+ All Categories
Home > Documents > PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser...

PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser...

Date post: 04-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
48
PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76-002 APRIL 1, 1977 )<. ODESSA, TEXAS REVISED FEBRUARY 15, 1982 FUNDAMENTALS OF GAS TREATING MANUAL FOR DESIGN OF GAS TREATERS Robert S. Purgason Perry Gas Processor~ Inc. Odessa, Texas Presented To The Gas Conditioning Conference, , 1976, 1978, 1979, 1980, 1981, 1982 Norman, Oklahoma i Page i to 45
Transcript
Page 1: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76-002

APRIL 1, 1977)<. ODESSA, TEXAS

REVISED FEBRUARY 15, 1982

FUNDAMENTALS OF GAS TREATING

MANUAL FOR DESIGN OF GAS TREATERS

Robert S. Purgason

Perry Gas Processor~ Inc. Odessa, Texas

Presented To

The Gas Conditioning Conference, , 1976, 1978, 1979, 1980, 1981, 1982

Norman, Oklahoma

i Page i to 45

Page 2: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

FUNDAMENTALS OF GAS TREATING

Introduction .••••.••.••...••.•

Section 1: Monoethanol/Diethanol Amine Process

A.

B.

c.

D.

Description of the Process .

Design Calculations 1. 2. 3. 4. 5.

Input Data. • ••• Circulation .•.••. Contactor ••••••••• Regeneration Vessels • • ••• Heat Loads • • • • . • •••• a. Re boiler . . . . . . . . . . . . . . . . b. Solution Exchangers .•••• c. Solution Coolers •••• d. Reflux Condenser •••••••••••.

Cost •••••..••• 1. Capital Investment • 2. Operating Expenses •

Graphs and Tables Table 1-1: Amine Unit Operating Costs Table 1-2: Regeneration Vessel Sizes • Figure 1-2: Typical Flow Sheet Figure 1-3: Contactor Capacities Figure 1-4: Cost Curve ••••

Sectoin 2: Iron Sponge Process

A. Description of Process

B. Design Calculations •• . ••••• 1. Linear Velocity ••• 2. Space Velocity •••••••••••• 3. Bed Life •••.• 4. Air Regeneration •••••

c. Cost •••••.••• 1. Capital Investment • 2. Operating Expenses .

D. Graphs and Tables

2

2

3 4 4 5 5 5 5 5 5 5

6 6 6

7 8 9

10 12

13

13

14 14 14 15 16

16 16 16

Table 2-1: Bed Capacity for Various Vessels 17 Figure 2-1: Typical Flow Sheet . • • . . • • . 18 Figure 2-2: Bed Life • • • • • • • • • • 19 Figure 2-3: Bed Capacities . • • . • • 20

ii

Page 3: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Section 3:

Section 4:

Section 5:

Section 6:

Section 7:

FUNDAMENTIALS OF GAS TREATING - Continued

Proprietary Liquid Processes . . . . . . . . . A.

B.

c.

D.

E.

F.

Diglycolamine (Econamine) (Description, Advantages and Applications) . Sulfinol (Description, Advantages and Applications) . Propylene Carbonate (Description, Advantages and Applications) . Selexol (Description, Advantages and Applications) . MDEA (Description, Advantages and Applications) • Typical Flow Sheets

. .

Figure 3-1: Propylene Carbonate •••••• • • Figure 3-2: Selexol ••••

Proprietary Solid Processes (Mol Sieves) . A. Description of Process • • . . .•• B. Advantages and Applications ••• C. Figure 4-1: Typical Flow Sheet •••••

Proprietary Processes with Direct Reduction to Sulfur •••••••••••• A. Townsend Process (Description) • • • B. Stretford Process (Description) C. Takahax Process (Description) •••••

Sulfur Recovery Processes ••••• A. Claus Process for Sulfur Recovery

1. Description of Process ••• 2. Capital Investment .••.•••••.•••

B. Recycle Selectox Sulfur Recovery Process 1. Description of Process . 2. Capital Investment •••

C. Graphs and Tables Table 6-1: Annual Operating Costs for

Claus Sulfur Recovery Plants with Incinerators •••••••••

Table 6-2: Annual Costs for Claus Sulfur Recovery Plants with Wellman-Lord

Figure 6-1: Typical Claus Plant for Sulfur Recovery ••.••••.

Figure 6-2: 3-Stage Claus plus Incinerator -Capital Cost ..•••••..•

Figure 6-3: 2-Stage Claus plus Wellman-Lord -Capital Cost ••••••••••••

Figure 6-4: Sulfur in Inlet Gas •••••• Figure 6-5: Typical Recycle Selectox Flow Sheet

References

iii

2 1

21

22

22

23

23 23 24 25

26 26 27 28

29 29 30 31

32 32 32 33 34 34 35

36

37

38

39

40 41 42

43

Page 4: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

F U N D A M E N T A L S 0 F G A S T R E A T I N G

INTRODUCTION

In this paper it is our intention to review the fundamentals of gas

treating by liquid and solid processes. In Section l we describe the

Ethanolamine Process for treating gas to remove acid gas constituents.

In Section 2 Iron Sponge as a solid gas treating process is described.

In Section 3 we present a description of Proprietary liquid processes,

and in Section 4 Proprietary solid processes are discussed.

Section 5 presents proprietary processes that incorporate sulfur

recovery. A brief description of the Claus Recovery Process and the

Recycle Selectox Sulfur Recovery Process are presented in Section 6.

References and selected reading materials are listed in Section 7.

FACTORS TO CONSIDER IN SELECTING A TREATING PROCESS:

1. Treating Pressure (Inlet Gas Pressure)

2. Acid Gas Content (CO2+ H2S)

3. COS/CS2 Content

4. Treated Gas Specifications

5. Availability of Power

6. Environmental Constraints

K-1

Page 5: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 1

MONOETHANOL/DIETHANOL AMINE PROCESS

The Amine sweetening process has been widely accepted in removing co2 and

H2s from natural gas streams. Monoethanol Amine has been used for many

years* and lately Diethanol Amine has come into favor with the gas treating

industry. Since both processes use essentially identical equipment, we

will describe the process and then indicate differences in design calcu­

lations between the two.

The reader is referred to Gas Purification, by Kohl and Riesenfield, plus

papers by Gene Goar, Charles Perry, Ward Rosen, and Allen Shell for more

information on the Amine Process.** Jefferson Chemical has published

brief design and operating considerations for amine treaters.

A. DESCRIPTION OF PROCESS

Referring to Figure 1-1, Natural Gas containing co2 and H2S is

contacted in countercurrent gas-liquid absorption process in a

trayed or packed tower to provide intimate contact for a chemical

reaction between H2S - CO2 (acid gas) and Amine. Good design

practice dictates a scrubber on the inlet gas to remove entrained

liquids including distillate and water from the gas before it

enters the contactor. Also, a scrubber on the outlet gas to

recover any Amine solution carried over from the contactor should

be provided.

*The Monoethanol Amine process was first commercially applied as the "Girbitol" process in 1930.

**A complete set of references is listed in Section 7.

K-2

Page 6: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Rich Amine from the bottom of the contactor is flashed at reduced

pressure to remove entrained gases, including part of the acid gas

and then heated in a rich-lean Amine exchanger. The solution is

then fed to the stripper tower where the solution is regenerated

and denuded of acid gas by steam stripping. Acid gases are con­

centrated in the overhead accumulator and disposed of by burning

in a flare, reboiler, or other incineration device. In cases

where sulfur exceeds 2-5 tons per day, the acid gases may be

processed for sulfur recovery. Lean amine solution from the

bottom of the reboiler is exchanged with rich amine in the

solution exchangers, then pumped in multi-stage pumps back to the

contactor to complete the process loop.

Inasmuch as a clean solution is a key to the success of a treating

system, good filtration is essential. Activated carbon filters

have been found to provide the best and most economical filtration

Also, MEA solutions may be reclaimed in a side stream reclaimer.

DEA solutions cannot be reclaimed due to the high boiling point of

DEA. (Our experience has indicated reclaiming is not necessary

for DEA solutions.)

B . DESIGN CALCULATIONS

1. Input Data

a. Gas Flow - Minimum, Normal, Maximum

b. Gas Pressure - Minimum, Normal, Maximum

c. Gas Temperature - Minimum, Normal, Maximum

d. Gas Composition - Sp Gr, H2s, CO2, cos, CS2, H2O

e. Specs for Treated Gas

f. Utilities Available

K-3

Page 7: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

2. Circulation

Circulation of amine solution is determined by the acid gas

content of the inlet gas, strength of the solution, and the

type of amine to be used. In Figure 1-2, we have provided

quick determination of circulations required as a function of

gas volume , acid gas content, and type of amine.

Amine circulation can be calculated by the following formulas :

For MEA: GPM = 41. 0 X QX/Z

For DEA: GPM = 45.0 x QX/Z (conventional)

GPM = 32.0 x QX/Z (high-load)

For DGA: GPM = 77.0 x QX/Z

Where Q = Gas to be processed, MMscfd

X = Acid gas content, volume percent Grains H2S

= Mol % CO2+ 632

z = Amine concentration, wt. %

The above formulas are based on mol loadings of 0.33 Mol/Mol

for MEA, 0.5 Mol/Mol for conventional DEA, 0.7 Mol/Mol for

high-lo ad DEA, and 0.3 Mol/Mol for DGA.

3. Contactor

Pressure and gas volume are major influences on the contactor

sizing. Referring to Figure 1-3, the size of the contactor

may be determined as a function of pressure and gas flow.

K-4

Page 8: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

4. Regeneration Vessels - Table 1-2

a. Still

b. Surge tank

c. Reflux Accumulator

d. Flash-Skimmer Tank

e. Carbon Filter

5. Heat Loads

Estimates of heat loads and surface areas to be required are

shown below as a function of circulation rates for amine

solutions:

a. Reboiler (Direct Fired)

Duty-Btu/Hr.

72,000 x GPM

45,000 x GPM

15,000 X GPM

Area-Sq. Ft.

-1 1 • 3 0 x GPM

11.25 x GPM

1 0. 20 x GPM

b. Solution Exchangers

c. Solution Coolers (Air Cooled)

d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM

6. Power Required

Power requirement for the process is largely for pumping of

the amine solution. The table below gives approximate power

requirements as a function of amine solution circulation:

Solution Pumps

Booster Pumps

Reflux Pumps

Aerial Cooler

GPM x AP HP = 1713 (eff1c1ency of pump)

GPM x Psig x 0.00065

GPM x 0.06

GPM x 0.06

GPM x 0.36

K-5

= HP

= HP

= HP

= HP

Page 9: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

C. COST

1. Capital Investment

Capital investment for plants to use either MEA or DEA pro­

cess can be broken into two segments. First, the contactor

investment is a function of pressure, gas flow, and amine

circulation. The cost for the regenerator unit is a function

of amine circulation. Figure 1-4 presents investment data for

battery limit gas treating plants as a function of amine

circulation. It is assumed that the regenerator equipment

will be skid-mounted and assembled in a shop to minimize field

construction. The cost figures include transportation,

foundations, and piping required at the location as a turn key

installation.

2. Operating Expenses

Operating expenses for the amine unit will be largely

operating labor, power and fuel gas. Typical operating

expenses for a treating unit are presented Table 1-1.

K-6

Page 10: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

TABLE 1-1

AMINE UNIT OPERATING COSTS

Basis: Treating plant with 40GPM circulation;treating 3MMcfd gas with 10% acid gas: January, 1981, cost index

¢/Mcf

Operating Labor (2@ 22,000) •.•••.•••.•..•.•.....•. 4.07

Supervision (1@ 35,000) .........•.......... . ..•... 3.24

Employee Benefits@ 35% Payroll .................... 2.59

Utilities

Chemicals & Supplies . ............................. .

2.78

1. 39

Repair Materials & Labor@ 4% Investment ........... 4.44

Direct Overhead@ 5% Investment .................... 5.57

Corporate Overhead@ 3.5% Investment ............... 3.89

Depreciation ( 10 Year Straight Line) ...•.......•.. 11.11

Interest (@ 20%, first year) ...•.....•..•......... 22.22

Insurance & Taxes@ 2% Investment .................. 2.22 63.52

Plant Investment Estimate $1,200,000

K-7

$/Year

44~000

35,000

28,000

30,000

15,000

48, 0,00

60,000

42,000

120,000

240,000

24,000 686,000

Page 11: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

~ I

(X)

SG . Jtion (i r·cl Rate .

GPM

10

25

50

. JO

200

300

400

St ill Diameter

I

.

16

24

30

42

60

72

84

TABLE I - 2

REGENERATION VESSEL SIZES

{Inches)

Surge Tank Reflux Ac cum. Diam. I Length Diam. Length

- ,----

24 72 16 36

42 96 24 48

48 144 30 96

60 192 42 96

84 288 60 96

84 384 72 96

96 384 84 96

Elash Tank Carbon Filter Diam. Length Diam. Lenqth

24 72 16 84

42 96 24 84

48 144 36 96

60 192 48 96

84 288 60 96

84 384 72 96

96 384 84 96

Page 12: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

~ I

I.O

I Contact or r l

~r~k Slac

' ~ ,if. '.

11 k '·" .... ,

.· .: ,

Aerial Cooler

Page 13: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

~ I .....

0

FIGURE I ~2 1

AMINE CIRCULATION REQUIRED ' '

GPM CIRCULATION REQUIRED PER MMCFD 0 2 3 5 6 7 8 9 10

·- -..-- --- ,- - - - - .... _ ,..._ - .... f--

I I I I t-~ 1-,,

-1 .... -t _J ,..._-t I t- . I -t -t- - - :- : -I I : I- : ,..._ I : I : J : I I I

I

I I I I I I '1 I I ' ' ' . ' ' ' . ' ' ' . . ' ' ' . . ' '

- ·-,--,- .-- -,- r- - - ·- ..-- ~-,--, ,-

- - """7 -T ' I 7 J T- ! r- - I 1- -, I I I- -, I - I I I

I I .1 _L I I I , I 1 I I I l 1 I I _J

I~'" I I I I I I I I I ""llil ~

I I I I I I I I ~-·-i-- - r- ~-,- -~

- --r-: " ~ s:: --- t% AJ 'H f'... :'---- r-- r-- IF

~I' i" C-.:::r----.. r-.r--...... r--r--r-- --

~ "n. "' . -- - --,- - !-- - -r,.___ r---: rr:::: ~'1il, I I". ~ I I I I I I I I I "'k_"' r-1 I -r-- .... ,o Nd r--

I I I"-.' "'' I I I I I I I I , f'-...1'.._ ~1'._ I ..... r--. I r-+--..... ..... I:- -,__,.. - .-- - - -

'" - f---- I"-. -K r----. --.... r--... " I"--- "'

r--,.;: ,A A.I' .

l>,i'' "' --:r---_ 'r--.... I'-- r---..<OJ r---:.. Yi: - r-.:.. ·- - ~-I- ,- - - -

"'-i q ...____ ~ t/1 -

I I I I I I I I I I I I I .,,., I I I I I "'-.I I ~ "-IN I I I I I I I I I" I , ~ 6'>o

,......___ ~I - --- ,--

- """ r- - - - ->-- ~,-

~~/, ......._

" ~iy ~ I'. ......

I" .. "' ' ~ ~~u " C

~ _.__ --..- ~ .... "ft~

I'-.. - -1--

I'( - - - - .... r0 I , ,"'--..

I I I I . I I I ~l),.( ~ I I I I I I I I I

l_ i "'-.' . i "

r, , i i_

. i - ' i ' i

,, ~i I _j L- I_ I'-. _I .... -1 ,..._ J_ L' - I"\

.--I'-, - 'r--..

I"- _,__ .-- -.... ,__ - -r--

__ ,_

!"'. ~ - - -

I I 1 J I I I I I I I J : I l I : I I- :

1, I'(: I I I I ! - I I I I I : -f- +- !-- I- I I !- -I --l I ,-+ I ~ -~ - - ' ' ' ' . I I I ' ' I

"' -,-- ,__ -e- ,-- --- ,___ .... ,-

"' - -

I

' : I

0 2 I

~ 4 5 6 · 7 8 9 10

I ' X ACiiO GAS I ,

Page 14: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

]•

Jl

I I -/

V

- FIGURE 1-3 V CONTACT0R CAPACITY / - .,.

JO

I / I /

11!1 I / V

2.6 ;/ / '.r

2"4-I

' / 2l. I 7 I V

/

10 I / ~/ /

Q u. u ,a (/) I / ' / ;fa ~ ~

16 I " ,,,,.

I ~/ ' ~

>= t: u '-4, ~ 5

11

I V / ~ --·/ I / "?Jo' .~

I I V / /""

/ / 1/)

< (.!)

..J 10

< QC ::)

8 r-< z

6

... II / V V

/ /

/1 V V ~I-:-

/ ~ .,:;;,,.--

~

,_____.

'/ / ,

1...--------,,,,,,,..-

~ ~,

_,

-+ '/v ~ ~

1---

~ ~ 16,,

1 ~ ~ t.---~ __.,,, ~ ~

0 0 lOO •OO 600 800 1000 IZOO

OPERATING P~ESSURE

K-11

Page 15: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

.,,., 200 300 400 ~00 600 700 800 900

200 - - ~~7~=t=- -- ----~ --- ------------~~-.--·----/v-/ 200

180 7 --·- ·- . 180

! ~ --- ---- --- - . --- --a---t--l---+--1---f--Y--1/ .J___J

--- - · - · - - - . - - .. ··- · - -· -· - ·--·- --;-----t----t----lf-----1-----J-/-,IL/--l------1--- 160

100 1000

,J --- -1- .------- --·--- - ·----- ·•··---i--t-t--1------1-l-7.?--t-----..1----,.__

~ 1401=~-~~~-:- ~ ==: :~---=~~---1----- --t--i----t---t-/-f-',7/-t..'---t---t--.L.----1140

~ 120

_ +- +-1 __ T I l~-- ---~------t--/---,'"l-v----l---f----¼---1-----1----1 120

~ 100 7-- --- ---r--~---1,--- -/~v~/--t-----t·--+--+---1--1---!---.--J 100

Ill 80 - ----:-v~-t---t---f---1-...1---L--1-...J.._--I 80

~ -;--~ --- ~ ~ 1--t--~-t-v--:r-t---t---f---..,I FIGURE 1-4

J ---, . V INSTALLED AMINE PLANT COSTS 60

--- ,--- --7·------- V ·, I APRIL 1977

4 0 -~-~+J-=fP~17-~ ----~-·===, ====-=--=--~---=·--1----1 40

20

- - --14-_--__ ----l -- -l--+-~-- i--;---J----.1.---l--- -- 1-- 1------~ 20

OL---1---L--L- 0 100 200 300 4 00 500 600 700 800 00 · Q

Page 16: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 2

IRON SPONGE PROCESS

The iron sponge process is one of the oldest and simplest processes for

treatng sour gas. However, economics normally limits its application to

gases containing less than 20 grs. H2S per 100 Scf. It may be used on

low pressure gas, but is more successful on high pressure gas. The sponge

must be moist to be reactive, and if the feed gas is dehydrated, it must be

resaturated with water before entering the sponge bed.

The iron sponge material is oak wood shavings impregnated with a hydrated

iron oxide. It is available as both the 9 lb. and 15 lb. grade (based on

iron content of 9 lbs/bushel and 15 lbs/bushel.) A bushel of sponge will

occupy one cubic foot of space when packed in a treating unit.

A. DESCRIPTION OF THE PROCESS

An iron sponge treating unit is an open vessel sized for the

proper bed volume and cross sectional area for the volume of gas

to be processed. A screen, or coarse packing is placed in the

bottom of the vessel to support the sponge. The remainder of the

vessel is filled with iron sponge, leaving only a small void space

at the top. Gas enters a top connection, passe downward through

the bed, and then out the bottom connection. Hydrogen sulfide

reacts with the iron oxide in the sponge to form iron sulfide,

thus sweetening the gas. Carbon dioxide does not react with the

sponge, and passes through the bed unchanged.

K-13

Page 17: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

The iron sponge process is a batch process, thus requiring

multiple towers, on interruption of flow when the bed is changed

or regenerated.

B. DESIGN CALCULATIONS

An iron sponge treating vessel must be designed based both on

linear velocities through the bed and contact time. Once these

parameters are determined,

life will be satisfactory.

these steps.

1. Linear Velocity

it is necessary to determine if the bed

The following is a description of

The superficial linear velocity through the bed should not

exceed 10 ft. per minute based on the empty vessel cross

sectional area and the gas volume corrected to ACFM at flowing

temperature and pressure. Pressure drop through the bed

should be approximately 1 - 2 Psi per foot of bed depth.

2. Space Velocity (or Contact Time)

The sponge bed should be of sufficient size to allow a maximum

space velocity of 6.0 ACFH per cubic foot of bed for each

grain of H2s in the inlet gas.

Figure 2-3 may be used to estimate the capacity of sponge

vessels at various pressures.

K-14

Page 18: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Space Velocity (cont'd)

In a typical sponge treating unit, the gas channels to some extent

along the shell of the vessel. The H2S front moves through the

bed as an inverted cone, and the greater the linear and space

velocities, the steeper will be this cone. Thus, if too high

linear and space velocities are used, when the H2S breaks

through around the vessel shell, there will be a large mass of

unreacted sponge in the center.

3. Bed Life

Iron sponge theoretically can pickup 0.56 lbs. of sulfur per pound

of iron oxide. For design purposes, this must be aerated by about

25%. The following forumula can be used to determine bed life:

MMcf/Change Bu. Per Charge

= 4.69 Gr./100 of H2S

The above formula is for 15 lb. sponge. For 9 lb. sponge, the

constant 2.80 should be substituted for 4.69.

K-15

Page 19: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

4. Air Regeneration

Iron Sponge may be regenerated with air, either batch wise or

continuously with some limitations . In batch regeneration, a

spent sponge bed is isolated and depressured. A blower is

used to circulate gas through the bed at atmospheric pressure .

Air is injected into the gas slowly over a 24 hour period,

allowing the oxygen content in the gas to slowly increase to 8% .

The bed life after each regeneration will be approximately 60%

of the previous bed life , resulting in only about 2 regenerations

being feasible. After a bed has been regenerated two or three

times, elemental sulfur formed on regeneration builds around

the sponge making it extreme l y difficult to remove the spent

sponge.

-~ C . COST

L Capital Investment

Capital costs of approximately $15 , 000.00 per Mmcfd capacity

( up to 20 MMcfd) to $10,000.00 per MMcfd capacity (above 30

MMcfd) may be used to estimate installed costs for 1000 Psi

units.

~ Operating Expenses

For operating costs, 0.12/Mcf for each 5 gr./100 Scf in the

inlet gas will cover the costs of sponge, labor and amortization

of cost of equipment .

K-16

Page 20: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Vessel Dia., Inches

24 II OD

30 11 ID

36 II ID

42 11 ID

48 11 ID

54 11 ID

60" ID

66 11 ID

72 II ID

84 11 ID

96 II ID

Table 2-1

BED CAPACITIES FOR COMMON SIZE SPONGE TREATERS

Bed Capacity, Bushels (or Cu. Ft) For Bed Depth Indicated

10' 12' 15' 18' 20'

30 34 44 52 58

50 60 74 88 98

70 84 104 118 140

96 116 144 174 192

126 150 190 226 252

160 190 240 286 320

196 236 294 354 392

238 286 356 428 474

284 340 424 410 568

384 462 578 692 768

500 600 752 902 1004

K-17

Page 21: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

E INLET )I----

LDA\DIN~ "PLATf"ORrw1

SPONGE' ll?C'ATE:R VESSELS

< GAS OUTLET 11,--""'--:!-+~---=----------......c:"-----'--4

TOC

s'

FIGURE" .:l.-1

FLOW DIAGRAIYI FOR IJc>ON SPONGE T ~EATE K' PLJ>...N1 .1

Page 22: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

F1GURE 2·1 CAPACJTY OF IRON OXIDE FOR SUUH GAS

BETWEc.N RECHARGES

BASED ON : I 5 LB. F E.i O, I BUSHEL 0.56LB. S PICKUP/ LB. FE4 o~ 75 % BED SATURATION

IRON SPONGE - BUSHELS PER. CHARGE

FORMULA FOR GRAPH: MMC F/ CHARGE= 4 69 _s_u_. ___ _

. GR.~l~cP SCF CRP

Page 23: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

FIGURE 1-3 LINEAR ANO SPACE VELOCITtES FOR IRON SPONGE TREATERS

BASED ON : MAXIMUM LINEAR VELOCITY : IOFT./MIN. MAXIMUM SPACE VELOCITY: 60 CU. FT.

PER 'HOUR PER CU. FT. OF BED FO IO GR./ IO O H.2 S CONT ENT

fl ffi1 iii 1111111111![1~!1 I 1: ! II I!. . 7 _:' 1111111 11 ~.f r. ~J.!! l!,_4111 I 1 !l!!!!P ! !!!!ll: 1:! .: :::::!P!i !i:l 1 ]Ill . - >- i n :rr1

I - II ·:11 I 111, T'!l!'':::!'l',1 1 11~11 I ·11TT, I I . rhjii:iiii11i I i:h:::i!tttmm':!: :•·; j: . .-:,:.::; ii I, ill ~HilH++-H 1.:: : .. :· ; ffitt-Httt+l~t1t1 ! ,·:, ,!;

'-'~ · f j!:'TTTI:, : ... ·r.·:-::::!:TT! 1, .TT;. I ~ 1111J!!:! -. I jl r !:!:'JI 6 I : · ! ,:(j;; ::!:;::;;1~;:.(;!:'!;!: 1

' ' ·lll·y ~ : ffi1t:f -: ' ,;' 11±1:tttttttl ! :i1,h

lj ii !li'llh!!'''•:1· 1 ! I I l ](} I~ 1 u~ · ~ , · Ii i~!,,- · - H ·· ! ·11

~ I Im·)~ w;:;,/!:-?; :J 111, }~~l .f' ~ ~~ wru ! ~ l·t+-HHH H lt!Hflf::::;:·,H-l+Hi .................... 1 I f !ii:Fj! TP'P: j1iA fITi 1~4 11, f! i~ I~ l!:!1 ;\ i! TiT

4 I'\ I I II I ' " ' " '' " : I " ; i ' ~ ' 11 -~ 1· t ~ i i ; I ' r-:H'' ±' tt:ri+tt-l+Htll:tttHttttti:itttttttttlit-:1' l:H:!-blttttrffitttttttttiHttlttf:tttlttitttttrlt1 trl1 •- 1r111: H1ill !J:t::ll il1 !!I: t H ::-n .. :11 ! I ~11 :11!: ~ 1 : -· t , '1

1 , 1 •. Iii +½f:!!ftJMittr~~~! ~ it~~ 1iUittJi i - , 11 , llll+-l-l-~+l-,! 1tdi1mr •l'I • • , • iii 1 l1:ii;::. ·.f · · .1<i, i 1~mn~i1,~w.+ ·it,:,::;: , --· , "

1-1 1, 1

1rr1 ii 1

,:trr1w ~" :,I J!.,!~·:ii' .:

1;r,~ ,~ ,:~:;d1~j'ii ~11,11 !i11I! /,I . : . I 1, !11 • 'l I 111 1i!i~l!}l 2

' 1 i ;; itf 1: ,i· :.lif:ri ?1 ~ri~H:k:i -iw ir:! ~itY.1/n•-"-t-: . - r I, 1, t 'r., lj !t. 1!:;P, ;_I 1, ' ' 1.}tfrl(I!. ! I !'1 !1 111 ;!II:;· / ; '12:;i1n!1 ~ ::.~ ':~rm11,1 :::!~', ' ! j.. ' i!1i!;1' ,i!::::: !I( '.·:, ': .! 1!111 ::,r:1,:., i; 1,11

i,('; I 'I, "II 11. . ~ , . 7 , , !, :(:!> ' • till''' j · I ll.l,, ... ,,I ' l " l ' l" · ' .. , .. ijl I I'

I I ' ,· 1·:1; ill ,::· "!7~r::-7 .. ··w:~ j~::r:rer:r : '' ·:: ' ,·:·r::i : ' ' 11 ,· i;;,:,fi_r;1r+rmmirf.i::' ·::::.'!iiti1+' 1hrif+1'·ITTtIB ' ! 11 • ! : .!1.,, ' • !;'l'T l1" '' G) , . ..,J :: 11·: · .. :· 1: · 1: 'I•' I.·:,:·' :.1.':'!::'::l:!!il;::: 1. "·i:::::·!!' ~1· ··::l !1:. '.,1 ,: • I ; ' I' I ,,."' ; --.:; ' .. ....... . :-,~ I'' 11 • " ... ' 1 11 , , I .. . ,, I ' ,.,,,.,l.,.,.,1·1·····" 1" "'1•11 I ·11•1"1' 1'1'

..... : 11 I I ' •'j'• :1·: : .:· .: ', , ~~ :: .~ .. -~ ,{I ;. ,: ;1' '·: .•: .1 .::::: •. 1:, ,··, ... !,' ,"ii''. . I'":,:::: I:·;·: ·:,··,'' ,!', ~\( I 11 :11•,, : .. :,,; ,-- I 1(1 "11 I", .,.. ' " ~ .. , .. 1t't'. 1 <. · ·111I, I ' " "" i I ,1, ,. .... ,, .. . 11 111, .. .. "l' 'JII'' "' ,1,,1 ... ,. ··· r· ·1 i I' u' '" I•

c3 .·• 1 1

·

1

· 1 1•1

1:1

1•1·1·1 1~·1: ... :; .:::: .. 7'·1 ~ ~ ~,!~ :~ _··i:~1~+:-

1·-1 1~:•:::j ' · ,· 11· 1

,: i m1

... 1nn1·~ rnhi;11i1

11·•11:i·1

ttn 1,nn h;.. ,:1·~r.f:: 1 1:~: "1

w' rf1:·1r <t I I : '1 ' 1,,· ·~1·1: !:1 ::;:· ,;·::~~ '·:·!::: :;~ :·~(u:: ::•::j; :!! '. ,,·,:: ::l ::~I I I I '1 I' ; !: I ::

1111'1 1:11:,.·,:: :·,·11'•1:'11'1! .,· :, 1,, ,:i:i1i: r.::::;i!l!'l1

1 i l[~ lj 1' 1i il a. I 11 ·' I,,, 'I I " ... , ""I" i i,1 ·1 •1 ,., 'I'" ' ii j '' II' ' " 11' 11i1, I I 'I "I' "Jl ''"ll li..1 ' , , <t I 1111 l •i~ I I II• "' ...... . " ' ' ' " ''" '' ' ' I " II I ' ' .,,,, , I ''I '"''"II I ,, I'' "l'I I U ' II 111 I' ,,, ·•! ,r,,, " I',,,,,.,,., .... ,., .. ,,.~, fl i I '111 1·•,•1ill 11•1 li"ill•!J1 ] J I' 1111" ; ' I 'I 1• 1 '1'1 '" ~ '! ' '"!'''' ' I 'I'"'' 'I' " ,, ,.._ I I I I' ·1111 ,1111111·111" 'I 11111• :• .- I.! 1, I 1I. • •• , , .• ~ . •••.• , , ..... _ .. . !" I~ I'! '. . ·1 , . : 1.'rrijll , l1!1

1

, ., 1'1'I! -a rl ,m mnm$1, ,f1f1TTT!ffi11 11i! dll! 111:1TI1n:m m ~,,.., ., ~ : . I 11!1 1111 I~ I I Ill j rr 1jffi iHl• .;++=,~~ii+~~ -++H-1+1+--Ul-ll

L4. 1 I ~r, 11, ". ! ! ''I' ' ! :?~·rr:rr:rrm tm1rn~1n1!j!Pir~1 ! ~I•~ "~I~ ·I. . I ! i I 'l+ 11 r 11 ·!Iii! I: lkl !,l/ 1ir I -~ I Jj l li I ' .. • , ;.;.,, , ., "• ' in-ti' .i• i;.;.1-'·· ·" 11 {{L~ 1 11 I I I 11 1 '1 l,,/,,,,,,lj, ~, " 1 11 , ........... ~..._ ............ u I\, .,.,I . rt ... r :.::::·r.nrlh:rq~m18JF':r11P:rF • .:. ~=- ~ i 11· ··- . ,1 :11 I

2 l I 1! 111! '\T, :, ·.: ,, ' ·:- ··TTrnr:TT ,:· :!1:,:r11·, ,•, m1 ' [1 111! 7 !· . . I ~, , I 111;, 1!,111: \1: , r ::! • I ; 1;1,,.: "" ,;: "' ' ' , . ~ :::1:::1 ::! :1;;1 : ! I ·11(1 11

1 ,:i: I I I' Ii I I ' I . 'I\ ' 11 · ,I'{ : ... ~ ,~ 111 ,1 . 11111 !'!!1m . rr mr ir 1t \ rim lT[ 111 T. ~~;,; t I 1:t111 rr t .:! iJ

• . -'I.,.,.,,, "'"'''"'fITT] In I "f' I~ nx 'I' .. '1 r ' ! I ,1, rr l en ·',!~ ' • I II I ul .. l I ii I'' I 'I' IIIHI ,-1· -1-l-l-l-l-1-1-1-Ui-1-H-Hl-H

'f: '' ' ' · !•·1 '1"" ' 1 ' .. , 1 •

11 11111 11:1• ~ 11 1 ,~Li Ii ·I · lili·l1 :,j:::: ., ;::1 , :::!,lli~'1 l1 111 , 11 lT i • , . t;~.r · ... 1.;: . ,: ·,• ~~... •, J.1' I -

1 • • 1; I ,·· : ! · 11·: !;:1:lf: .!· :!:.!:j · :: , r: 1: !1 • , ,.,..., 1. i11 i·l'• l•l'i· .... , .. ,11. .... , .. ,11. ,o1 11 I ! / ~ 'rt!l 1.1'1· , .. ,. ~ r·rml'~i·rrrn m· 1·;· n~· r -~1 • i' ~/I j",I !lW'iiT:::., .:"/;:!! ! ' I f~~, I ii I I !

2. 1I I I, 11 ,, / I: T~,, ,rH,:H 1· !lt·n; r!;'· 11I',:! :!f1 tt t-MlH 11/• I V, ' I',, ! Ii 1ihl-r!-, ni+- . ' ~ J ' ,, ! 11 1d1 Iii I " l y ,! . .'' ' ' 1!1 ,1 :i ·}1 I_; ·1·:,i; ' 1 ! : : ! :: • ·(' I. I

:t . v, . v· . i, . · ·: ,, : · ,., . ... · ...... :·:: , ,. , :" 111 i l1l1,l.l-;+i'l 1i :1]: .. ;:·:~.I ~: 11 '1, I: !I ~i ,,1 '-I' ,i· ,·:l1!1't1 I ~!! 1 · q ,_li ,Ki ,. ·li '11llr ' I ! I ' 111 1

1 ' !! l1l1;l 'l,;:":::;1 :·1:11 11ri 11 111 I!!'" ' , II " 1,T I i I I ]1 .,Ji·'h lh :::: ·,i:: ::<: :!' 1~: :ii! I : J., I I 11 Ii

,.] .. if: I :·i ;j: ! !::;:1ii :i,. :::::::,2;:;;~1~;kji' ~ . if W:::!:-1111 :1, ! l; . r i\ I~ r ~,ti I !~Ii!: :1~; i: ;;t l!!!: :i;i ?/:::;·.- .:::;/~;: :

1:·1:} 11 1 ii!i !•: :V

1

11 • 1 ! ·1!!1 1 llu : 1

1 I: .. !:::! 1! ::

:111!;:1:,:!: 1:'.!:::.l. •·: ·:.:!·:::1.·,: ~i: l ,1 111 1, · 111 1•

1Pif " 1

r µ .... ,,1 .. " i:: 1.;: ::;! :::::!:::::: .. : .. ;: .: .. : :,: ;I:~ !I 1 1 ,11, 1:i!i i 11, 1 iw , I 11 ,, ~ ,1 , l 1 1. , !!ii: :: .:,::

_ .... __._._~_ ................. ......, ................................ .......,_..~_..,J....UA.,l.."-"-1.-Jw.....LI-'~ ............ .l-.:.W.~~LU.il-=.u.LU,,LO=:-,u...u.,,-,__,__....,......, 1.~ u J 6 7 a ~ 100 lt!O 20 0 al'!l'9 300 _.oo ~QC 660 700 OOO t Od

TREATER OPERATING PRESSURE- PSI G

K-20

Page 24: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

I

SECTION 3

PROPRIETARY LIQUID PROCESSES

A. DIGLYCOLAMINE (Econamine)

The Diglycolamine (DGA) process is carried out in equipment very

stmilar to the equipment for Ethanolamine. The major difference being

in the concentration of the Diglycolamine which is normally in the fifty

to sixty percent concentration range. The DGA process does require a

specialized purification unit on the side stream of the circulation.

Major advantages for the DGA process over the MEA process is a higher

allowable concentration of DGA that is up to 60% with resulting higher

acid gas loadings which leads to substantial savings in equipment size

and cost, and utility cost. Optimum applicability is in the range of

acid gas concentration from 1.5% to 8.0%.

K-21

Page 25: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

B. SULFINOL (Shell)

The Sulfinol process is unique in that it combines characteristics of a

solvent process and an amine process. The high solvency of sulfinol for

acid gases at high acid gas concentrations results in a greatly reduced

circulation rate which is the basis of the economic advantages. The

advantage disappears at low acid gas concentration. The sulfinol

process has limitations which must also be considered. It has a great

affinity for aromatics, therefore pre-treatment facilities must be

installed ahead of the acid gas if it is being fed to a sulfur recovery

plant. Initial cost for the sulfinol process is quite high due to high

sulfinol solution cost and royalties paid to Shell Development Company.

The process has numerous advantages, especially its ability to

selectively remove H2S leaving up to 50% of CO2 in the gas.

C. PROPYLENE CARBONATE

The Propylene Carbonate process has advantages over the Amine processes

in that it has high acid gas loading and corresponding decrease in

capital cost. Regeneration of the solvent is by pressure reduction

requiring no steam regeneration. Disadvantages for the Propylene

Carbonate process are similar to those of the Sulfinol process in that

the solvent will retain heavy hydrocarbons so that acid gas must be

treated to remove these hydrocarbons before being processed for sulfur

recovery.

K-22

Page 26: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

D. SELEXOL

Selexol process is a solvent process developed by Allied. Major

advantages of the Selexol process are high solubility of H2S relative

to CO2 making it possible to remove all H2S, leaving a certain

amount of CO2 in the residue gas. Selexol removes carbonyl sulfide,

carbon disulfide, and mercaptan without degradation. The solvent will

dehydrate natural gas if water is removed in the regeneration step.

Disadvantages of the Selexol process is typical of other solvent

processes, i.e., absorption of heavy hydrocarbons, expensive solvents,

and royalty charges.

E. MDEA

The ethanolamine amine process utilizing n-methyldiethanol amine "MDEA"

is carried out in equipment very similiar to the equipment used for

primary and secondary ethanolamines. The major difference being the

concentration of the MDEA, the number of trays in the stripper and

absorber, and the heat load for the process.

Major advantages of the MDEA process over MEA, or DEA, is the capacity

of higher selectivity with respect to H2S in the presence of CO2.

This can result in substantial savings in equipment size and cost, and

utility cost depending on the desired and achievable selectivity.

K-23

Page 27: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

ABSORBE:R

. -TREATED E:A5

RECYCLE GAS

LEAN ~OLVENT

ACID GAS FLASH DRUMS

FIGURE:' 3-1 PROPYLENE CARBONATE PROCESS

Page 28: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

~ I

l'v U1

ABSOPBE~ HIGH PR[SS.UR[

f"LA5M

r-<-- ____ R_ E:_CY __ c ___ L_E: _____ -1

INTE RME'DIAT£

PQf!,~UJ?E FLA~H

LOW

PRE.S.SUl.'E f"LASH

V~NT

STRIPPER

VENT

AIROR i--:s---0-lNERT &A :

F"IGURE 3 -1 StLEXOL PROCESS

Page 29: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 4

PROPRIETARY SOLID PROCESS

(Molecular Sieve)

A. DESCRIPTION OF THE PROCESS

In the molecular sieve process, the sour gas passes through one of two,

three, or four fixed beds of molecular sieves where the hydrogen

sulfide, along with water and organic sulfur compounds, are removed from

the gas by a process similar to adsorption. Whenever the bed becomes

saturated with hydrogen sulfide, the main gas flow is switched to

. another bed which is freshly regenerated. This cycling of beds

continues on a regular cycle, based either on time, or on breakthrough

of hydrogen sulfide.

A side stream of the sweet gas (usually approximately 20%) is heated to

approximately 600°F. to 700°F. and passed through the last fouled bed to

regenerate it. The hot regeneration gas is then cooled and processed by

a wet process (usually amine or sulfinol) to remove the hydrogen sulfide

from the regeneration gas. After the regeneration gas is sweetened, it

rejoins the main gas stream downstream of the sieve beds.

K-26

Page 30: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

I

B. ADVANTAGES AND APPLICATIONS

The molecular sieve process may be used to selectively remove hydrogen

sulfide in the presence of carbon dioxide. Thus, if it is not necessary

to remove carbon dioxide from a gas stream, the molecular sieve process

may offer a lower capital cost, lower fuel requirements, and/or lower

operating expenses. Molecular sieves will also remove organic sulfur

compounds.

Offsetting these advantages, the necessity of a separate regeneration

gas tr~ating unit makes this process somewhat complicated and less

applicable to small streams. While the sieves can selectively remove

hydrogen sulfide, the presence of carbon dioxide does adversely affect

the capacity of the sieves for H2S. Also, sieves are subject to

attack by contaminants occasionally found in gas, and care muit be taken

to see that the incoming gas is free of contaminants.

K-27

Page 31: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

sou~ GA.S •).-.--------------iA..l'-------------,-----------e-­'NLCT ~£.4Tt:D GAS It-: __ _,

:.

1-------------------i--------------------------~-- -------ADSORBING COOLING- DESORBING- AMtNE SCRu!!>e.t:J~

F"I GU

G-LrtoL scR"uBoFJ

Page 32: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 5

PROPRIETARY PROCESSES WITH DIRECT REDUCTION TO SULFUR

A. TOWNSEND PROCESS

In the Townsend Process, an SO2 rich organic solvent, such as

triethylene glycol, contacts the sour gas, and the hydrogen sulfide

reacts with the SO2 to form elemental sulfur and water. The glycol

solvent also absorbs additional water vapor from the gas. The solvent,

containing elemental sulfur and water, is heated to melt the sulfur and

distill out the water. The liquid sulfur is decanted, and a portion is

burned to form SO2, which is absorbed in the lean solvent, and

recyled to the contactor.

At present, various types of catalysts may be used to catalyze the

H2S - SO2 reaction, and other solvents are being investigated.

Page 33: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

B. STRETFORD PROCESS

The Stretford Process is an absorption process, in which the H2s rich

solution is air blown to reduce the H2S to finely divided elemental

sulfur particles, which are removed by centrifuge or filtration. The

air blowing and reduction of the H2S regenerates the solvent for

recirculation.

The solvent used in the Stretford Process is an aqueous solution of

sodium carbonate and anthraquinone disulfonic acid with a sodium

metavanadate activator.

The chemicals in the solvent are all quite stable, but the presence of

air and sulfur does cause the formation of a small amount of

thiosulfate in the form of a sodium salt . The process produces good

purity sulfur ) and can be used for low H2S: CO2 ratio streams.

K-30

Page 34: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

C. TAKAHAX PROCESS

The Takahax Process is similar to the Stretford Process, in that a

special solvent removes the H2S from the gas, and the rich solution is

air blown to reduce the H2S to elemental sulfur and regenerate the

solvent.

In the Takahax Process, the solvent is an alkaline solution of

1,4-naphtaquinone, 2-sulfonate sodium, and a catalyst. Sulfur formed in

the solution during regeneration is removed by filtration.

K-31

Page 35: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 6

SULFUR RECOVERY PROCESS

A. CLAUS PROCESS FOR SULFUR RECOVERY

The most widely accepted process for recovering sulfur from acid

gas streams is the modified Claus Process. The basic Claus

reaction was disclosed in 1893:

For convenience in analyzing the steps in the plant operations,

this reaction can be broken down into two steps:

H2S + 3/202

2H2S = SO2

--->~ H2O + SO2

--->~ 2H2O + 3S

The reader is referred to Gas Purification by Kohl and Riesenfeld

plus papers by Gene Goar. A series of articles by Dr. Richard K.

Kerr, Director of Applied Research and Development, Western

Research and Development of Calgary, Alberta, has appeared in

Energy Processing/ Canada, which describes the Claus Process

Thermodynamics and Kinetics.

1. DESCRIPTION OF PROCESS

Referring to Figure 6-1, acid gas from the amine treater

containing H2S and CO2 is pre-heated and injected into the

reaction furnace along with sufficient air to burn 1/3 of the

H2S. Sufficient resident t i me is provided in the reaction

furnace to permit a part of the reaction between H2S and

SO2 to proceed. Indeed, approximately 65% of the recovered

sulfur is formed in the reaction furnace. The reactants from

the furnace are cooled in a waste-heat recovery boiler to

approximately 1100uF.

K-32

Page 36: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

The partially cooled reactants are split with a portion of the

1100°F. stream being cooled to 275°F. where molten sulfur is con­

densed. Unreacted H2S and SO2 join a portion of the hot gas

by-pass material for re-heat to approximately 600°F. for entry into

the first catalytic reactor where a bauxite (alumina) catalyst is

used to improve the reaction kinetics. The effluent from the No. l

reactor is cooled in No. 2 condenser to drop out liquid sulfur, with

unreacted H2S and SO2 passing on in similar manner to reactors

No. 2 and No. 3. Tailgas from the No. 4 condenser is normally sent

to an incinerator where the last traces of H2S are burned to SO2

and discharged in a tall stack.

Where very stringent environmental restrictions dictate a 99+%

recovery of sulfur, the tailgas will be further processed in a

"tailgas clean-up unit" such as Shell's SCOT Process or other other

tailgas clean-up processes.

2. CAPITAL INVESTMENT

Capital investment for Claus Sulfur Plants is somewhat dependent on

the percent of H2S in the acid gas from the sulfur plant. Figure

6-2 presents capital costs for a three-stage Claus unit plus

incinerator presented in a recent publication by the EPA.*

* "An Investigation of the Best Systems of Emission Reduction for Sulfur Compounds from Crude Oil and Natural Gas Field Processing Plants"; W.O. Herring and R.E. Jenkins, Research Triangle Park, North Carolina.

K-33

Page 37: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Figure 6-3 presents investment costs for a two-stage Claus unit plus

tailgas clean-up unit employing the Wellman-Lord process. Table 6-1

presents annual operating costs for Claus Sulfur Plants with

incinerators. Table 6-2 presents operating costs for Claus Sulfur

Recovery Unit with Wellman-Lord tailgas clean-up unit. These

operating costs are also taken from the EPA publication.

B. RECYCLE SELECTOX SULFUR RECOVERY PROCESS

A new technology recovering sulfur from gas streams has been developed

based on a new remarkable active Selectox catalyst which selectively

oxidizes H2S to sulfur using air at low temperatures without forming

SO2 or oxidizing either hydrogen or light hydrocarbons. The process

developed jointly by the Science and Technology Division of Union Oil

Company of California and The Ralph M. Parsons Company has application

in a wide range of H2S feed compositions, but especially shines in

concentrations from 1 to 40% H2S.

1. DESCRIPTION OF PROCESS

Referring to Figure 6-5 the acid gas is fed directly to the Selectox

catalyst after being mixed with a stoichemitric amount of air. Feed

temperature is about 350°F against 450°F for a standard Claus

catalyst. The reaction heats the gases which are cooled to condense

elemental sulfur. Part of the cool gas is recycled to the feed in

order to control the reaction temperature. The recycled gas dilutes

K-34

Page 38: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

the H2S content to limit the temperature rise. Gas that is not

recycled continues to a second and third stage which may use

Selectox or less expensive conventional alumina catalyst. After the

third reactor the tail gas may be either thermally or catalytically

incinerated.

Because the Selectox process is entirely catalytic, no thermal

reaction furnace is used, instrumentation and process controls have

been greatly simplified resulting in simpler and more reliable

operation.

The Selectox catalyst is also in the BSR/Selectox I tail gas cleanup

process should the environmental restrictions dictate higher than

96% recovery.

2. CAPITAL INVESTMENT

Capital investment for Recycle Selectox Sulfur Plants should be

competitive with an equivalent size three stage Claus Sulfur Plant.

K-35

Page 39: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

~ I

w ·a-.

Tc.hle 6-1 . ANNUAL OPERATING COSTS FOR CLAUS SULFUR RECOVERY PLANTS WITH INCTI:E~TORSa /

Plant Size , Mq/d (1 td )

Component 5 10 100

~power per Shift 1/ 2 1/2 1/ 2

Direct Labor~ $6.41/hr.b/ $ 28,100 $ 28,100 $ 28,100

Supv. & Fringes@ 40\ D~ 11,200 11,200 11,200

Electric Power@ $0.030/Kwhc/ 1,800 3,500 35,300

Fuel@ $2l.20/lO3m3 {$0.60/MCF)d/ 2,100 4,100 41,300

Maintenance@ 3\ Inv. 22,700 27,200 83,500

Steam Credit @ $1 • l 0/Mg ( $0. 50/~'.LB) c/ (5,400) (10 , 800) (108,400)

Sulfur Credit@ $24 ~61 /Mq ($25/L T) f / (~1,500) (83,000) (830,000)

Net .Operating Cost 19,000 (19,700) (739,000)

~/ 350 operating days p e~ year, 90~ a2 s gas stream. h/ U.S. Department of ~r,"Monthly Labor Review",October, 1975, p. 96. C/ 1'~unt from Ford, Bacon, and Davis, "Sulfur Recovery Plants", 1971, page 80 1 price from "'Typical

Electric Bills, 1974, FPCR-83",Federal Power Commission. d/ Process Research, Inc., EPA Contract 68-02--0242, Task 2, 1973, page 75 (LTR. L.L. Zuber, Stauffer

Chemical. to W.D. Beers, dtd. 3-21-72) . eJ Ford, Bacon, & Davis, .QE_. Cit. ~/ Assumes 95% recovery with tail gas . treatment.

Page 40: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Table 6-2. ANNUAL COSTS FOR CLAUS SULFUR RECOVERY PIANTS WITH WELLMAN-LORD

Co nent

Hanpo-,.-er Per Shifta/

1J/ Direct Labor@ $6.41/hr.

Supv. & Fringes@ 40\ DL

Electric ~o~er@ $0.03/Kwhl:y

Fuel @ $21.20/103~ 3 {~0.(0/MCF)a/ 7 .1-'..aintenance @ 3\ INV(Claus)

~ 5\ INV (W-L)

Chemicals, @ $200/ton 50\ NaOHo/

Soft Water@ $1.14/m3 ($0.?.0/MGAtf/

steam Credit@ $1.10/Ma ($0.50/MLBS)a/

sulfur Credit@ $24.61/Mgd (~25/LT)f/ Net Operating Cost

.

5

2

$112,400

45,000

3,800

2,100

1,900

18,300

3,500

100

(4,800)

. {43 ~700)

$158,600

Claus Plant Size Mg/d (ltd) 10 100

2

$112,400

45,000

7,600

4,100

. 26,100

22,500

7,000

200

(9,600)

(87,500)

$ _:~27 ,BOO

2

$112,400

45,000

75,600

41,300

82,000

89,400

70,000

1,700

(96,.400)

(875,000)

$ (454,000)

a/ Trip Report: Standard Oil -Company of California El Segundo Refinery,10/15/73 1 C.B, Seaan, EPA.

b/ 350 operat~g days per ye~.

c/ "Hydrocarbon Processing .. ,_ . ~riL 1973, p. 116 • . d/ Scaling Exponent, 0.3.

e/ Scal.ing Exponent, 0.6.

f/ ~..ssume 100% sulfur recove::y ~-~- ~ail gas unit.

Page 41: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

:,:: I ACID

w CX) GAS

• I '

COMBUSTION AIR BLIII/CP.

I I

nASiC H!£i ROILlR

HOT GAS !IY-P/ISS

1100 · r

COND . 11

s s s

N!"-1--

........ .. -·

TAIL GAS

s

_,64 .. • •··- . -......... --FIGURE 6-1

FLOW DIAGAAH

_.._,.._ ..... .......,ru~ ,..,..

TYPICAL CLAUS PLANT FOR SULFUR RECOVERY

Page 42: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

-'° C> ~

>< ~ -V, J--

~ V, ,a

I ·U w '-0

__. q;: J--....... a..

·<X: u

40 .0

30.0

20.0

18:8 8.0 7.0 6.0 5.0

4.o·

3.0

2.0

1.0 o.~ 0. 0. 7 0.6 0.5 0.4

0.3

0.2

O. l

I I I I I I

A 15% H2S in acid gas

0 50% ,-i2s in acid gas ·-

(:) 90% H2S in acid gas

.__ _ _.___.'--,__,_~1,_I I II .1 . 3 .4 . 5 . 6 J B 91, 0

I 2

I I 11111( 3 4 5 6 7 8 9 10

\ SULFU.R RECOVERY PLANT CAPACITY:V.g/_d,(LT/d}

I I 30.0

20.0

10.0 9.0 8.0 7.0 6.0 5.0

4.0

3.0

2.0

LO 0.9 0.8 0.7 0.6 0.5

0.4

0.3

0.2 ·

·1 I I I I I o. 1 20 30 40 60 80 l 00

Figure 6~2 . Claus (3- stage) plus inci~erator - c~pital cost.

Page 43: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

---\0 0 .-X ----~

I . V)

~ . .-

0 V)

0 . u _.J c::c l--0... c::c u

40.0.------T

30.0

20.0

10. 9 . 8. 7.f 6. 5.

4.cL 3.

2.

1. 0.

0.8 -0.7 0. 6 0.5

0.4 -·0 •. 3

0.2

-0~ l .1 .2

r1 I I 11 , -- ,-·11Tm 30.0

20.0

A 15% H2S in acid g?s

50% H2S in acid gas 10.0

0 9.0

90% H2S in acid gas 8.0

0 7.0 6.0 5.0

3.0

2.0

l.O 0.9 0.8 0.7 0.6 0.5

0.4

0.J .:.

0.2

I I J -I t I I • 3 • 4 • 5 • 6._7 -. 89 l ,. 0 2

I .3 4 5 6 7 89 10

SULFUR RECOVERY PU\NT CAPACITY, Mg/d,(LT/d)

2-sta~ lus Wellman-lord - capital cost.

Page 44: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

' - - ---- - - - I--- - t---- I ' I • ~ ' I ; I ' I I I, +==-·----~---- I ' / - ---r--- ~_,~· -/ --=----=----=----=--i ~~:--=..--=..--=..--=..--=..••~--=----=----=----=---·::~t::~':~:~~t~:c:•':~:~~.: ~.~;•~--t'~t~:,:~ ~===::::--! ---- ----+-----1---- --<,'------=---=---=-· --1-- ----- -l--- -t--1--'-..--,--, +-,, ... · '"-- -l-- --- t-----~ -- - /~"ti --,--- -t-----1- - ---l-----1-~...1..+,;•-i....r-"-~+-'--1• I

I ._ ____ _ ~------,--,,f----~----__ !-- - --<-,..,'·- -----,f-------1 --- ,- -+----,--1,,,1'-1'---+-------,f--- ---' / / , • I/ ✓ I I

t---,-,--+-_--=_-~:_-·· I I I _ _ __ : -+----•~J+-----+----,f----- ·- ~,..-'- ----- -~'- -+--' ---t---- -+--•-~.,.Y'"-1- - ..:.l....;..l -1--...:...--'--I I o I

>-- - - , --~s I - - --- -+-- 7 ------ 1------l- ---~--./,._-f-----t----------1 _ _ /_ ,<:.J./ _ _ __ , - -;/----+-~-- ,--+--~ I I

.,_ ___ ......,.. ----1 - ---· - _ -- --+-- - - ·--,--- L . --- _ _ _ _!_ --- ,I ./7 + ---·- --- ---:;,,..C.../- - --- -1 ---,- ,' - ---i--- - ~v·_~_c_. ___ I - +----...... ----t-~7-- -•~!- - --f--

1-----'-'- ---· - - ·-l ---- 1-----i-- I ---- -1---- h.,1'-----lf-----+-----./ I >---- --;---- ._ . ~ ----j ,' /I ./ ----,-------l - ---t----,.'"!------;-'--- - -l-....

/

-'

1-- ---ic-- -.._.=-,--= =-=11-------l----f-----_-__ ·-=-:~--=--J--=-..,c-=/--:~~-•/~:=1-:=--=-:=--=-:~--=-:=1:=--=-:=--=-:=--=-,"--=-./~~ll'i,ii.'~~./--=---=---=---=-t--=---=---=---=---=---=---=-t;--=---=---=---=---=---=-~--J---✓--,-./+-,,_;l!.:._-+----..;:----1--- -~--~

1----~, ·- -za j . ~J ---- 17 1---- -~•'. ___ ·_-.1-~--=----=----=----=----+-- - - -l~~:._:=:._-_-_--1_~--=---=-~--=---=---=---=-i'--=---=---=---=---=---=--.:~~•~~--.:--_-_,-::.._-:---r:---+;-_--=------~t:.,,,~~.,,,~-~./~::j1:::::::..-+_=======j't==----/----::;~/,c_ __ ~ ----l----..!...~;- --~-:__:._L ___ -J

,/ I./

I

I

I

I I

I I ,,, t-'-- - --!-i, --- - 1--- - ---1--- - !----,-11 --'-- - ---If-- --,--+--.'~..,."~: -~-c,J'-lf - ---'.-.L ,,-, ---,,-1,,,"---'--,....-'---+-- .~ / -- - - ---t-:---+----+,~---+-------1::::.,..,::_--j

i--- -,~~,-- --~f-----~--~--.- .~, , A~V~·---➔---~L~~~t~"===1,========1=====~--t;;~:2·~;:✓·~~=:i•;~:=~:=~:=~:~::=~:=~:=~:=~t=~:=~:=~:=~jt~:=~:=~:=~:~t••=~=:~:;~::~;1~~=~~=~:=~:=~~=~:=~:i~~=:j

!

' I ---:.- l ' I .--- I .,_',---,-!"L~• Jl ____ + ---•- +-l- --~-•4,\"/f-·...:...·---· - :"7 ~/ 7' f ;

--·- ~:_ ...... , - ,.---1 ----+- ---:;- - --1--... -''--,;'f'---'i , X 'v,;-~1.•,V. ___ _ t-:-, -'_--:-,1-__ --✓---:~11/·:::.--=---=---=--=---=---=-~t:--=---=---=---=---=---=---=-~L----1i--'---+------...,,. ... ;1c' --==----'l---...:...- +-~-___:-1 1--=~~~=~~:...:..._--_ _.-,-~l""!__, _:====== ....... ,_---:_ __ --',-"~f--i- __ :.+ • \., _ r~___:_1 .17 _...: , _ _ ._-_-_-_-_-'_--;+_-_.,.,=====:;;-~:::~~=.:f;=-::::::::j;::::===:=======::! I I I

1----.!:~---=-~ ~-----'-l ___ _ __i_.,_ __ ·,----.!--, )' I I r -1

! .- I I --..... .C-- - --=--=------')- - -l- · _, _ _ _j ti . -+ . J '/ f ·-h .. :"!,, /'j-- .. ...-1. ----;:'--~f--- -- - ~ : :

I ~ - - -- - '. --- -7~----;- -· ~ :~--x : ; ~/ : ,_··_· ___ · -j-!--~--... ·:.,-;L...-~::_c:_ __ '--::::.:1;'::::::::-!t,1:::~-::~:~i-1'r-_-_-_-__,-,,,-~----c::l:c-:..:;,_~_ ... _~:..---=--...!.-- - ~ ,i,.. ... -- ' / I I / ! • / I - -...,. I I I --I-' - ~- --+----,-- ---,,t----~-- ,..,L-+--- - ~,,.:-;,,t~~~~~1;~~~~-i•~J,-~?,.,-/;;~:::~.:1;~~~~~~~.t~~~--:~~;j; ... ~--1._-;,~ .. ::.,-... -"li-===--... _"'_~=---_-_-j_~--=-----=----_-_-+~-------=----_-_-,;_-- __,,- ;.....c::.=-- ~--- ----_J

. --------- I - I

~ -- -------'f------+-,+--- I / )' ..... V ,~ . ., - ' ,__ I

1.'I 1 / 1 / ./ / .I -- .- , 7 r-, t I i / / I .,,,. -~ I• ·:.,- ~ - ,...,.,,-=,.-i-'---...,r'--- -,1,---=--i====----

: I -------.__. I I .._ _ _ ... •_- JO I I If / I ./ • • -, .- I ' LI. , _-,, r, 7 _,,_

- ' I I /, I/ I ;/ : ...... _, • ' -'- -- • ,, .... ~---...--=---;..• - - ---'l-----~- - --1 nl' l 7 , I ~ I ·./ -:.- • 0 -. _J.,,,,o-" ., • ~

I •- 1 / / I ./ I :/ , I : ~ ~ ~ I · 1- I - • ,.- I I , 1 -, , 1 ✓ , ./ , : _;- - 1 1-u~·.;.-.c---=--1---'---+-•- - - -+---.:...:1--- -.:....----l

1-----_+-, - - -- I / . , : / ' . ./ I I · ~· ' : ' ..- I ~ I I I

tit, !7 -✓ V ·./ ' ~ I • ' .- ' · --- ; I __, I/ .,.,., V I V I ; t ' -- ' : I I -- I """'\ . I .11 . 1' I ./ I ! I -- ; I -1 I -- ' I . --- I !

1 ar _ / 1 7 1' . I ! / · ' _.- • · .....-r 1 __.- I t

I I

- I ~ I I -;, f V =--- I ~ I ~ I ' I I I

I I - I I / ./• ~I a/ 7 ! 7 1 ../ I : --

. ---I 1-"'.'

' ' -- : : '

I I I I I

I

I ' 1111 I 7 · ./ Y • , I ..-

- ' - - - ---1--' , . ,, .,. ~ - -;:;J_ . I 7 ./ I/ ..-- : I -ca-~---~:.---:::;,--=--+-- ---+---'--;--, +-'--- +--~: ....__..,.'-++: ---;f--- - t---- --+-----+-----a,-----'-,' - - ----+--- - --a.,__ __ _ ' : I

;

,C:_ I,. / .- .,-- , __..; I _ LJ ___ I// v - .'-"-___,., I : ' • __ 1-----~ •·- ---J.~-1- ~---===---.... -,· ____ ·· --,.t:_-::-_-_-_-_ -_ -l--l-f--~-:._-_--=..-_-;_-'-1- - - - ;--- : ~i -+---, -: -:--1--~--.f--!- :_ -----1----o-I~ . ' ,----f----':1-----1-a.....;,-'-~-+,- - -'--'---1----1----

=· -- _.._·1 . - _-_-± .... --=- -+--:=+--------­j =t=- I t ~-:_-+---

I I ' I I ' I

I ,_ I - I ; • ... : - ... ' - '-!. . I - I + "" I,,. I • L I ~ ,_ 1--,---1,--- - ., ..... I l:J ' •.;;;:o ,' : I ; I ! '- ... i ! I I ' I ' , _P _ _!,_ • : I ·_: . .$"f_ i . --31) I : -, u I I ; :-;D

1 1 I • 1 "'1 1 : 11 1 :, 11 1l ; : l 1 ll l lil '. I l ! l ! . j l l• ]! I ~- - 111 ; ~• I I ,I , I , 1 _j_~J - · ' . ' ' I I I I . I : t I '· I ! ·1 ; I I I I I i I ; I _! 0 ! .l..!..! l .:_1_ , j - J.....!_ ' ..!...t:~...!...~ -~ ! : J . ' I I ' : I I I J I

I . ' l I ' I ' • I i ' ! ' ' . I ; I I : I ! ; i ,....,....-J ' ' 4 : ' ' I ' ' ! . ' . ; . , __1_ ' .. I ·-.-7 I I I

~=J-=-----:r:-:~ FIGURE 6-4. d+±J s_y(j .... ~i :w:...t: '""t"" iv"(J ;-i~-Gis·-·_ ( ·<·]}JcJ~~~~Ff7n~v--- +·7 -' _-, ~-~~- : I : : :

-.--•. - ' ,, - - ~ - ...:.::~ I -==-~--- ·r-, ::· ·~----c-i.· .. -.-.~i-,· ' '._j'! -1--+-I ', ,• · ,1 •• ,' ; I I • I _·_. ~-rp! .!_.:. ---1 ~~+-· _,_: .!.~e-: q·· ... T.-- . 7 r - --,-,--.-. + . -; -;- : J ! I I I .• - -i ..J ! I I . .... J....!..J I _; . . -~ _!_ I . - '. I ' ,7 ·. I______ ; . I --r~. ·.·---:-o ,l - -;--· '. •. ....... ' •, Ti"",, I

: : · I . - - · I . · T , ~ - - . - ,- -·_·_-_..c.;.....:...!..i..l . .c.....:.• __ ,...1-~--- · -'-'__,_ ____ , _ _ __ ....._ ___ ....._ _ _ _ _,_ ____ =r....1.. _ __ _i...;_ _ _ _ .L ____ _ J..L..:__:__· __ ...!._.:...._~_...!._...:.....'.._~!....l

Page 45: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

Figure 6-5

THREE STAGE SELECTOX PROCESS WITH RECYCLE

HTM " HTM"

AIR-----

HTM" SELECTOX CATALYST

SELECTOX OR

ALUMINA ------=-.IL-- CATALYST

----.::::: SELECTOX OR

ALUMINA __ CATALYST

---- TAIL GAS TO

ACID GAS ----t FEED 1 TO 40% t-12S

RECYCLE BLOWER

"HTM = HEAT TRANSFER MEDIUM APPROXIMATE SULFUR YIELD

HTM"

s 82%

I

s 12%

s 2%

IITM"

TREATING OR INCINERATOR

Page 46: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

SECTION 7

REFERENCES

1. Beaven, D.K., et al, "Developments in Selectox Technology," paper presented at the XX National Convention of AIChE (joint Mexican & American AIChE Meeting), October 15-17, 1980, Acapulco, Mexico.

2. Beaven, D.K., et al, "High Recovery, Lower Emissions Promised for Claus-Plant Tail Gas," The Oil and Gas Journal, March 12, 1979, pp. 76-80.

3. Berry, R.I., "Treating Hydrogen Sulfide: When Claus Is Not Enough," ­Chemical Engineering, October 6, 1980, pp. 92-93.

4. Dingman, J.C., and Moore, T.F., "Compare DGA and MEA Sweetening Methods," Hydrocarbon Processing, Vol. 47, No. 7, July 1968.

5. Dingman, J.C., and Moore, T.F., "Gas Sweetening with Diglycolamine," Proceedings of the 1968 Gas Conditioning Conference, University of Oklahoma, Norman, Oklahoma.

6. Ducksworth, G.L., and Geddes, J.H., "Natural Gas desulfurized by the Iron Sponge Process," The Oil and Gas Journal, September 13, 1965.

7. Dunn, C.L., Freitas, E.R., Hill, E.S., and Sheeler, J.E.R., "Shell Reveals Commercial Data on Sulfinol Process,: The Oil and Gas Journal, March 29, 1965.

8. Fails, J.C., and Harris, W.D., "Practical Way to Sweeten Natural Gas," · The Oil and Gas Journal, July 11, 1960.

9. Goar, B.G., "Sulfinol Process Has Several Key Advantages," The Oil and Gas Journal, June 30, 1969.

10. Goar, B.G., "Today's Gas Treating Processes," Proceedings of the 1971 Gas Contitioning Conference, University of Oklahoma, Norman, Oklahoma.

11. Goar, B.G., "Today's Sulfur Recovery Processes," Hydrocarbon Processing, Vol. 47, No. 9, September, 1968.

1 2. Gustaf son, D. J. and Healy, M. J., "Removal of Hydrogen Sulfide from Natural Gas/Carbon Dioxide Mixtures with Molecular Sieves," Proceedings of the 1968 Gas Conditioning Conference, University of Oklahoma, Norman, Oklahoma.

13. Haas, R.H., Ingalls, M.N., Trinker, T.A., Goar, B. Gene, Purgason, R.S., "Packaged Selectox Units - A New Approach to Sulfur Recovery." Paper presented at the 60th Annual Gas Processors Association Convention, San Antonio, Texas, March 23 - 25, 1981.

K-43

Page 47: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

14. Hegwer, A. M., arrl Harris, R. A., 11Selexol Solves High H2S/C02 Problens, 11

Hydrocarlxm Processing, Vol. 49, No. 4, April, 19 70 .

15. Holder, H. L., 11Diglycolamine - A Pranising New Acid-cas Rerrover," rn,,e Oil and Gas Journal, May 2, 1966.

16. Kool, A.. L., and Riesenfeld, F. C., Gas Purification, McGraw-Hill Book Conpmy, Inc. , New York City, New York, 1960.

17. Maddox, R. N., and Burns, M. D., "Designing a Hot Carbonate Process," The Oil and Gas Journal, Noverrber 13, 1967.

18. Maddox, R. N., and Burns, M. D., "Hot Carbonate - Another Possibility," 'Ihe Oil and Gas Journal, October 9, 196 7.

19 . Maddox, R. N., and Burns, M. D., "Iron-Oxide Process Design calculations, " rn,,e Oil and Gas Journal, August 12, 1968 .

20. Maddox, R. N. , and Burns, M. D., "MFA Process to be Considered First, 11

Th= Oil and Gas Journal, August 21, 196 7.

21. Maddox, R. N., and Burns, M. D., "Physical Solution is the Key to rn,,ese Treating Processes," 'Ihe Oil and Gas Journal, Janua:ry 8 , 1968 .

22. Mason, J. R. , and Griffith, T. E. , "A Case History - Conversion of a sweetening Solution fran MFA to OOA, 11 Proceedings of the 1969 Gas Corrlitioning Conference, University of Oklahoma, Noman, Oklahana .

23 • Nicklin, T., and Bnmner, E. "Hew Stretford Process is Working," Hydrocarbon Processing, Decenber, 1961.

24. Perry, C.R., "A New IDok at Iron Sponge Treatrrent of Sour Gas," Proceedings of the 1970 Gas Conditioning Conference, University of Oklahorra, No.rman, Oklahana.

25 . Perry, C. R., "Basic Design and Cost Data on MEA Treat ing Units, 11

Portable Treaters, Inc., OOessa, Texas.

26. Per:ry, C. R., "Design and Operating Arnire Units for Trouble Free Unattended Operations," Proceedings of the 1969 Gas Conditioning Conference, University of Oklahoma, Nonrian, Cklahana.

27. Rcsen, W. D. , "Here's a Quick Design Method for Amine sweetening Plants," 'Ihe Oil and Gas Journal, March 18, 1968.

28. Rushton, W. w., and Hays, w., "Selective Adsorption to Renove HiS," The Oil and Gas Journal, Septerrber 18, 1961.

29 • Scheinrian, W. L., "Selection of Total Sulfur Recovery Systens Errploying the Stretford Process," Proceedings of the 1972 Gas Conditioning Conference., University of Oklahorra, No.rman, Oklahana.

30. Shell, A. D., "Consider Basic Prd:>lans in Irrproving MFA Filtration," 'Ihe Oil and Gas Journal, February 12, 1968.

K-44

Page 48: PERRY GAS PROCESSORS, INC. TECHNICAL BULLETIN NO. 76 …€¦ · (Air Cooled) d. Reflux Condenser (Air Cooled) 30,000 x GPM 5.20 x GPM 6. Power Required Power requirement for the

31. 8wai.m, C. D., "Gas Sweetening Processes of the 1960's," Hydrocarbon Processing, Vol. 49, N:>. 3, March, 19 70 •

32. 8wai.m, C. D., "Takahax Desulfurization Process, 11 Proceedings of the 1972 Gas Conditioning Conference, University of Oklahana, Norman, Oklahana.

33 • 'Iaylor, D. K., "HCM to Desulfurize Natural Gas, 11 A series in '!he Oil and Gas Journal, N:>verrber 5 and N:>venber 19, Decenber 3 and Decerrber 10, 19 56 •

34. 'Ihonas, T. L., and Clark, E. L., "Molecular Sieves Reduce Econcrni.c Operational Process Problans, 11 'Ihe Oil and Gas Jow:nal, August 12, 1968

35. Tavnsend, F. M., arrl Reid, L. s., "N:!west Sulfur Recovery Process, 11

Petroleum Refiner, Novanber, 1958.

36. zapffe, F., "Gas sweetening," Proceedings of the 1965 Gas Conditioning Conference, University of Oklahorra, N:>nnan, Oklahana .

37. zapffe, F., "Iron Sponge Renoves M:rcaptans, 11 'llle Oil and Gas Journal, August 19, 1963 •

K-45


Recommended