > 1

I I

). +[ YL] [ 0[ Ji7 - ;-;:;:! J } - A] _ t[ -~ 1 e - A

l"N I Nu I Nu ~ u u

(C.17)

Substitution of A = 0 into (C.17) yields the fdf of n2 for the

. · case of hard-limi~ dlannel as

0 ;;

,-

e,q;,(-A2B2/2NUJ

I 21r c1-e2>

I Bl > 1 }

{2+ [A/ 1.-e,2 I IN:] + AQ { ,· u l1r'

u

(.,.....-,-'

'!

' 'l

l I

1l

1 1 I

,I !

' l,

Page 202: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I . I

I

.,

I ..

! ( I

184

c.2) calculatioo of A'

oignal anplitude A' fa &fined in section 4.2.1 ag

A' • ER (f(R)cx,s c] ,c (C.19}

Pran tie definiticn of f (R) and the well-Jcnc,..m joi'flt probability

dznsity functioo of R and c, equatia1 (C. · 9) can oo written as

A' = E Ja::,a c) -e

( t !HR/A ) J i:ir =[- i? + A2 ~u 2AA coscj d<dl!

(C.20}

Integratia, of equat.f.oo (C.20) with respect to£ yields

A' = E !cost} -&

). ! (1- (11/~J ) :u e -p e><p [-it /2Nu) I l [AIWUJ di!

(C.21)

' Dafining x = R/>. and suootituting the well-k?la,m idantity (17)

Ee(a:::>s e) = ~,,--;;e-p/2c10

(p/2) + r1

{p/2)}

into equatia, (C.21) yieldz the desired result in equation (4~25).

I ...

I ''

Page 203: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

\ )

,.,, .. '~··

'

J\PPI:1-IDIX D

. CALO.JI.ATICUS Of' A' , e AND VARIOOS ~f(.)ISE M)MF.2'TI'S FOR

SATELLITE OWlNEIB

D,l) Calculaticn of A"' and e The effective signal anplitu:Je, A', and phage ahift, e, at the

ootput of 'IWr are oofined as

A' • / {ER [Z (R) ccgl] }2 + {ER [Z (R) cogi:_] }

2 ,e p 'f. q

(D. l)

where ER [ • l denot:P..s the eY.pectatioo over R and e • ,e

For the case wh:n the .input signal to 'IWl' is the sum of sine

wave plus narrCY.v'Dand Gaussian noise, the joint probability density

function of t:re envelcpe, R, and phase,c, is

p(R,c)

woo-re 112

R 2 21ra [

A2

- 2AR a:,s e + R2

] e,q;, - ---....,,.....----20

for o < R < ~ and o !£ 1 21r

iB the input noise variance

(D.2)

A is the anplitu:Je of the transmitted sinusoidal signal.

185

Page 204: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I

I

,,

I J

and

x • R c.rx: i:;

y • R sin ,;

P0 • ER {Z (R) 0:XJ ~} ,,.. p

P1 • ER (Z (R) a:,g r.} ,, q

(D, 3)

(D. 4)

(D. 5)

Substitutioo of equationg (D. 2-D. 3) into (D. 4) and (D. S) yielda

--

Since

p ,.. 0 2 2 2

1f C1

p =

11'

f e)'.p { c2 ( x2 +~/ > cos 1i J d~

0

is the input CNR

(D. 6)

(D. 7)

(D. 8)

186

r I

t

•,

Page 205: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,, ..

,,

r +-

2a2

" ,c1 f e,i:p{-cdl-~ ) }di$

O 2M (D. 9)

(D.10)

where n • 1

p • 0

(D.11)

: In oroor to determine P

1, we start by substituting

11'

2 2 1 ( 2 2 Il {S/x +y ) } ~ 7 J e,i;p{S2 (~ +y ) 009 t}C03 t d~

0

into equatioo (D. 7) , and after sore manipulatloos similar to the

previOUB steps, we cbtain

187

Page 206: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

'/

• '• '•

' ;

..

' ~-\

L

. '

188

- µ ] {~

(D .12)

where

and

n• = 1

In terms of PO

and P 1

....:e can write

A' =

=

/ (Po>2 + (P1)2

-1 -tan (P 1/P 0)

D.2) Nurrerical evaluation of nrnents of in-phase ooise rorponents.

'Il1e output in-phase noise o::rrponent, ni, is expressed in

teD11S of the input envelope and phase, R and E:, as

-C R2 2 n' 2 oos (E:+B) -= c

1R e r

0 (C

2R )

1

s1

R e -stl" 2 1

1 (S

2R ) sin (E:+B) - A' (D.13)

'Ihe kth rrorrent of the in-phase noise is cbtained by averaging

the kth ~r of ni with respect to R and E:.

--....-.-x,,..·'"'1 -~.;azt---.-• ---

Page 207: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

. ,

...

. -,

"" 'IT

= I f 0 -n

= [ -_R_2 _+_A_2..,..2N_-u_2_AR __ cos __ e:_ J dRdt

(D.14)

In order to use nurrerical integration to evaluate (D.14) ,

the infinite limit of integration must be replaced by a finite linn.t.

Using the transformation of variables

R = tan[ ,r~x J tan z

£ = y

and substituting (D.13) into (D.14), the kth m::nent of the in-phase

noise ni can be expressed as

'If 'If

1 f f -,r -,r

-s tai/z cos(y+l3) - s

1tan z e 2 r

1 (S

2tan2z)sin(y+B) - A' }k . {

[

2 2 tan z sec2z exp - tan z t A ~ 2Atan z cos y

u (D.15)

Equaticn (D.15) is cx:nputed nurrerically using the m:xlified

Gauss proouct fonwla [45]. First, the integration regicn in equaticn

(D.15) is subdivided into 22M icentical squares. To eadl square, the

15th degree, 64-p::,int Gauss product fomula [78) is applied to evaluate

the &:ruble integraticn. 'lhese 22M values are then sunned to yield the

kth m::mmt of the in-phase noise. In all the cases a:nsidered 1t was

189

~

' .

'• . 1

' ;

1 t ,, i 1 ' l

Page 208: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,, '

I ;-

found errpirically that the value M = 5 is sufficient to give results

aca.rrate to 6 significant digits. 'Ihe value for ~ can then be

cx:xrputed frcm equation ( 4. 49) once the first k rrarents of the in-phase

noise are kno...m.

The cx:::nvergenoe rates of the final value for different noise

m:::rren ts as a functicn of M are sh:Jwn in figures D-1 to D-7, for

different values of up-link carrier to noise p::wer ratio.

190

Page 209: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l• .,, .. -- ' ' ' ~\--... -~ ... ~~ .,..,._., -----as,:~:S!-n' j21 M 1111 1 & & I I ,.._ ~~.,. .. .._...,.,,..... _ _... •. _....... il .. ..._w_.,~"'-~~~~C'~'?C~~~-·-~1'

100%

......

I ~ -~ ~ 8 ::>

!~ I

90%. I I 0 0 (<NR) = -10 dB u

.s ~ (CNR) = - 5 dB u ~-~

I II ~ (<NR) = ~ ! u O dB

! ij I --- (OlR) = 5 dB u

] a 80% I 0 (:) (CNR) = 10 dB u

~ ~ ij I -

I I

70% I I -- -------- ..... ..., ..... 0 l 2 3 4 M 5

Fig. D-1. Convert;;enCE of the seccnd rronent of in-phase ooise to the final value as a funct.ioo of M.

Page 210: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

r ~ . ~ ~ ' .,. . ----·~. +~ _<>;..::::::.__ - __ ......-,.... .. "' ---~ ,._ ~ .... .......,., ) :r , ~~-~~ ...

100%

-3l I ] ~ ! i 9

°'· l 0 0 {am.) = - X) dB u

(CNR) = - 5 dB )( k u .s ~ ~ !

(<NR} = O dB 0 u .µ

1 ij (<NR) = 5 dB --- u

8. 80% j 'E El 0

(<NR} ::: 10 dB RS

u

~ .s

70%

0 l 2 3 4 M

Fig, D-2. a:mvergence of the third nommt of in~ noise to thµ. final value as a function of M. ,:

.,>~~• -"":' ~-~A .. ~~~::..~!~•-:,•,• t;,• .. ~ ... ---·~----n,.,.._ -·--

5

..... \0 N

"> .

Page 211: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I ,

i . I

193 h \'.

Ill

t l i

18 @ @ @ @ IH 0

0 If) 0 If) 0 :,:.:

8 _. _. I I .B II II II II II

::, ::, ::, :::, ::, ] i ~ ! ~ ! g g ..,. nj

:a ~

l I l i

J' ]

I: lH

,.., ~ B i ..... 8

! .. • ' , . .'

.. ·~ -~ l

N < lH .. 0 .µ

! t ¢1

~ ~ !'

' IH 0

,, ~

!° I 0

. ,.., b .l .

dP "" dP "" t1'I ~ ·l 0 0 0 0

~ .,

0 0\ co r-- 1, .... , . ·t

(an.DM tl?U"TJ' an Jo ~uro.iad ~ S!i?) '~ ,j

asTOU asettd--tr1' JO :iuau:lll lf.l.lT\Od 'l

f • 1\ ·--!

••,;

Page 212: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

: ! "I

111

I

100% -

~ I /

i /

-~ 8 g l

11,4

~ 90~ 0 0 (CNRJ = -10 dB u

-~ 11-4 0

~·} (CNR} = - 5 dB u (CNR) :::: O dB

! l u

'~ I --- (CNR) = 5 dB

~ cu u

"&! Yd 80~ 0 a {CNR) • 10 dB u -

70..__ ____ ~-----------,---~----------.------------~-,--------------.-------------~

0 l 2 3 4 M 5

Fig. ~4. Ccnvergence of the fifth rrarent of in-phase noise to the final value as a functicn of M.

~""

:--=-:.-,-.... ~ ... "!.,~ ...... ~ ,,..._<W-;t~-_........_.-----~'J ... 'l!ft.~ .. $~~~~~--,:;..."lt.~--~-:-~~~---'--~· .. ,,,,.i~· • ·! ' • ,( ~ ·- .. ~ •• .,...., >,I. --~..._t~ ..

...... \0 A

Page 213: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.......

] i i! .s 11-4

0 \1.-1-'~ ! ! l ! ~ fJ) ~ .....

, .. ,,.,. ... _ ..

100%

90% ·1 I 0 0 (Qffi) = -10 dB ...... u (rnR} = - 5 dB

)4 ~( u

I {<NR) = u O dB

I --- (<NR) = 5 dB u

80% ~ {.. D G (<NR) -u 10 dB

70%

0 1 2 3 4 M

Fig. D-5. Coo.vergenoe of the sixth m::rrent of in-phase noise to the final value as a functic:n of M.

____ ,_..~ .. ~~-t-""-".,..,,.,.,. ,l"l'kl.'•.,,...,...,._..,,...,,_.,_ ......... ~~ ...... - ... -~.~ .... "'~"'"'-~ '" ,.,. __,.__ - - -

5

...... \0 Vl

Page 214: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

i L . ..

........

·I ~ j ] ?' ~ -~ ~ 11-l ~ 0 0

! ! ll ~ I ; -

100%

I /

90\ J 0 0 (CNR} = -10 dB u

)4 ~( (CNR) = - 5 dB u

(rnR) == u O dB

(CNR) .. 5 dB --- u

80% j GJ (:) (CNR) .... u 10 dB

10%

0 l 2 3 4 M

Fig. D-6. Convergence of tha seventh rrarent of in-phase noise to the final value as a function of M.

5

.... \0 O'I

~, ........ ~ > ,l

.' I

1 '

I I

' 'l

Page 215: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

_,, -;'- . -~..-- 'i-,--.. - -· ~,, --,·-= .___...--.-. r~-

\ I

\

I t 197 ! •

n ~ ll'l ~ '

: '

.\ 18 @ @ ~ @ i

1 0 Ill 0 Ill 0 ~

.... ...... ...... 0 I I

8 • • 0 • If

I ::::, ::::, ::::, ::::, ::::, -a ~ ~ ~ ~ ~ ~ - - - - - ~ lfj

I ra ! i l

l l I I rl

] ....

("') i _.J

B m

-.-f

8

- J "r..,., ,I

('f !i ~ +J

! fj -§. '@

rl

~ 'M B r~ ! §

0 . r-~ . ', .

d? g dlP dP 0,

0 0 0 ·rl 0 0\ 0:, r,. rs. ....

(.mteA TVUJJ 34l JO agelua:>iad v sv)

~SJOU asvqd-u1 JO lUdUICX!l qlq~l3

t . J .,

Page 216: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I, I,

i,

'i f

APPENDIX E

Calsider too infinite gp_ries e;,:pansioo for p, the prcbability

of cne sanple ~ing in error, as given by J

-o ao n [ N' J n/2

p = _21 erf c ( r"P) + ~ l J.:.!L h ~ Hn-·l ( f2o) & n=J nf n NT

~ (E. l)

where p =

The rand:rn variable ni is ~ by a finite f,OSitive

nuxber K, sud1 that

sup(x) = K > 0 for all x £ Q

l\

Using the well-known inequality for He.rmite polyncmi.als [40]

roe can slx::,w that ~

4N' lhnl u

< (n-1) f!e - for n even (E. 2)

~ ..m•

and lhnl (n-2) ! ! hie u < - for n cx3d (E. 3)

wnere (2n-l)!! = 1·3·5·7·9········(2n-3)·(2n-l)

and K is as def .ired above.

198

t' 't

t ~·· •

J

i. j t ( f

'

Page 217: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

FUrtherrrore tre Hermite polynani.al is uppertx:>unded by [38]

<

n-1 ;;, -< 2 > 2 o< 2 {n-1) l e

n-1 < ->!

2

n-1 -y~

...,'here <x> ~tes the integ>..r part of the real nl.lilf:P-r x.

(E. 3)

The error whidl arises as a result of truncating the series

~ioo of equatioo (E.l) at the (L-l)st tenn can b:! written as

..,

!\, = }: n=L

< -p CD I h I ~ I-n­.;r; n=L n

n/2

(-1) n [ N~l -- h -n! n NT

(E.4)

n/2

[ :;] n-1 / n-1 -< - > 2 p<-- > 2 2 e 2

(E. 5) n-1

< 2 >l

Without loss of generality we m:i:y assure that L is even in the

subsequent analysis.

Substituticn of (E.2) into (E.5) and rearranging as sums of

even and cdd ter.ns we cbtain

(E.6)

~ the sequenc:ES s2k and s2k+l are defined as follcws

[

N' ]k -(k-1) 21 p (k-1) (2k- l) ! 1 u 2 e 2k N.r --~-(k---1-,1--~- (E. 7)

199

...,

:

l t

l

I f .. 1 J

l

.) 'j I i ' t ' I i

t ,t c .t '•

':\ I

I C~.,;.

Page 218: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.. {' ,, I

. \

l • 1

I i: ' r ' i

r r----"

2k+l

s2k+l (2k-1) ! I [ N~ ]-2-/ 2k+l 2-k e20k (2k+l) NT k!

It is then easy to sho,/ for the even and crld terns

and

s2k+2

s2k = (2k+l) [ N~ J 2/o{ >'k - lk-1}

(2k+2) N.r, e ,

(2k+l) (2k+2)

(E.8)

(E. 9)

(E.10)

Fran D' ~rt' s ratio test of absolute cawergence and I

equatims (E.9) and\{E.10) it then fol.lows that the senes of S2k and

L S2k+ 1 are jointly absolutely a:n~.1ergent for -any k :::. 2 sudl that

L > 2 + ! [ 2 /p 2 ln [N'l"'1'1 ~]

_1n_[N_~_~1-]2 2,tp

(E.11)

The value for L, as indicated in (E.11), depends en the ratio

of total noise p:,v.er at the receiver, N.r, to the equivalent up-link

noise pa,,er, N' and tends to diverge as N' approact-ies zero. Ho...ever, u u

for the trivial case of no up-link noise, N' = 0, the series terms in u

(E. 1) are redured to z.ero and the system perf orm3l'loa, p, is affected

cnly by the da.ln-link Gaussian noise.

l · ..... ...,,.,... . ~~~~-""""= •'"'"*' ~ iE .. •<

200

i '

Page 219: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.,.

J f

·~ .. -,<

::{;; ,,. r~J­

, , .

I

'l !

'

j ..

For any values of L k::: 2 and L satisfying (E.11), equations

CE. 9} and (E.10) teoorre

s2k+2 -·- < s2k [ :~ l 2-1'; f r'L/2 - I< L-2 > 12 } e . l Q (L) < l

- e

(E. 12) and similarly

rota.in

and

s2k+3 - < s2k+l

[ Nu' l 2;'o{ l(Lt2) /2 - /(L/2)} e ~J

(E .13)

Using tbe results for the sum of infinite georret.ric series, we

L

... (L-2)

--2- 210 (L-2) /2 (L-1) !! r:~ r 2 e

L

rL s2k+ 1 < '"'"c1r __ 1} __ !_! [ ~ l.J.

~ l(Ltl) --r

L+l 2

[(L-2)/2]! (1-<J (L)] e

2 e (L/2) ! [ 1-Q (L) f

0

(E .14}

(E.15)

Cmbining (E .14) and (E.15) and substituting into (E. 6) we get

£K2 /4N' J

~ e-Pe u

< /Ti

L

(L-1} ! ! [~r -~ 2~

2 2 e

(L-2) 2 lo (L-2) /2 --2-

2 e L [ (L-2} /2 ) ! (1-() (L)]

e

(E.16}

201

Page 220: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,. , .

. •

..

,•

?

I

. i i

202

and since the series s2k, s2k+l are shewn to re absolutely cawergent,

then for a small truncation error bound, S , it is always p:>5s1.l>le to

find a sufficiently large L satisfying equation (E.11) sudl that

< 6 .

(

4 1 r 1 1 iili rtw

j ' ' 1 I

J. t !

i l i t

! """"

I

l 'j

! •

Page 221: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

.,

.;,

I i

l r·

I I I.

[1]

[2]

[3]

[4]

1\BIWCMITZ, M. and SEGI..N, I.A.: Handbo::)k of nathematical functions,

(D:Jver I 1965) •

ibid FP· 377.

ibid FP· 503-537.

AEIN, J.M.: "Nonnal approximations to the error rate for hard­

limited correlators", IEEE .Trans. Camu.m. Technol., vol. CDM-15,

FP· 44-51, Feb. 1967.

[5] AEIN, J.M.: ''Error rate for peak limited ccherent binary channels",

IEEE Trans. Cormun. Tec:hnol., vol. CDM-16, pp. 35-44, Feb. 1968.

[6] AEIN, J.M. : "SNR and error rate ca.lculations for coherent nonlinear

satellite dlannels", Intelsat/IEE Intern.aticnal Conferen02 on

Digital Satellite Comrunications, pp. 25-27, Nov. 1969.

[7] BAKKEN, P.M.: "Feedforward linearizer with two 'IWI''s", Proceedings

of the Naticnal Telecx::mruni.caticns Conference (NI'C'74), pp. 953-958,

~- 1974.

[8]

[9]

[10]

[lJJ

BANDI.ER, J.W. and CliU, W.Y.: "FUnctioo optimization package version

FLOPTl" 1 SOC Internal Pep:)rt Series, no. SOC-17, ll-tllaster University,

August, 1973.

BENEOErro, s. and BIGLIERI, E.: "Performance of M-a.ty PSK systems

in the presenre of intersyrrool interference and ad::litive noisen,

Alta Frequenza, vol. XLI, i:p. 55E-69E, April 1972.

BENEIEITO, s. , BIGLIERI, E. and CASTELLANI, v. : "Performance eva­

luaticn in digital transmission with nonlinearities", P~gs

of Int. Camun. eau., ICC'74, paper 30E, June 1974. '-

BER1AN, A. L. and KORACZKY , E • : "Experi.xrental determination of

.intenrodulaticn distortioo produced in a wide-band a:mruni.caticn

.repeater", IEEE International Cawention Peco.rd, vol. 15, pt. 2,

pp. 69-88, 1967.

203

.. ,,

Page 222: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

..

I12J

{13)

{14)

[15]

204

~' A.L. and mu., C.E.: "N<n.Unear phase shift 1.n travell.ng­

wave tuce as applied to nultiple acress camunications satelb.tes",

IEEE Trans. Conm.m.. Technol., vol. CCM-18, pp. 37-47, Feb. 1970.

BEPMAN, A.L., Ml\HL, C.E. and WACHS, M.R.: "Transmission rrodeling",

CX>M3AT Tedmical Feview, vol. 2, pp. 489-527, Fall 1972.

BIGLIERI, E.: "A ~cursive rrethcd for ccnputing the o:::::,eff1.CJ..ents

of the Gram-Olarlier series", Proreedi.ngs of the IEEE, vol. 61,

pp. 251-252, Feb. 1973.

BIAOIMAN, N.M.: "Bandpass ncnlinearities", IEEE Trans. Inform.

Theory, vol. IT-10, pp. 162-164, April 1964.

{16) BU>.CHMAN, N.M.: Noise and its effect en 001l1Tllm.ication, (M::Graw-Hill,

1966), pp. 59.

{17) ibid pp. 60, prcblem 4.6.

[18] BI..J'ICHMAN, N.M.: "Detectors, bandpass nonlinearities, and their op­

timization: Inversion of the Olebyshev transform", IEEE Trans.

Infonn. Theory, vol. IT-17, pp. 398-404, July 1971.

[19] BUI'IER, J .L.: "Digital matrix and intermediate frequency scanning",

chapter 3, Scanning antenna, vol. 3, edited by HANSEN R. c. , (Academic Press, 1966).

(20]

(21)

{22)

CAHN, C.R.: ''Performanoe of digital phase-rrodulati.on cxxrm.mication

system,", IRE Trans. Ccmnm. System:;, vol. C53-7, i:p. 3-6, May 1969.

~ Cl!AAAS, Ph. and RJCER:i, J.D.: "Inprovertents in on-board 'IWl'A

performmoe using anplitude and phase predistortion", Proceedings

of the International Conferenre en Satellite camunicaticn

System Technology, pp. 270-280, April 1975.

CARl'ER, C.R.: Syndu:onizatim of earth stati.cns to a cornrunicati.ons

switdung satellite, Ph.D dissertatioo, Depart::nEnt of Electrical ' Engineering, Md1a.ster University, canada, August 1974 .

.... za a .... ~ ex; ",:; -

Page 223: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

,~

°\..

~ ,. t ij

I l I I I

• I

I f t i

t J

. ,

L~ '

[23] OiNl, H.C., TNfJ.JJp,, D.P. and HAYKIN, S.S.: "C.onparat.I.ve eva­

luatim of digital mxlulation tedmiques: Simulation study",

CRL Internal Report Series, no. CRL-18, part 3, Ccmrunications

Research Laboratory, ~ter University, April 1974.

(24]

(25]

t,u\NG, J.C. : "The respcnse of hard-limiting bandpass 1.uni ters to

PM signals", IEEE Trans. Aerospa02 and Electronics Systems, vol.

AES-6, pp. 398-400, tvay 1970.

Cl.AASEN, T. : "Spectral analysis of PSK for digital satellite

dlannels using a third order nmlinear node!", Technical Report,

rx:>. 68, Royal Institute of Tedmology, s~, Dec. 1973.

(26] CTARKE, A.C.: "Extraterrestrial relays", Wireless World, vol. 5,

pp. 303-308, Oct. 1945. I

205

[27] CRAMER, H.: Matherratical rrethod of statistics, (PrinCEton University

Press, 1946), pp. 100.

[28] ibid pp. 223-232.

[29] D.l\VISSCN, L.D. and MIISI'EIN, L.B.: "0n the performance of digital

o::mnmicaticn systems with bandpass limiters-Part I: Cxle-link

systems", IEEE Trans. Conm..m. Tedmol., vol. ro+-20, pp. 972-975,

Oct. 1972.

[ 30] Dt\VISSCN, L. D. and MIISI'EIN, L.B. : "Cb the perf or:mmCE of digital

a:mnmicaticn systems with bandpass limiters-Part II: Tuo--link

system:;", IEEE Trans. Camun. Tedmol., vol. CDM-20, pp. 975-980,

Oct. 1972 .

(31]

{32]

ERIC, M.J.: "Int:.e.rnooulatioo analysis of ncnlinear deviCEs for

multi.carrier inputs", Cormunicatioos ~search Center, Feport no.

U34, Ottawa, Canada, Nov. 1972. '\

FOICINA, G. P. : "Effect of ncnlinear cnannel characte~tics en

QPSK system perfonnanoa", Proceedings of Int. camun. Conf., IO:::' 73,

pp. 31.13-31.18, June 1973.

-

j . . ,,

:.

'

Page 224: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l': ' . '

), . ' f f

.. .

'•.

-f: . ,, }.

"' •• 1

...........

[33]

[34]

J35)

206

FREDRICSSCN, S.: "Analysis of bandl.i.mited ncnlinear QPSK-channels",

Tedmical ~p::>rt, no. 78, Fojal Institute of Technolo:;JY, S~den,

April 1974.

FUENZALIDA, J .c., SHIMOC), O. and CXXJK, W.L.: "Ti.Ire domain analysis

of inte.rm:dulation effects caused by nonlinear arrplifiers", CDMSAT

Tedmical Review, vol. 3, pp. 89-143, Spring 1973.

Gl\LLAGER, R.: "~r t.oi.mds en the tail of probability distnmtions",

Quarterly Progress Rep::>rt, no. 77, MIT Pesearch Laboratory of

Electrcnics, Carrbridge, Mass., pp. 277-291, April 1965.

[36] ~' F.M.: "carrier and clock synchronization for TOW\ digital

a:mrunication", European Space Research Organizaticn, ESTF.C Rep::>rt

no. 744976, Ncx:>rdwijk, Netr>.erlands, June 1974.

[37) G-lEIENKO, B.V. and KOI.MXDIDJ, A.N.: Ll.rnit distributicns for sums

of independent randan variables, Translated by OflNG, K.L., (Addi­

, sai.-wesley, 1968) , pp. 103.

[38] GFW:SHI'EYN, I.S. and RYZHIK, I.M.: Table of integrals, series and

products, Translated by JEF'FREY', A., (Academic Press, 1965).

(39] ibid pp. 132, equation 4.

[40] ibid pp. 1034.

(41J HEOOERLY, D.L. and ~sr, L.: "Crnputer s.i.nulatioo of a digital

satellite c:x:mmmication link", Proceedings of Int. Camun. Conf.,

I0:::'72, paper 2C, pp. 2.15-2.20, June 1972 •

(42]

[43]

HETRAKUL, P. and TAYIDR, D.P.: ''Noolinear quadrature m:x3el for

a travelling-wave-tube-type anplifier", Electronics Letters, vol.

11, no. 2, FP· so, Jan. 1975.

HEl'RAKUL, P., TAYI.JJR, D.P. and HAYK.IN, S.S.: "Effect of a soft­

linrl.ter oo the error rate of an M-ary CPSK system", P~gs ..

of Int. COmlm. Conf., ICX:'74, paper 448, W· 448-1-448-5, Jtme

1974 •

Page 225: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

I

J

207

[44) HEI'PJ\KUL, P. and TN[lJ)R, D.P.: "CO"q;ensation of bandpass nmlJ.neari­

ties for satellite ccmn..mications", Proceedings of Int. Camun. COnf.,

I0:'75, paper 36F, A?· 36F-l-36F-5, June 1975.

[45] HETRAKUL, P. and TAYIDR, D.P.: "Effect of satellite transponder

n<nlinearity en the perfonnan02 of binary PSK system", Prooeedings

of the Third International Conferenre on Digital Satellite

Comun.ications, paper B-1, Kyoto, Japan, Nov. 1975 (also acrepted

for publicat.:Lon in the IEEE Trans. COrmn.1n. Tedmol.).

(46] HIIL, F.S. Jr. and BI.NKD, M.A.: "Rand::xn georretric series and 1ntersym­

bol interferenre", IEEE Trans. Inform. Theory, vol. IT-19, pp.

326-335, May 1973.

[ 47] JACOB.5, I. : ''The effects of video clipping 01 the perfonmnre of

an acti\l'e satellite PSK ccmnunication system", IEEE Trans. camun.

Technol., vol. CXM-13, w. 195-201, June 1965.

[48]

[49]

[50]

[51]

(52]

153]

JAIN, P.C.: "Perfomance of hard-limited spread spectrum transmission

systems", Final Report, SRI Project 1328, Stanford Research Institu­

te, March 1972.

JArn, P.C. and BI..AO-lMAN, N.M.: "Detectim of a PSK signal transmitted

through a hard-limited channel", IEEE Trans. Inform. Theory, vol.

rr-19, pp. 623-630, Sept. 1973.

JCNES, J .J., Hl.DWG, J .Y. and LffNG, W.K.S.: "Perfonnanre of soft­

limiting PSI< and DPSK spread spectrum systerrs" , Final Peport, AD-777

-897, Philco-Ford Corporaticn, Feb. 1974.

KA.YE, A.R., (E)RCE, D.A. and ERIC, M.J.: "Analysis and ccnpensaticn

of bandpass nonlinearities for ccr.m.mications", IEEE Trans. Ccmrn.m.

'l'edm:)l., vol. a:M-20, no. 5, pp. 965-972, Oct. 1972.

I.ESH, J.R.: "Signal to noise ratios in coherent soft limiters",

IEEE Trans. ccnmm. Tedmol., vol. CDM-22, pp. 803-Sll, June 1974.

LJNI:6EY, w.c. and s:u-m, M.K.: Telecamunication systems engineering,

(Prentioo Hall, 1973), pp. 228-234.

i I , l l t t j ! f. i ·~

,] 'I J

,J -! -!

Page 226: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

, ,' ,·

l ,.

t !

I I

t l I

I

J54]

155]

[56 J

[57)

[58)

[59)

[60]

[61)

[62]

[63]

208

ib~d A?· 279-280.

ILFRIORE, M. and I.LW:QUISf, L. : "Choice of opt.i.m.nn TDMA transrnis­

sicm system", Prcx:Eedi.ngs of the Sea:,nd Internatiooal Conference

on Digital Satellite Camunicatioos, Paris, Franre, pp. 175-182,

Nov. 1972.

UO<Y, R.W., SALZ, J. and WEliXN, E.J.: Principles of data camu­

nications, (McGraw-Hill, 1968).

LYCNS, R.G.: 1-Ethcds of nonlinear analysis with applications t0

Irl.lltiple acx::'2ss satellite camunicaticns, Ph.D dissertation,

Departnent of Electrical Engineering, Carleton university, canada,

July 1971.

L'fCNS, R.G.: "Multiple acoess tedmi.ques for the Canadian cbtrestic

satellite a:::mruni.catims systems", Interron Intemational CC!1V61tion

and Expositicri, New York, March 1973.

L'fCNS, R.G.: "The effect of a bandpass ncnlinearity on signal detec­

tability", IEEE Trans. Corrm.m. Tedmol., vol. CDM-22, A?· 51-60,

Jan. 1973.

!¥.GILL, D.J.: "Multiple-access IIEthcxi tedmiques", in Comunicaticns

satellite systems technology, (Academic Press, 1966), W· 667-680.

W\rntJS, W. , OBERHETING::R, F. and sau , R. P. : Fonrulas and theorems

for the special functions of mathematical physics, (Springer­

Verlag, 1966), H?· 418.

r-ORG.?.N, W.L.: "camunicaticns satellite and new technology", Micro­

wave System News, vol. 4, pp. 64-68, April/May 1974.

z..lJRl\.'I7\NI, T. , MZ\TUSHITA, I. , TSUJI, Y. and HAM., T. : "Sinulation

of a PSK transmission system including the nonlinear satellite

dlannel", Prooeedings of the Sea:nd Inteniatiooal Ccnferenre on

Digital Satellite Camunicati.cns, Paris, France, H?· 183-192,

Nov. 1972.

• ,I f

J ' t

.' I .

Page 227: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

•• ~· y

~ t h ~ .

!64]

{65]

[66]

(67]

P~, J .R.: Txaveling wave t:ubP__s, (D. van Nostrand, 1950).

PUENI'E, J .G., SCHMIIJI', W.G. and WERrH, A.M.: "Multiple access

tedmiql.ES for o::nnercial sat.elli tes" , Proceedings of the IEEE,

"\KJl. 59, pp. 219-229, Feb. 1971.

RAPPAPORI', s. S. and KURZ , L. : "An cpti.mal nonlinear detector for

digital data transmission 0rough non-Gaussian cnannels", IEEE

Trans. Carm.ln. Tedmol., vol. ro+-14, W· 266-274, June 1966.

209

RICE, S.O.: "Statistical properties of a sine wave plus rand:::m

noise", Bell System Tedmical Journal, vol. 24, pp. 46-156, 1945.

[68] SANDRIN, W.A.: "The Butler matrix transponder", CX>M3AT Technical

Feview, vol. 4, no. 2, pp. 319-345, Fall 1974.

{69] 50-IMJJJI', W.G., G\BBARD, O.G., CA.CCINW-IT, E.R., 1¥..ILIEI', W.G. and

WU, W.W.: "MAT-1: Intelsat's experinental 700-~l TDMA,/IYI.",

Proreedings of t:t..e First Internatiooal coo.ferenCE on Digital

Satellite Camlunications, laldcn, EngLIDd, pp. 428-440, Nov. 1969.

f 70 J SCliWARI"l, J. w. , AE.IN, J.M. and KAISER, J. : "M:xfulation tedlniques

for rrultiple aeo3ss to a ha.rd-limiting satellite repeater",

Pl:OO=edings of the IEEE, vol. 54, pp. 76'3-777, May 1966.

(71) SEireL, H., BURRIER, H.R. and PR.IED-Wl, A.N.: "Error-cent.rolled

[72]

[73)

high power linear anplifiers at VHF", Pell System Tedmical Journal,

vol. 47, pp. 651-722, Ma.y.June, 1968.

SEIDEL, H.: "A miCI'CWclve feed-forward e,q:,erinent'', Bell System

Tedmical JOtrmal, vol. SO, no. 9, pp. 2879-2916, Nov. 1971.

SEIIEL, H.: "A feed.forward experinent applied to an L-4 carrier

system anpllfier", IEEE Trans. Carmun. Tedmol., vol. <XJM-19,

no. 3, i;p. 320-325, June 1971. v

[74] SHI.MOO, 0.: "Effects of inte.rmxlu.latioo., N+-PM o:::nversion and

a&litive noise in Ill.llticarrler 'IWl' systems", Pro<Eedings of the

IEEE, vol. 59, no. 2, pp. 230-238, Feb. 1971.

I .p -< ),¥ ""

)

i , i f ) t ,t

{

t -l !\ ~ l; j •

~~,

j, ,,

~,i

·l J ·s •' :;

' 't I

ro ; { " ';

'1,,,l~ l}

Page 228: Performance Analysis of CPSK Transimission through Nonlinear … · 2016-02-08 · 2.2 f.bdelli.ng of Satellite Ncnlinearity· OiAPl'ER 3 - a:M'ENSAT:rrn OF S.MELL!TE NCM.INFARITY

l i } . '

i f

l i t •

:'l h f. ': 'i

l ' ! ' I !

{75J

{76)

210

ST!WJJNG, A.F.: "An active-phase and anplitude-correctioo device

for reducing the intennxlulation prcduoed by 'I".vl''s and Klystrons",

Proreedings of the Internaticnal ca.ference oo Earth Staticn

Technology, pp. 274-279, Oct. 1970.

Sl'IF'.FU:R, J .J. : Theory of 5¥:ldm::nOUS o::mni..m.icaticns, (Prenti~­

Hall, 1971) t PP• 96-99.

{77] ibid fP. 104-108.

[78)

{79)

[80]

[81]

(82)

STRXID, A.H.: Approx:i.nate calculation of multiple integrals,

(Prentice-fiall, 1971), pp. 350.

TAYLJJR, D.P., HAYKIN, S.S. and QIAN, H.C.: "Catparative evaluation

of digital m:xiulaticn tedmiques: Literature survey", CRL Internal

Ieport Series, no. CRL-18, part 2, Caml.lnications Iesearch

Laboratory, Mc:Master University, Canada, April 1974.

'IHCMA.S, C.M., WEIINER, M.Y. and CURRA..'il, S.H.: "Digital arrplitooe­

phase keying with M-ary alphal:ets", IEEE Trans. camun. Tedmol. ,

vol. OJM-22, pp. 168-180, Feb. 1974.

WALSH, D.W.: Theoretical solutions to problems introduced l:y the

'!WA in Illlltiple access o::mmnicatim system, Sc. D dissertation,

Departnent of Electrical Engineering, The George Washington

lltlversity, Washingt:01, D.C., 1974.

WELTI, G.R.: "Natlinear channel for rrulticarrier transmissicn",

paper presented at NA'lU Advanced Studies Institute, Darlington,

F.ngland, August, 1974.

(83] ~, P .M.: Prd::>ability and infounaticn t:reory, with au>lica-

(84]

185]

[86]

tials to rooar, (Perganon Press, 1960).

W)ZFNCAAFI', J.M. and JNJJB.5, I .M.: Principles of camunicatim

enginee.rlng, (Jdln Wiley & Sens, 1965), "FP· 214.

ibid pp. 264-266.

~QJCHI, K.: "F.qualizatim of intenrodulaticn due to TWI' anpli­

ficatian", Trans. Joint cenv. of ~ Four Elec. Inst. of Japan,

no. 1599, 1965.

!

i .. '

t t I

l l

,i \

. l ',, t l 1

t ~ - :!


Recommended