+ All Categories
Home > Documents > Performance and Design Considerations for Gate-All-around ... · Performance and Design...

Performance and Design Considerations for Gate-All-around ... · Performance and Design...

Date post: 05-Feb-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
47
Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst CEA-LETI, Minatec Campus, Grenoble, France STMicroelectronics, Crolles, France
Transcript
Page 1: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Performance and Design Considerations for Gate-All-around

Stacked-NanoWires FETs

S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie,

M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C.

Vizioz, C. Comboroure, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst

CEA-LETI, Minatec Campus, Grenoble, France

STMicroelectronics, Crolles, France

Page 2: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Context of this work

22nm INTEL

14nm INTEL

16nm TSMC

14nm SAMSUNG

3D FinFET

2D FDSOI

28nm ST

22nm GF

Back-gate control using

thin BOX capacitive

Single-gate reduction

of SCE controlled by

thinner TSi or TBOX

?

New MOSFET

architectures need

to be proposed

Two main MOSFET architectures for advanced CMOS

2.

Page 3: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Context of this work

Max M. Shulaker et al., Nature 2017, Stanford

Plenty of space … at the top !

3.

Page 4: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

2017 press releases

4.

May │ 2017Samsung set to lead the future of foundry with comprehensive process roadmap down to 4nm

4LPP (4nm Low Power Plus): 4LPP will be the first implementation of next generation device

architecture – MBCFETTM structure (Multi Bridge Channel FET). MBCFETTM is Samsung’s unique

GAAFET (Gate All Around FET) technology that uses a Nanosheet device to overcome the

physical scaling and performance limitations of the FinFET architecture.

https://news.samsung.com/global/samsung-set-to-lead-the-future-of-foundry-with-

comprehensive-process-roadmap-down-to-4nm

June │ 2017IBM claims 5nm Nanosheet breakthough

IBM researchers and their partners have developed a new transistor architecture based on Stacked

Silicon Nanosheets that they believe will make FinFETs obsolete at the 5nm node

http://www.eetimes.com/document.asp?doc_id=1331850&

GAA MOSFET devices are becoming an industrial reality

Page 5: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

3D stacked structures

5.

15 years of innovation

T. Ernst et al. ,

IEDM06

First Stacked

NW CMOS

10-14

10-12

10-10

10-8

10-6

10-4

-1 -0.5 0 0.5 1 1.5 2

Dra

in C

urr

en

t I D

(A

)

Gate 1 voltage VG1

(V)

VD=50mV L=550nm V

G2=0.8 to -1.4V

step = -0.2V

3T-FET4T-FET

SS

=62m

V/d

ec.

SS

=82m

V/d

ec.

VG2VG1

VS

VD

4T-FET

VG

VD

3T-FET

exx

eyySi0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3Si Si

exx

Si Si

eyy

Si0.7Ge0.3

Si channel

Si channel

Inner spacer

Si0.7Ge0.3

Si channel

Si channel

Si Si

Inner spacer

In-plane deformation

Out-of-plane deformation

In-plane deformation

Out-of-plane deformationa b

Nanowires with

independent

gates

Internal spacers

introduction

ONO

crystalline

3D Flash Strain

booster

High density

13 crystalline

levels !

E. Bernard et al.

VLSI 08

LETI - STM

A. Hubert et al.

IEDM 2008 -LETI

S. Barraud et al.

IEDM 2016C. Dupré et al. LETI

IEDM 2008 T. Ernst et al.

Micro. Eng. 2011

IBM

N. Loubet & al. (VLSI 2017)

MultiBridge

Channel

MOSFETS.Y. Lee et al SAMSUNG

IEEE Trans Nano 2003

Page 6: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

10 15 20 25 30 35 40

20

40

60

DIB

L (

mV

/V)

Gate length (nm)

From FinFet to stacked NW

14nm INTEL [1]

Fin FETs GAA Wire FETs

[2] H. Mertens et al., VLSI Technology, 2016.

[1] S. Natarajan et al., IEDM, 2014.

IMEC [2]

GAA 7nm

LG=10nm

W=7nm, HFin=45nm

FinFET

6.

TCADSame process (LETI 2008 – IEDM)

Page 7: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Switching delay, ps

En

erg

y p

er

sw

itch

, fJ

• Increase Ieff per footprint

• Decrease Ceq per footprint

Alternative

options: GAA

structures

ELECTROSTATICS

FF/NW/NS

MOBILITY

FF/NW/NSCPARASITICS

FF/NW/NS

Motivation/Objective

3 Fins

Layout

Footprint

(LF)

Metal

Gate

Fins

Contact

FP

CPPDevice architecture scaling

CPP scaling

LG reduction

Electrostatic booster

to keep low

leakage current

Device FabricationFF/NW/NS

7.

Page 8: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Outline

• Performance/Design consideration

• Device Fabrication

– Inner spacer

– SiGe S/D

• Strain Characterization

– Precession Electron Diffraction

• Perspectives

• Summary and Conclusion

8.

Page 9: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0,2 0,4 0,6 0,8

40

80

120

Fo

otp

rin

t (n

m)

Weff

(µm)

NW

FF

FinFET

Weff=circonference of Fin (2HFin+W)

TCAD

9.

Layout footprint (nm)

Layout fo

otp

rint (n

m) FF W=7nm

HFin=43nm

Page 10: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0,2 0,4 0,6 0,8

40

80

120

Footp

rint (n

m)

Weff

(µm)

NW

FF

Layout fo

otp

rint (n

m)

FinFET to GAA NanowiresLayout footprint (nm)

Weff=circonference of Fin (2HFin+W)

FFNW W=7nm

HFin=43nm

-14%

10.

?

TCAD

Page 11: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0,2 0,4 0,6 0,8

40

80

120

Fo

otp

rin

t (n

m)

Weff

(µm)

NW

NS

FF

GAA Nanowires to Nanosheets

Weff=circonference of Fin (2HFin+W) 11.

82nm

57nm

32nm

107nm

132nm

W=82nm

W=32nm

W=15nm

+5% weff

+24% weff

+42% weff

x3GAA

WNS

Page 12: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0 20 40 60 80 100 120 140

30

40

50

60

DIB

L (

mV

/V)

WNS

(nm)

Short-channel effects

12.

FinFET (HFin=43nm, W=7nm)

TCAD (LG=16nm)

Electrostatics of multi-gates MOSFET transistors

1st boundary

condition

Page 13: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0 20 40 60 80 100 120 140

30

40

50

60

DIB

L (

mV

/V)

WNS

(nm)

Short-channel effects

13.

FinFET (HFin=43nm, W=7nm)

Electrostatics of multi-gates MOSFET transistors

1st boundary

condition

2nd boundary

condition

• Strong reduction of DIBL for Gate-all-around nanowire. → Optimal electrostatics control!

NW

TCAD (LG=16nm)

Page 14: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

0 20 40 60 80 100 120 140

30

40

50

60

DIB

L (

mV

/V)

WNS

(nm)

Short-channel effects

14.

FinFET (HFin=43nm, W=7nm)

Electrostatics of multi-gates MOSFET transistors

1st boundary

condition

NW 2nd boundary

condition

• GAA Nanosheets (thin and wide wires) show intermediate DIBL

between NW and FinFET. DIBL depends on wire width (W).

TCAD (LG=16nm)

Page 15: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

• GAA stacked-nanosheets maximize Weff (drive current)

per layout footprint with improved channel electrostatics.

LG=13nm

LF=57nm

FF

15.

Tradeoff between SCE and Weff

FF

NW

NS

0,2 0,420

30

40

50

60

DIB

L (

mV

/V)

Weff

(µm)0,4 0,6

20

30

40

50

60

DIB

L (

mV

/V)

Weff

(µm)

0,4 0,620

30

40

50

60

DIB

L (

mV

/V)

Weff

(µm)

LG=13nm

LF=82nmLG=13nm

LF=107nm

FF FF

NW NW NW

Page 16: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Power/Perf. Optimization

GAA Nanosheet transistors offers more freedom to

designers for the power-performance optimization thanks

to a fine tuning of the device width.16.

0,5 1,0 1,510

-2

10-1

100

Norm

aliz

ed I

OF

F

Normalized ION

LF=57nm

LF=82nm

LF=107nm

FP=25nm

3 stacked GAA

LG=16nm

HNW=6.5nm

FF

LP

HP

W=7nm

13nm15nm

19.5nm

24nm

32nm57nm

Page 17: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Parasitic capacitances and delay

17.

With ) & )

t: Delay

Ieff: Effective drive current

Ieff=(IH+IL)/2

IH=IDS(VGS=VDD, VDS=VDD/2)

IL=IDS(VGS=VDD/2, VDS=VDD)

Supply voltage VDD=0.7V

FO=3

LG=16nm

Spacer size: 4.2nm

EOT=0.67nm

Cback-end=2fF

M=2: Miller effect in inverter

FF NW

-40 -20 0 20 40-10

0

10

20

Ceq (%)

Ceq (%)

tp (%)tp (%)

LF=82nm (4 Fins with FP=25nm)

LF=57nm (3 Fins with FP=25nm)

57nm

19.5nm

82nm

32nm

15.3nm

NW

(W=7nm)

Ceq is reduced for NWs (W=7nm)

but no delay reduction is achieved,

while performance can be

significantly improved for

nanosheet design having wider

wires. A delay reduction of around

20% is expected for WNS~30nm

Page 18: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Number of Stacked-GAA NS

2 3 4 5 6 7 8 9 10 110

10

20

30

40

50

60

70

80

t p r

eduction (

%)

Number of stacked GAA

0.5fF

1fF

2fF

4fF

6fF

HFin=29nm HFin=72nm HFin=115nm

High Ieff Increase

vs Ceq increase

LF=57nm

W=19.5nm

VDD=0.7V

Saturation of tp reduction when the number of stacked

nanowires increase (Ieff increase from N to N+1 is close to Ceq

increase). 18.

Page 19: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Electron mobility in NW/NS

In GAA NanoSheet, µelectron is increased due to high mobility

in the (100) plan.

FF mobility

19.

Page 20: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Hole mobility in NW/NS

FF mobility

Horizontal GAA NS for n-FETs and vertical GAA NS for p-FETs turn out

to be the most effective solutions to promote electron and hole

transport, respectively.

[110] FinFET

20.

Page 21: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Outline

• Performance/Design consideration

• Device Fabrication

– Inner spacer

– SiGe S/D

• Strain Characterization– Precession Electron Diffraction

• Perspectives

• Summary and Conclusion

21.

Page 22: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices FabricationxN-(SiGe/Si) EPI

Growth

(Si0.7Ge0.3/Si)Fin Patterning

TEOS/Poly-SiDummy Gate

CMP Poly-Si

Dummy GatePatterning

RMG Process

300mm (100) SOI substrates

(Si/SiGe) multilayer:

Option1:(Si/SiGe/Si) ≡

(12nm/12nm/12nm)

Option2:(Si/SiGe/Si/SiGe/Si) ≡

(7nm/8nm/7nm/8m/7nm)Spacer 0

Deposition/Etch

Inner SpacerDeposition/Etch

S/D EPI Growth

Spacer 1Deposition/Etch

ILD and CMP

Dummy Gateremoval

Release of stacked-NW

RMG moduleHfO2/TiN/W

Contact

BEOL modules

Horizontal Wires 1.

2.

3.

4.

5.

Grey steps are not different

that FinFET process-Flow 22.

Page 23: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contact/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

23.

Page 24: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

Individual and dense arrays of

fins were patterned to fabricate

stacked wires FETs. 40 nm Fin

pitch / 60 nm height / 20 nm

width

24.

S. Barraud & al. (IEDM 2016)

Page 25: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

Not different that FinFET

SiO2/Poly-Si

Dummy Gate

spacer

25.

Page 26: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow 1. 2.

3. 4.

5.

Definition and benefit of inner spacer ?

13.

5.

Si

Si

SiGe

Fin

recess

SiGe

etchingInner

spacerRaised-

S/D

Page 27: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

After the Fin recess

Fin recess SiGe etching

27.

Page 28: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

0 10 20 30 40 50 600

20

40

60

80

100

120

140

SiG

e E

tch

ing

(n

m)

Time (sec)

Etch rate Ge 45%

Ge 30%

Second step

Etch depth profile with Si 7nm and SiGe 8nm

28.

Page 29: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

The depth of the SiGe recess was adjusted to

match the thickness of future inner spacers

50nm

29.

Page 30: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

LG=20nm

Spacer=9nm

TSi=12nm

TSiGe=12nm

30.Which benefits for parasitic capacitances?

S. Barraud & al. (IEDM 2016)

IBM

N. Loubet & al. (VLSI 2017)

GAA nanosheet (x3)

TSi=5nm

TSiGe=10nm

44/48 CPP ground

rules

CEA-LETI

Page 31: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

10 15 20 25 30 35-40

-35

-30

-25

-20

-15

-10

CG

D r

eduction (

%)

NW width (nm)

Benefit of inner spacer

31.

Inner spacer is crucial for reducing intrinsic capacitances

and to improve dynamic perf.

10 20 30 40 50 60-40

-35

-30

-25

-20

-15

-10

Cgd

red

uctio

n (%

)

Gate length (nm)

W=15nm

W=20nm

W=30nm

Inner spacer is crucial for reducing

intrinsic capacitances and to

improve dynamic performances.

10 20 30 40 50 60-40

-35

-30

-25

-20

-15

-10

Cgd

red

uctio

n (%

)

Gate length (nm)

W=15nm

W=20nm

W=30nm

Inner spacer is crucial for reducing

intrinsic capacitances and to

improve dynamic performances.

NW

NS

L. Gaben & al., ECS (2016)

The benefit of inner spacer is higher as the width is

increased 30-40% reduction of Cgd (W=20/30nm)

TCAD

Page 32: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Devices Fabrication

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

Vertically stacked wires FETs

Process-Flow

In-situ Boron doped SiGe(:B) Source/Drain

In-situ Phosphorus doped Si(:P) Source/Drain

J. M. Hartmann et al., Thin Solid Films, 520, p. 3185, 2012.

J. M. Hartmann et al., Solid State Electronics, 83, p. 10, 2013. 32.

Page 33: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Wide variety of stacked-wires

33.

NW NS

NW/NS Cross-section

Along source-drain direction

Si channel

Si channel

Inner spacer

SiGe SiGe

Short-LG (20nm) Long-LG (>300nm)

After HfO2/TiN/W deposition (LG=200nm)

LETI

S. Barraud & al., IEDM 2016

Page 34: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Strain characterization

Superlattice (SiGe/Si)

Fin Patterning

Dummy Gate Deposition

& RIE

Spacer Deposition and RIE

Source/Drain Epitaxy

ILD & CMP

Dummy Gate Removal

Formation of Suspended NW

(release of NW)

Gate Stack Formation

Contac/BEOL

Inner spacer formation

1.

2.

3.

4.* M.P. Vigouroux et al., APL 105, 191906 (2014)

Strain maps were obtained by

TEM using Precession Electron

Diffraction technique*

* D. Cooper et al., Nano Lett. 15, 5289 (2015)

Strain engineering is another

key factor for stacked-wires

FETs.

34.

Is initial strain (substrate-induced strain) can

be used to boost performances?

Page 35: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Strain characterization

35.

Page 36: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Strain characterization

36.

Page 37: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Blanket wafer data

The substrate induced-strain (~1.4-GPa biaxial stress:

exx=0.77%) is well transferred in the stack.37.

Page 38: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Fin patterning data

EDX - Si

EDX - Ge

0 100 200 300 400 5000,0

0,4

0,8

1,2

De

f. (

%)

Distance (nm)

Measurement in sSi channels

Relaxation of sSi (free edges)

C1

C2

C3

0 100 200 300 400 5000,0

0,4

0,8

1,2

De

f. (

%)

Distance (nm)

Relaxation of SiGe (free edges)

Measurement in SiGe channels

S1

S2

+0.4

0.0

-0.4

(s)Si

Def. (ezz)

Fin width

Along the source-drain direction

38.

Page 39: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Si Source/drain data

exx

eyySi0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3Si Si

exx

Si Si

eyy

Si0.7Ge0.3

Si channel

Si channel

Inner spacer

Si0.7Ge0.3

Si channel

Si channel

Si Si

Inner spacer

In-plane deformation

Out-of-plane deformation

In-plane deformation

Out-of-plane deformationa b

Du

mm

y g

ate

The silicon channels as well as the source and drain are unstrained

A deformation close to 0% is observed

0 10 20 30 40 50 60 70 80-1,0

-0,5

0,0

0,5

1,0

1,5

De

form

atio

n (

%)

Channel

Top

channel

Bottom

channel

Source DrainChannel

In-plane (exx) PED deformation maps of stacked-wire transistor. Here,

inner spacer and Si source/drain are considered.

39.

Page 40: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Si Source/drain data

exx

eyySi0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3Si Si

exx

Si Si

eyy

Si0.7Ge0.3

Si channel

Si channel

Inner spacer

Si0.7Ge0.3

Si channel

Si channel

Si Si

Inner spacer

In-plane deformation

Out-of-plane deformation

In-plane deformation

Out-of-plane deformationa b

Du

mm

y g

ate

0 10 20 30 40 50 60 70 80-1,0

-0,5

0,0

0,5

1,0

1,5

De

form

atio

n (

%)

Channel

Top

channel

Bottom

channel

Relax. SiGe

Source DrainChannel

Full strain relaxation of sacrificial Si0.7Ge0.3 layer after the Fin recess

In-plane (exx) PED deformation maps of stacked-wire transistor. Here,

inner spacer and Si source/drain are considered.

40.

An initial strain (substrate-induced strain) is useless

Page 41: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

SiGe:B Source/drain data

exx

eyySi0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3

Si0.7Ge0.3Si Si

exx

Si Si

eyy

Si0.7Ge0.3

Si channel

Si channel

Inner spacer

Si0.7Ge0.3

Si channel

Si channel

Si Si

Inner spacer

In-plane deformation

Out-of-plane deformation

In-plane deformation

Out-of-plane deformationa b

In-plane (exx) PED deformation maps of stacked-wire transistor. Here,

inner spacer and SiGe source/drain are considered.

Optimized engineering of process-induced stress

techniques such as SiGe S/Ds (for p-FET) can be

efficient in 3D stacked-NWs devices

0 10 20 30 40 50 60 70 80 90-1,0

-0,5

0,0

0,5

1,0

De

form

atio

n (

%)

Channel

channelsource drain

SiSiGe SiGe

top

bottom

41.

Page 42: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Outline

• Performance/Design consideration

• Device Fabrication

– Inner spacer

– SiGe S/D

• Strain Characterization– Precession Electron Diffraction

• Perspectives

• Summary and Conclusion

42.

Page 43: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Today u-dense nanowire in industry

(poly Si)

43.

Page 44: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Next step …

• To switch to crystalline nanowires?

• To mix 3D logic & 3D memories ?

• Both ?

44.

Page 45: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Feasibility of Mo(W)S2 synthesis ALD demonstrated

Screening of dedicated precursors, H2S free

450°C 800°C

Replace Si by 2D materials?

MoS3,3C4,7H12N

S.Cadot et al J. Vac. Sci. Technol. A, Nov/Dec 2017, 06150245.

Page 46: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Summary Fabrication of vertically stacked Nanosheet MOSFETs (RMG process)

are now demonstrated (inner spacers, SiGe:B S/D, 44/48 CPP)

Horizontal GAA Nanosheet also have the advantage of being

fabricated with minimal deviation from FinFET (FF) devices in

contrast to vertical NWs which require more disruptive technological

changes

Strain characterization at different steps of fabrication (PED)

Efficiency of process-induced strain (SiGe S/D) significant

compressive strain (~0.5 to 1%) in top and bottom Si p-channels

Design flexibility: Nanosheet transistors offers more freedom to

designers for the power-performance optimization thanks to a fine

tuning of the device width.

46.

Page 47: Performance and Design Considerations for Gate-All-around ... · Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs S. Barraud, V. Lapras, B. Previtali,

Thank You for your attention

This work was partly funded by the French Public Authorities through the NANO 2017 program. It is also partially funded by the SUPERAID7 (grant N° 688101) project

47.


Recommended