+ All Categories
Home > Documents > Peter J. Bond (BII) [email protected] - embl-hamburg.de · Simulating biomolecular function...

Peter J. Bond (BII) [email protected] - embl-hamburg.de · Simulating biomolecular function...

Date post: 23-Feb-2019
Category:
Upload: phungdat
View: 213 times
Download: 0 times
Share this document with a friend
35
Simulating biomolecular function from motions across multiple scales (I) Peter J. Bond (BII) [email protected]
Transcript

Simulating biomolecular function from motions

across multiple scales (I)

Peter J. Bond (BII) [email protected]

125,000

2017

1972no.ofstructures0

StructuralBiology:WhytheNeedforSimulation?year

•  Explosioninnumberof

structuresdepositedtoPDB

overpast~15years…dueto:

-  Post-genomicsera:accessibility

tonumerousgenomes,more

stableproteomesetc.

-  Automationincrystallization

protocols,robotics.

-  Structuralbiologyconsortia(and

money!)

•  AlsoimprovementsinNMR,

cryoEM,&biophysicalmethods.

•  Sowithallthisstructuraldata,

whytheneedforsimulation? 2

RCSBPDB:RCSBProteinDataBankhttps://www.rcsb.org/

TheImportanceofDynamicsand“Landscape”…

single “snapshot”

3

ligand binding

10-15

10-12

10-9

10-6

10-3

100

10-10 10-9 10-8 10-7 10-6 10-5 10-4(nm) (µm)

(fs)

(ps)

(ns)

(µs)

(ms)

LENGTH (metres)

TIME (s)

Coarse-grained

Semi-empirical QM

Ab initio QM

Continuum

simulation Atomic res.

biomolecules

4

Methods&Associated(Typical)Scales

simulation

BiomolecularSimulations:FromStructuretoDynamics

o  Staticstructure– invitroconditions.o  Simulation:~300K,biologicalmodel...o  103–105atoms…o  ~106pair-wiseinteractions:“forcefield”o  NumericalintegrationofF=ma.o  Coordinatescalculatedevery

0.000000000000001sec,~1CPUsec…

FFusedtocalculateresultantforcesFi(&accelerationa

i

viaNewton’s2ndlaw)onparticleiwithmassmi

Fi = −∇iEsystem =miai

−δEsystemδri

=miδviδt

=miδ 2riδt2

thuswecanrelategradientofPEtochangesinpositions/velocitiesasafunctionoftime:

5

BiomolecularSimulations:FromStructuretoDynamics

real… explicit

COMPUTATIONAL COST...

implicit (e.g. ε, ±ξ)

o  Staticstructure– invitroconditions.o  Simulation:~300K,biologicalmodel...o  103–105atoms…o  ~106pair-wiseinteractions:“forcefield”o  NumericalintegrationofF=mao  Coordinatescalculatedevery

0.000000000000001sec,~1CPUsec…

Periodicity mimics infinite system (e.g. cube). Minimum image convention. Good rule of thumb: ≥2 nm between “images”.

6

A

B i ii

21 Å

35 Å

MolecularSimulation–“ComputationalMicroscope”

•  Computationalmodelling–nowanindispensibletoolforcomplementingtraditionalexperiments.

•  ArielWarshel:“…thebesttoolwehavetoseehowmoleculesareworking.”(awardedNobelPrizeinChemistry,2013withLevitt&Karplus).•  KlausSchultencoinedtheterm“computationalmicroscope”.•  Notsimplyaninsilico“imaging”technique– notjustformovies…-  dynamics,interactions,conformationalchanges,mechanisms!-  nolimitationsonspatio-temporal“zoom”!-  abilitytocarryout“alchemistry”!-  abilitytodo“thoughtexperiments”!-  powerfultool:integratemodel&experiment.

But...PotentialLimitations:

•  Accuracyofstartingmodel/availableexperimentaldata…

•  Accuracyoftheunderlyingforcefield…

•  Limitedsamplingintime/space… 7

8

Simulating(andwaitingfor)Motions…

Zwier&Chong.CurrentOpinioninPharmacology.2010.10:745-752.

energy

conformation

supe

rcom

putin

gpo

wer

Theincreasingpowerofbiomolecularsimulation

life cycle of E. coli

• <decade:~103↑simulationperformance…-thankstoalgorithms,architectures,cost…-alsoimprovesFFaccuracy.

Schlicketal.Biomolecularmodelingandsimulation:afieldcomingofage.QRevBiophys.2011.44:191-228.

9

Electrostatic: ~3 Å ~1-5 kcal mol-1 (ε=80) ~50 kcal mol-1 (ε=2)

i.e. medium dependent!

Covalent, ~1-2 Å ~100 kcal mol-1.

DescribingBiomolecularInteractions

H-bonds(electrostatic…)Hsharedby2xδ-atoms.~1-5kcalmol-1,~2-4Å.

vdW: ~0.5-1 kcal mol-1 Attractive - transient polarization (also repulsive - orbital overlap)

“Hydrophobic interactions” (entropy driven)

10

Ebond

separation, r cubic

Morse

quadratic

equilibrium value n = multiplicity (no. minima) φ = current angle γ = phase (minima position; x-axis) Vn = barrier height (y-axis)

DescribingBiomolecularInteractions:“ForceField”

11

Evdw = 4ε{(σ/R)12 - (σ/R)6}

σ

E

R

Lennard-Jones (“6-12”) potential:

DescribingBiomolecularInteractions:“ForceField”

Pair-wise sum of all possible interacting non bonded atoms i and j… O(n2)

Electrostatics – decays slowly (i.e. 1/R)… many methods to treat this.. *** Stick with FF recommendation! ***

Energies&ForceFields(FFs)…Describe total energy of the system such that there are penalties for deviations from reference values.

§  Energiesarecalculatedusinganempiricallyderivedforcefield(FF).

§  “Balls&springs”:Bonded(+fc/E

o),

non-bondedinteractions(LJ),particlemass,size,partialcharge.

§  Parametersfromwhere?§  Fragmentgeometries–X-raystudies.

Biomolecules-highlyspecificrefinementsovertheyears(butcf.over-fitting,e.g.IDPs…)

§  Rotationalbarriers/vibrationalfrequenciesfromspectroscopy.

§  Chargesfrome.g.QMcalculations.§  vanderWaal’s–trialanderror

e.g.tomatchexperimentaldensities.§  Thermodynamicproperties…§  ManyaccurateFFsarenowavailable!

ETOTAL = EBONDED + ENON-BONDED

13

RealSimulationCodes&ForceFieldsCHARMM (Chemistry at Harvard Molecular Mechanics) www.charmm.org

♦ Interface through fortran like scripting language - tough! ♦ Very powerful, many different features. Slow. ♦ $600 (academic) but also free reduced-functionality version.

AMBER (Assisted Model Building with Energy Refinement) www.ambermd.org

♦ Suite of about 60 programs based around a few central ones ♦ Slow on standard CPUs; fast with GPU-optimization ♦ $500 (academic) $15-20,000 (industry).

GROMACS (Groningen Machine for Chemistry Simulation) www.gromacs.org

♦ Simple interface (not scripting based) ♦ The fastest codes on 100’s cores (CPU/GPU) ♦ GNU licensed (i.e. free!)

NAMD (Not just Another Molecular Dynamics program) www.ks.uiuc.edu/Research/namd

♦ Optimized for many 1000’s of cores ♦ Written in C++ with a TCL-based scripting interface. ♦ Also free of charge.

14

http://bio.demokritos.gr/gromita/-GraphicalUserInterfaceforGROMACSv4+

http://haddock.science.uu.nl/enmr/services/GROMACS/main.php-Web-basedportalforautomatedGROMACSsimulations,distributedEuropeanGridnetwork(10nssims).http://py-enmr.cerm.unifi.it-similarforAMBER-basedNMRrefinement.http://mmb.irbbarcelona.org/MDWeb/-Settingup/running/analysisofsimulationsinAmber,NAMD,GROMACSandrelated…

https://www.charmming.org-CHARMMinginterface–preparation/submission/analysis.

15

AutomatedSimulations…butbewary…

http://www.bevanlab.biochem.vt.edu/

Obtain structure – X-ray / NMR / model

Add H’s, consider pkA, prepare topology

Solvate + add ions

Minimize

Analyze

Ene

rgy

Geometry Production

Equilibration

♦  missing atoms / residues / loops & mutations (Pymol, Modeller, Swiss-model etc.)

♦  oligomer state ♦  disulfides (assess via distance only?) ♦  ligands (CGenFF, PRODRG, SwissParam, VMD QMTool – Gaussian.)

VF ii −∇=

e.g.Steepestdescents– followgradient“downhill”untilthreshold(ΔEorFmax)

Bulk/structural/crystalwater/ions

Aimto“relax”system,e.g.:solvent/iondistribution,temperature,boxsize/density…Cf.ensemble(e.g.NPT)

Erestr = k (r - r0)2

SimulationWorkflow

16

Early Steps: Know your system! (PDB “headers” & papers are your friend!)

RM

SD

(Å)

time (ns)

1

2

10

3

Take frames from here

AssessingErrors&Convergence...

• Checkdistributionofpropertiesagainstaverage–evendistribution?

• Calculateblockaveragesforasingletrajectory.

• Calculatemultiplesimulationreplicasandcompare…(Ergodic…)

Simple - look at it! Sampling & Convergence

each τblock should > τrelax x no. steps

0

Care… this is a very limited indicator alone…

Comparison to Experiment

Protein structural deviation

e.g. RMSF vs B-factors

… remember experimental error!

22

38 RMSFBiπ

=

L1 L3

L4

L2

•  Bacterial outer membrane protein (~100,000 per cell!) •  Flickering channel formation in lipid membranes, but no obvious pore in crystal. •  NMR – but gradient of flexibility along barrel in detergent micelle complex.

?

insoluble

detergent

NMR X-ray

18

CaseStudy:TheoryvsExperiment&OmpA

Bondetal,PNAS(‘06)103:9518-

19

•  4 monomers per unitcell, space group C2. •  Detergent-mediated “protein fibre”. •  24 x octyltetraoxyethylene (C8E4), 264 x H2O. •  Loops modelled, crystal water & detergent + bulk water and ions. NVT ensemble simulation.

Bondetal,PNAS(‘06)103:9518-

20

RMSD

(Å)

0

2

4

6

0 10 20 30 40 50time(ns)

crystal simulation

L4 L1 L3 L2

T1 T2 T3

Bi =

[8π2

/3].R

MS

F i2 (Å

2 )

•  Detergent molecules dynamically cover protein fibre – membrane-like environment. •  β-barrel RMSD low. Higher for loops – low crystal density & inherent high mobility. •  B-factor correlation... Missing density - vibrations, fluctuations, and lattice disorder…

OmpA: Dynamics vs. Environment

Bond & Sansom, J Mol Biol (‘03) 329:1035-

21

Membrane Insertion Protocols •  Simplified lipid membrane – in vitro system. (Now bacterial membranes possible). •  g_membed, GROMACS (also mdrun_hole): protein “contracted” in xy-plane, overlapping

lipids deleted, then protein grown back during EM/MD to push remaining lipids away. •  CHARMM GUI Membrane Builder – NAMD, GROMACS, AMBER, CHARMM: random

lipids from a membrane library packed against protein surface. •  Or nowadays: just “insert, delete, and equilibrate”… Micelle Insertion Protocols •  ~60 DPC detergent molecules based on DLS measurements. Concentration > CMC. •  “Spoke-like” DPC placement + equilibration. (Also CHARMM Micelle builder). •  Simulations match protein-detergent NOEs detected from NMR.

OmpA: Dynamics vs. Environment

Bond & Sansom, J Mol Biol (‘03) 329:1035-

22

•  Environments vs structure/dynamics… •  Visual analysis, RMSD/RMSF, PCA… •  Consistent with comparative experimental data…

X-ray & simulation

Membrane simulation

NMR structure

Micelle simulation

Bond et al, JACS (‘04) 126:15948-

z (n

m)

time (ps)

•  Water trajectories: difference in permeation properties in different environments. •  Single “gate” region with alternating electrostatic switch proposed. •  Bond et al., Biophys. J. (‘02) 83:763-. •  Open state conductance estimated as ~60 pS at 0.1 V in 1M KCl... = expt! •  Double-mutant cycles & conformational exchange experiments confirm the hypothesis! Hong et al., Nat. Chem. Biol. (‘06) 2:627-.

23

A

B i ii

21 Å

35 Å

TheComputationalMicroscope:Fast-Forward

•  Needfor“enhancedsampling”…e.g.:-  Heating–proteinfolding,integrationofexperimentaldata.-  Biasingpotentials–molecularbinding&energies.-  Coarse-graining– simplifyingthelandscape.

-30

-3

-6-9

-12

-15time(logseconds)

fs

ps

ns µs

ms

bondvibrations

sidechainrotation

loopmotions

conformational

changes,

ligandbinding

proteinfolding,

macromolecular

assembly

24

Sampling,Constraining,&Heating!

•  ReplicaexchangeMD(“paralleltempering).•  RunNcopiesofsystematdifferenttemperatures;

Metropoliscriteriontoexchangeconfigurations;acceptancebasedonBoltzmann-weightedΔE…

(MoredynamicthanX-ray:spectrofluorometry&CD)MarzinekJKetal.CharacterizingtheConformationalLandscapeofFlavivirusFusionPeptidesviaSimulationandExperiment.2016,ScientificReports.5,19160.

X-raystructures

25

Energy

conformation

•  Simulatedannealing–“heat&cool”.•  Usefulforinterpretingexperimentaldata–

integrateasrestraints.•  E=EBONDED+ENON-BONDED+w.ERESTRAINTS•  ERESTRAINTS=EX-RAYorENMR(e.g.NOEdistances)

time

folding

ΔE≥0ΔE<0

•  BruteforceMD,e.g.DEShaw.•  Solventmappingapproaches–

crypticpockets,drugbindingsites.•  Butmeasurablereversible

equilibriumrequiredforfreeenergies,K

D’s…

LigandBinding:Dynamics&Energetics

26

•  “AlchemicalTransformation”–non-physicalapproachinwhichλdefinesinteractionofligandwithsurroundings…

•  Integrateoverensemble-averagedenergychangesalongalchemicalpath…

•  Umbrellasampling–biasingpotentialconfinessystemalongphysicallymeaningfulpath,V=-k(x-x

0)2.e.g.fordistance,angle,RMSD…

PMF(ΔG)

e.g.SMD(cf.AFM)

DurrantJD,McCammonJA.(2011).BMCBiol.9:71.

•  biological membrane: lipid bilayer + proteins (α-helical or β-barrel).

•  membrane proteins: ~25% of genes. •  drug targets: ion channels & receptors.

cells membranes

proteins

~10Å

~10nm

~100nm

~1µm

ComputationalMicroscope:TuningtheResolution

•  Biasedsamplingapproachesusefulforspeedingupspecificsystems.•  Butwhataboutgeneralimprovementoftime/length-scalesinbiological

systems,whichspanseveralregimes…•  e.g.:crowdedcytoplasmicenvironment,extendedlipidmembranes.

27

TuningtheResolutionvia“CoarseGraining”

• Coarse-graining(CG):groupingtogethersetsofatomsintolargerparticles… • Fasterallowingsamplingofmuchlargertime/length-scales,dueto:(1)Lessatoms;(2)softerpotentialsallowingétimestep;nolong-rangeelectrostatics.•  Butremember–CGhasitslimitations,e.g.(1)lackofdetail,e.g.LeuvsIle;(2)lackof

realisticwater,electrostaticsetc.(3)limiteddescriptionofconformationalchanges.•  Possiblesolution:back-mapping/multi-scaleapproaches,integrativemodelling…

28

MartiniCoarse-GrainedForceField&Variants

water

+ve ion

-ve ion

lipid •  ~1 particle per 4 heavy atoms. •  Bond/angle potentials with weak fc’s. •  Limited number of particle types with

different levels of LJ interaction, from strong polar interactions in bulk solvent to repulsion between polar & nonpolar phases.

•  Typically short-range electrostatics, fully charged ions/groups…

http://cgmartini.nl/– martinize.py,insane.py,backward.py,etc.

29

Marrinkandco-workers.1stlipids,morerecentlyotherbiomolecules.J.Phys.Chem.B(2004)108:750-;J.Phys.Chem.B(2007)111:7812-;JCTC(2008)4:819-;JCTC(2009)5:2531-

•  Example extension to proteins - 1-3 particles/AA, H-bonding. 2o structure restraints based on analysis of native state. Bond & Sansom (2006) JACS 128:2697. Bond et al (2007) J. Struct. Biol. 157:593. Parameterization: Amino acids transfer free energies. Validation: membrane PMFs & compare with spectroscopic data.

•  Martini: 2o structure maintained via weak dihedrals (but structure more flexible).

WALPLS-helix fd-coat

Biophys J. (2008) 94:3393-

Coarse-GrainedSimulationsofPeptides

30

•  LacY test-case – CG-ENM vs. atomistic (Rc = 0.7 nm). •  All-Atom, AA (docked) vs. CG (assembled): similar lipid-protein interactions. •  OmpA: Tuning of ENM cutoffs & force-constants. Similar dynamics in AA vs. CG.

CGProteins:ElasticNetworkModels

residue

RM

SF

(nm

)

atomistic

0

0.5

1.0

1.5

0 40 80 120 160

CG

31

•  Spontaneous assembly of membrane proteins into lipid / detergent. •  Similar approaches for e.g. DNA, bio/nano systems (in preparation). •  ~102-103 x speedup vs. all-atom simulations; can be back-mapped...

UnbiasedLipid/ProteinAssemblyUsingCGSimulations

32

Ω ∼ �40º

TG XXXG

JACS(‘06)128:2697-.BiophysJ.(‘08)95:3790-.JRSocInterface(2008)5:S241-

◆  Maculatin 1.1: cell lysis. Flurophore leakage but lipid maintained? (confocal microscopy). ◆  Self-assembly to induce membrane disruption and cell lysis at high concentration. ◆  100 peptides, 900 POPC lipids, ~60,000 water beads (equivalent to ~500k atoms). ◆  Surface binding → peptide aggregation → membrane stretching & vesicle deformation. ◆  Disordered aggregates - contrast with e.g. ordered WALP peptide insertion.

750 ns

BIGSYSTEMS!–e.g.AntimicrobialPeptideAttack

Ambroggioetal(2005)Biophys.J.89:1874-1881Chiaetal(2000)Eur.J.Biochem.267:1894.

◆  Bond et al (2008) Biophys. J. 95:3802

33

•  MolecularSimulations–WhatandWhy?•  AccessibleTimes&LengthScales•  PotentialLimitations•  Interactions,Energies,andForceFields•  Long-RangeInteractions&Boundaries•  TheSimulationWorkflow

•  WhatCanaSimulationTellUs?•  TestCase:MembraneProteinDynamics•  StateoftheArt:EnhancedSampling&Coarse-

Grained/MultiscaleApproaches

Introduction to Simulation

Practicalities of Simulation

Uses, Now & the Future

34

Biomolecular Simulations: Summary

Next:SimulationsinAction

ComputerSimulationofLiquids:Allen&Tildesley

MolecularModelling:PrinciplesandApplications:Leach

UnderstandingMolecularSimulation:FromAlgorithmstoApplications:Frenkel&Smit

GROMACSmanual–www.gromacs.org/

ReferenceTexts,Manuals,Reviews

•  HospitalA,GoñiJR,OrozcoM,GelpíJL.(2015).Moleculardynamicssimulations:advancesandapplications.AdvApplBioinformChem.8:37-47.

•  DrorRO,DirksRM,GrossmanJP,XuH,ShawDE.(2012).Biomolecularsimulation:acomputationalmicroscopeformolecularbiology.AnnuRevBiophys.41:429-52.

•  DurrantJD,McCammonJA.(2011).Moleculardynamicssimulationsanddrugdiscovery.BMCBiol.9:71.•  KarplusM,McCammonJA.(2002).MolecularDynamicsSimulationsofBiomolecules.NatStructBiol.9:646-52.•  LeeEH,HsinJ,SotomayorM,ComellasG,SchultenK.(2009).Discoverythroughthecomputationalmicroscope.

Structure.17:1295-306.•  BigginPC,BondPJ.(2015).Moleculardynamicssimulationsofmembraneproteins.MethodsMolBiol.

1215:91-108.•  KhalidS,BondPJ.(2013).Multiscalemoleculardynamicssimulationsofmembraneproteins.MethodsMol.

Biol.924:635-57.


Recommended