+ All Categories
Home > Documents > Petroleum Refining Technology

Petroleum Refining Technology

Date post: 30-Oct-2014
Category:
Upload: octoviancletus
View: 809 times
Download: 451 times
Share this document with a friend
Popular Tags:
208
PETROLEUM REFINING TECHNOLOGY Dr. RAM PRASAD B.E.(HO~S.), M.Tech., Ph.D. ASSISTANT PROFESSOR DEPARTMENT OF CHEMICAL ENGINEERING HARCOURT BUTLER TECHNOLOGICALINSTITUTE, KHANNA PUBLISHERS Operational Office: 4575115, Onkar House, Room No. 3-4, Ground Floor, Darya Ganj, New pelhi-110002 Phone: 23243042 Fax: 23243043 Despatch Office: 11, Community Centre, Ashok Vihar, Phase 2 Delhi-110052. Phone : 27224179 Regd. Office: 2-B, Nath Market, Nai Sarak, Delhi-110006. Ph. 23912380
Transcript
Page 1: Petroleum Refining Technology

PET

RO

LE

UM

R

EF

ININ

G

TE

CH

NO

LO

GY

Dr. R

AM P

RA

SAD

B

.E.(

HO

~S.)

, M.T

ech.

, Ph.

D.

ASS

ISTA

NT

PRO

FESS

OR

D

EPA

RTM

ENT OF C

HE

MIC

AL

ENGINEERING

HA

RC

OU

RT

BUTL

ER T

EC

HN

OL

OG

ICA

L IN

STIT

UTE

,

KH

AN

NA

PU

BL

ISH

ER

S O

pera

tion

al O

ffic

e: 4

5751

15, O

nkar

Hou

se, R

oom

No.

3-4

, Gro

und

Floo

r,

Dar

ya G

anj,

New

pel

hi-1

1000

2 Ph

one:

232

4304

2 F

ax:

2324

3043

D

esp

atch

Off

ice:

11

, Com

mun

ity

Cen

tre,

Ash

ok V

ihar

, Ph

ase

2 D

elhi

-110

052.

Pho

ne : 2

7224

179

Reg

d. O

ffic

e:

2-B

, Nat

h M

arke

t, N

ai S

arak

, Del

hi-1

1000

6.

Ph.

239

1238

0

Page 2: Petroleum Refining Technology

Published by :

R

omesh C

hander Khanna

for KH

AN

NA

PUBLISHERS

2-B, N

ath Market, N

ai Sarak D

elhi- 110 006 (India)

Q A

ll Riehfq,R

egerv,ed , , T

his book orpart thereof cannot be tmnslated or reprodued in

any form (except for review

or criticism

) without the w

ritten permission of the A

uthor and the Publishers.

First E

dition F

ifth Reprint : 2008

Price :

Rs. 185.00

Com

puter Typeset and Figures designed by :

S

teps Com

puters, D-2/77, D

ayd Pur, Delhi 110 094

Ph. 218-1367

Printed a

t.. Print India. Delhi-95

-,* It givesm

e a great pleasure in presenting the book on "Petroleum R

efining Technology'

.The relvant topics for working C

hemical/Petroleurn E

ngineers in Petroleum-R

efineries have .",, been covered.

The first chapter gives an account of theories of oil and gas form

ahon, methods fo

p,

exploration and drilling for oil and gas. It highlights the development of petroleum

refininB

industry in India. <

,.. T

he knowledge of chem

isty and compositionof crude oil isessentialin the selection of the

refining processes. The characteristics, constituents and classification of crude coils have been.

discussed. in chapter 2.

Indian crudes such as Bom

bay l-hgh, Assam

are waxy in nature. T

hese require sped; m

ethod for transportation. The problem

s related to the handling of waxy crude oils and their

feasible solutions have heen discussed in chapter 3. --

Quality control of petroleum

-products isa necessity if the products are to give satisfactory w

rformance to the custom

ers. Bureau of ,lndian~S

tandard; N

ew D

elhi sfandaLdizes ~

rocedure in

d issues specif cationsfor eachpetroleum

products. ~efktio

n,m

etho

d andsignifi-eof

the various laboratory tests have been given in chapter 4.

Chapter 5 discusses m

anufacture,properties and uses of petroleum products. This chapter

covers LPG, naphtha, gasoline, kerosine, ATF, diesel fuel, fuel oil, hydrocarbon solvenk "

'

lubricating oils, petroleum w

axes, bitumen and petroleum

coke.

Petroleum refining processes have been discussed in six chapter (611). C

rude ou distilla tion is the first unit in the refinery and carried out in tw

o stages-atmospheric and vacuum

, B

efore discucssing these processes the removal of im

purities by electrical desalting process ha, been discussed. The influence of the process variables on the opera tion of a fractionating colum

n ?.* and the scope for im

provement have been discussed in C

hapter 6.

Crude oil distilltion produces reside w

hich is to be upgraded. Thennal conversio~

~..

processes for this purpose include visbreaking and coking. These processes have been discussea

in chapter 7. lh

Catalytic conversion processes use catalyst and either change carbon num

ber or carbon/ hydrogen ratio. T

he most im

portant processes include fluid catalytic cracking, catalytic reform- -

ing, hydrocracking,catalyticalkyla tion, isomerizsl tion and polym

eriza tion Cataly tic isom

&

tion neither changes carbon num

ber nor carbon/hydrogen ratio. These processes have been dis-,.

cussed in chapter 8.

Finishing processes are necessary to make the petroleum

products suitable for use with .

respect to performance,corrosivity, suitability on storage, odour etc. Various finishing processes

such as hydrogen sulphide removal processes, sulphur recovery processes, sw

eetening process-,,. es, solvent extraction processes and hydrotreating processes have been discussed in chapter 9.

Page 3: Petroleum Refining Technology

(iv)

L@

~&&

@p@

b*ou

ld po

sses

s and

maintain p

rope

r vis

cosi

ty, f

low

as li

quid

at t

heha

ndlin

g an

d op

erat

ing t

empe

ratu

re an

d ha

ve g

ood

ther

mal

and

oxid

atio

n st

abili

ty. L

ubri

catin

g oils

of v

ario

us

grad

es a

re m

anuf

actu

red

by m

ixin

g of

the

sel

ecte

d lu

bric

atin

g oils

bas

e st

ock

and

addi

tives

. A

mod

em lu

be o

il co

mpl

ex c

onsi

sts o

f vac

uum

dis

tilla

tion u

nit,

solv

ent d

easp

halti

ng u

nit,

solv

ent

extr

actio

n un

it, s

olve

nt d

ewax

ing

unit

and

hydr

ofin

ishi

ng u

nit.

The

se p

roce

sses

hav

e be

en

disc

usse

d in

cha

pter

10.

The

det

ails

on

the

man

ufac

ture

of p

etro

leum

wax

es h

ave

also

bee

n pr

esen

ted

ir\ this c

hapt

er.

Cha

pter

11

disc

usse

s th

e m

anuf

attu

re o

f bi

tum

en fr

om c

rude

oil.

Gen

erat

ion o

f pro

cess

engi

neer

s hav

e acc

epte

d co

rros

ion a

s a fa

ct of

life

, an

incu

rabl

e vir

us

who

se p

rogr

ess m

ay b

e slo

wed

but n

ever

stop

ped.

Cor

rosi

oh ca

n re

duce

the l

ife o

f ref

iner

y units.

Chp

ater

12

disu

csse

s ty

pk a

nd f

orm

s of

cor

rosi

on a

nd th

eir

cont

rol i

n cr

ude

oil d

istil

latio

n,

ther

mal

cr?c

king

, flu

id ca

taly

tic cr

acki

ng, a

min

e gas

proc

essi

ng, a

nd st

eam

and

cond

ensa

te lin

es.

Air,

wat

er a

nd so

il ar

e vi

tal o

f lif

e on

this p

lane

t. T

hese

reso

urce

s are

to b

e pr

otec

ted

and

used

wis

ely.

Cha

pter

13

disc

usse

s ai

r po

llutio

ns, w

ater

pol

lutio

n an

d sl

udge

trea

tmen

t and

di

spos

al.

Cha

pter

14,

hig

hlig

hts,

des

igns

and

ope

ratio

n of

peb

bleu

rn p

roce

ssin

g eq

uipm

ents

.

It is h

oped

that

this

boo

k in

its

pres

ent f

orm

will

be useful f

or th

e st

uden

ts o

f ch

emic

al

engi

neer

ing.

I will

be

high

ly g

rate

ful,

if sh

ort comings o

f th

is e

ditio

n in

form

of

cont

ents

, err

ors

are

high

light

ed to

me.

-Ram

Pr

asad

K

~~

PW

k 1

PET

RO

LE

UM

EX

PLO

RA

TIO

N, P

RO

DU

CT

ION

AN

D R

EF

~NIN

G

1-14

1.

1 IN

TRO

DU

CTI

ON

1

1.2

FOR

MA

TIO

N O

F O

IL A

ND

GA

S 2

1.3

OIL

AN

D G

AS

EXPL

OR

ATI

ON

2

1.4

DR

ILLI

NG

FO

R O

IL A

ND

GA

S 3

1.5

PRO

DU

CTI

ON

OF

CR

UD

E O

IL A

ND

NA

TUR

AL

GA

S 5

1.6

PETR

OLE

UM

REF

ININ

G, O

PER

ATI

ON

AN

D O

PTIM

IZA

TIO

N

8 1.

6.1

Sele

ctio

n of

Proc

esse

s for

Opt

imiz

atio

n 9

1.6.

2 O

ptim

izat

ion

in a

Run

ning

Ref

iner

y 10

1.

6.3-

R

efin

ing

Cap

acity

in In

dia

11

2'

2 C

RU

DE

OIL

S - C

HE

MIS

TR

Y A

ND

CO

MPO

SIT

ION

15

-28

i 2.

1 IN

TRO

DU

CTI

ON

15

2.

2 C

HA

RA

CTE

RIS

TIC

S OF

CR

UD

E O

ILS

15

2.3

CO

NST

lTU

ENTS

OF

CR

UD

E O

ILS

16

2.3.

1 H

ydm

arbo

ns

17

2.3.

2 N

on-H

ydro

carb

ons

22

2.4

CLA

SSIF

ICA

TIO

N O

F C

RU

DE

OIL

S 25

2.

4.1

Cha

ract

eriz

atio

n Fac

tor

26

2.4.

2 C

orre

latio

n Ind

ex

28

2.4.

3 M

etho

d of

Str

uctu

ral G

roup

Ana

lysi

s 28

f 3

TR

AN

SPO

RT

AT

ION

OF

WA

XY

CR

UD

E O

ILS

29-4

4

3.1

INTR

OD

UC

TIO

N

3.2

PIPE

LIN

E TR

AN

SPO

RTA

TIO

N

3.3

WA

XY

CR

UD

E O

ILS

I 3.

3.1

Def

initi

ons o

f R

heol

ogic

al P

aram

eter

s 3.

3.2

Rhe

olog

ical

Cla

ssifi

catio

n of

Flu

ids

3.4

FLO

W P

RO

PER

TIES

OF

WA

XY

CR

UD

E O

ILS

3.5

PUM

PAB

ILIT

Y C

HA

RA

CT

ER

IS~C

S OF

WA

XY

CR

UD

E O

ILS

3.5.

1 T

empe

ratu

re

3.5.

2 Y

ield

Stre

ss-M

odel

Pip

elin

e Tes

t 3.

5.3

Flow

at R

esta

rt -

--

3.5.

4 Ef

fect

ive

Pip

elie

Vis

cosi

ty

3.6

MET

HO

DS

FOR

PIP

ELIN

E TR

AN

SPO

RTA

TIO

N O

F W

AX

Y C

RU

DE

OIL

S 3.

6.1

Use

of

Pow

-Poi

nt D

epre

ssan

ts/F

low

Im

prov

ers

3.6.

2 M

echa

nism

of F

low

Impr

ovem

ent

3.6.

3 Po

int o

f A

dditi

ve k

iject

ion

3.6.

4 Po

ur p

oint

Red

uctio

n by

Add

itive

s 3.

6.5

Effe

ct o

f Fl

ow I

mpr

over

s on

Yie

ld S

tres

s and

Vis

cosi

ty

3.6.

6 ln

corp

orat

ion

of L

ow P

our P

oint

Cru

des

in W

axy

Cru

des

3.6.

7 C

rude

Oil

Con

ditio

ning

Page 4: Petroleum Refining Technology

4 --Q~

~&

JT

Y~

ON

TR

OL

O

F PETRO

LEUM

PRO

DU

CT

S 45-64

4.1 IN

TRO

DU

CTIO

N

4.2 C

LASSIFIC

ATIO

N O

F LAB

OR

ATO

RY

TESTS 4.3

DISTILLA

TION

4.4

VA

POU

R PR

ESSUR

E 4.5

FLASH

POIN

T AN

D FIRE PO

INT

4.6

OC

TAN

E NU

MB

ER

4.7 PE

RFO

RM

AN

CE

NUM

BER

4.8

CETA

NE N

UM

BER

4.9

AN

ILINE PO

INT

4.10 DIESEL IN

DEX

4.11

CA

LCU

LATED

CETA

NE IN

DEX

4.12

CA

LOR

IFIC V

ALU

E 4.13

SMO

KE PO

INT

4.14 C

HA

R V

ALU

E 4.15

VISC

OSITY

4.16

VISC

OSITY

IND

EX

4.17 PENETR

ATIO

N TESTS

4.18 FR

EEZING

POIN

T 4.19

CLO

UD

POIN

T AN

D PQ

UR

POINT 4.20

DR

OP PO

INT

OF G

REASE 4.21

MELTIN

G A

ND

SEIT

ING

POINT OF W

AX

4.22 SO

FEN

ING

POIN

T OF BITUMEN

4.23 IN

DU

CTIO

N PER

IOD

OF G

ASO

LINE

4.24 THER

MA

L STAB

ILITY O

F JET FUELS

4.25 G

UM

CO

NTEN

T 4.26 TO

TAL SU

LPHU

R

4.27 AC

IDITY

AN

D A

LKA

LINITY

4.28

CO

PPER-STR

IP CO

RR

OSIO

N TEST

4.29 SILV

ER-STR

IP CO

RR

OSIO

N TEST FO

R AV

IATIO

N TU

RB

INE FU

ELS 4.30 A

SH

4.31 CA

RB

ON

RESID

UE

4.31.1 Conradson M

ethod 4.31.2 R

amsbottom

Method

4.32 C

OLO

UR

4.33

DEN

SITY A

ND

SPECIFIC

GR

AV

ITY

--.

4.34 G

AS C

HR

OM

ATO

GR

APH

Y O

F PETRO

LEUM

GA

SES AN

D LIQ

UID

S 4.35 R

EFRA

CTIV

E IND

EX O

F HY

DR

OC

AR

BO

N LIO

UID

S - -

--- 4.36 LEA

D IN

GA

SOLIN

E 4.37 W

ATER SEPA

RO

METER

IND

EX (M

OD

IFIED) (W

SIM)

4.38 D

UC

TILITY

S

PETRO

LEUM

PRO

DU

CT

S 65-176

5.1 LIQ

UEFIED

PEIRO

LUEM

GA

SES L

C

5.1.1 C

omposition of LPG

5.1.2

Properties of LPG

5.1.3 Production of L

K

5.1.4 Uses of LPG

N

APH

THA

S 5.2.1

Methods of M

anufacture of Naphthas

5.2.2 C

omposition of N

aphthas

(vii)

5.2.3 U

sesof Naphthas

5.3 M

OTO

R SPIR

IT 5.3.1

Spark-Ignition Engine

5.3.2 C

omposition of G

asolines 5.3.3

Properties of Gasolines

5.3.4 T

ypes of Additives U

sed in Gasolines

5.3.5 N

ew G

asoline Blending C

omponents

5.3.6 A

lternative Gasoline Fuels

5.4 K

ERO

SINE

/ 5.4.1

Manufacture of K

erosines 5.4.2

Com

position of Kerosines

5.4.3 Properties of K

erosines 5.4.4

Uses of K

erosines 5.5

AV

IATIO

N TU

RB

INE FU

ELS 5.5.1

Com

position of ATFs

5.5.2 Properties of A

TFs 5.5.3

ATF A

dditives 5.5.4

Storage and Handling Problem

s

Y'

5.6.1 C

ompression-Ignition

FUELS

(Diesel) Engine

5.6.2 C

omposition of D

iesel Fuels 5.6.3

Properties.of Diesel Fuels

5.6.4 A

dditives for Diesel Fuels

5.6.5 A

lternative Diesel Fuels

T,~

NE

LO

IL

S

@ 5.7.1

Nature and C

omposition of Fuel O

ils 5.7.2

Properties of Fuel Oils

5.7.3 C

ombustion of Fuel O

ils 5.7.4

Bum

ersCharacteristics and A

pplications 5.7.5

Storage, Handling and Preparationof Fuel O

ils 5.8

PETRO

LBU

M H

YD

RO

CA

RB

ON

SOLV

ENTS

5.8.1 C

~pposition of H

ydrocarbon Solvents 5.6.2

Classification of H

ydrocarbon Solvents 5.8.3

Manufacture of H

ydrocarbon Solvents 5.8.4

Properties of Hydrocarbon Solvents

5.8.5 U

ses of Hydrocarbon Solvents

d3w LUB

RIC

ATIN

G O

ILS , ,

5.9.1 M

ineral Oil-B

ased Lubricants

vt ! d'

5.9.2 Synthetic L

ubricants 5.9.3

Basic Functions of L

ubricants 5.9.4

Autom

otive Engine O

ils 5.9.5

Indushial Lubricating O

ils 5.9.6

Electrical Insulating O

ils 5.9.7

Jute Batching O

ils 5.9.8

White O

ils 5.9.9

Steam T

urbine Oils

5.9.10 M

etal Working O

ils 5.9.11

Miscellaneous O

ils 5.10

PETRO

LEUM

WA

XES

5.10.1 Types of Petroleum

Waxes

5.10.2 Properties of Petroleum W

axes 5.10.3

Manufacture of Petroleum

Waxes

5.10.4 U

ses of Petroleum W

axes 5.10.5 Q

uality Requ~rements-Industry-wise/End-use w

lsr

Page 5: Petroleum Refining Technology

A1

BIT

UM

ENS

5.11

.1

Asp

halts

5.

11.2

Pe

trol

eum

Bitu

men

s 5.

113

&lt

y

Spec

ifics

tiow

of

Bitu

men

s 5.

1 1.

4 Ph

ysic

al a

nd C

hem

ical

Cha

ract

eris

tics o

f B

itum

ens

5.11

.5

Use

s of

Bitu

men

s 5.

12

PETR

OLE

UM

CO

KE

5.12

.1

Typ

es o

f Pet

role

um C

okes

5.

12.2

Pr

oper

ties o

f Pet

role

um C

okes

5.

12.3

Sto

rage

and

Tra

nspo

rtat

ion

of Pe

trol

eum

Cok

es

5.12

.4 U

ses o

f Pe

trol

eum

Cok

es

6 C

RU

DE

OIL

DIS

TIL

LA

TIO

N

177-

191

I

6.1

INT

RO

DU

CT

ION

17

7 6.

2 IM

PUR

ITIE

S IN

CR

UD

E O

ILS

177

6 3

NEE

D F

OR

DES

ALT

ING

OF

CR

UD

E O

ILS

1 78

6.4

ELEC

TRIC

AL

DES

ALT

ING

OF

CR

UD

E O

ILS

178

6.4.

1 Pr

oces

s Des

crip

tion

178

6.4.

2 P

ro

m V

aria

bles

18

0 6.

4.3

Typ

ical

Ope

ratin

g C

ondi

tions

18

1 6

5 C

RU

DE

OIL

Drs

TnL

AT

ION

18

1 I

6 6

ATM

OSP

HER

IC D

ISTI

LLA

TIO

N O

F C

RU

DE

OIL

18

2 6.

6.1

Proc

ess D

escr

iptio

n 18

2 6.

6.2

Pref

ract

iona

tion

184

6.63

T

ypic

al Y

ield

Pat

tern

6.

7 V

AC

UU

M D

ISTI

LLA

TIO

N O

F R

EDU

CED

CR

UD

E O

IL

6.7.

1 Pr

oces

s Des

crip

tion

6.8

OPE

RA

TIO

N O

F FR

AC

TIO

NA

TIN

G C

OL

UM

NS

6.8.

1 T

empe

ratu

re

6.8.

2 C

olum

n Pr

essu

re

6.8.

3 Fl

ow R

ates

6.

8.4

Ref

lux

6.8.

5 R

eboi

ler/

Stri

ppin

g St

e?

. 6.

8.6

Stab

ility

of C

olum

n O

pe;

hon

6.9

IMPR

OV

EMEN

TS IN

FlZ

AC

TIO

NA

TIN

G C

OL

UM

NS

'4.

TH

ER

MA

L C

ON

VE

RSI

ON

PR

OC

ESSE

S 19

2-22

1 7.

1 IN

TR

OD

UC

TIO

N

192

7.2

THER

MA

L C

RA

CK

ING

REA

CTI

ON

S 19

3 7.

3 TH

ERM

AL

CR

AC

KIN

G

194

7.3.

1 Pr

oces

s D

escr

iptio

n 19

5 7.

3.2

Typ

ical

Ope

ratin

g C

ondi

tions

19

5 7.

3.3

Typi

cak

Yie

ld P

atte

rn

1%

7.4

VIS

BR

EAK

ING

19

6 7.

5 C

ON

VE

NT

ION

AL

VIS

BR

EAK

ING

19

6 7.

5.1

Proc

ess D

escr

iptio

n 19

7 7.

5.2

Proc

ess V

aria

bles

13

8 7.

5.3

Typ

ical

Ope

ratin

g C

ondi

tions

19

9 7.

5.4

Typ

ical

Yie

ld P

atte

rn

200

7.5.

5 D

ecok

ing

of F

urna

ce T

ubes

20

0

7.5.

6 M

axim

izat

ion

of D

iese

l Oil

Prod

uctio

n 7.

6 SO

AK

ER V

ISB

REA

KIN

G

7.6.1

Con

vent

iona

l Soa

ker V

isbr

eaki

ng

7.6.

2 H

igh

Con

vers

ion

Soak

er V

isbr

eaki

ng

7.7

CO

KIN

C -

7.8

DEL

AY

ED C

OK

ING

7.

8.1

Proc

ess

Des

crip

tion

7 8.

2 Pr

oces

s Var

iabl

es

7.8.

3 T

ypic

al O

pera

ting

Con

di tio

ns

7.8.

4 T

ypic

al Y

ield

Pat

tern

7.

8.5

Nee

dle

Cok

e Pr

oces

sing

7.

9 FL

UID

CO

KIN

C

7.9.

1 R

oces

s D

escr

iptio

n 7.

9.2

Typ

ical

Ope

ratin

g C

ondi

tions

7.

9.3

Typ

ical

Yie

ld P

atte

rn

7.10

R

EX

ICO

KIN

G

7.10

.1

Proc

ess

Des

crip

tion

7.10

.2

Dua

l Gas

ific

atio

n Fle

xico

king

Pro

cess

7.

10.3

Com

pari

son

of C

onve

ntio

nal a

nd D

ual G

asif

icat

ion

Pror

esse

s 7.

11 OTHER

CO

KIN

G P

RO

CES

SES

7.12

C

AL

CIN

AT

ION

OF

GR

EEN

CO

KE

7.12

.1

Proc

ess

Des

crip

tion

7.12

.2 T

ypic

al C

alci

natio

n D

ata

8 C

ATA

LYTI

C C

ON

VE

RSI

ON

PR

OC

ESSE

S 22

2-26

6 8.

1 IN

TR

OD

UC

rlnN

8.2.

1 8.

2.2

8.2.

3 8.

2.4

8.2.

5 8.

2.6

8.2.

7 8.

2.8

8.2.

9 8.

3 C

AT

AI

-

Dev

elop

men

t of F

luid

Cat

alyt

ic ~

ra

ch

g

Tec

hnol

ogic

al A

spec

ts of

Flu

id C

atal

ytic

Cra

ckin

g Pr

inci

ples

of O

perh

tion

Proc

ess

Des

crip

tion

Proc

ess

Var

iabl

es-R

eact

or S

ectio

n Pr

oces

s V

aria

bles

-Reg

ener

atio

n Se

ctio

n Fe

edst

ock

Cha

ract

eris

tics

Typ

ical

Ope

ratin

g C

ondi

tiow

T

ypic

al Y

ield

Pat

tern

.Y

TIC

REF

OR

MIN

G

8.3.

1 Re

form

ing

Rea

ctio

ns

8.3.

2 R

efor

min

g Cat

alys

ts

8.3.

3 Pr

oces

s Des

crip

tion

8.3.

4 Pr

oces

s V

aria

bles

8.

3.5

Typ

ical

Ope

ratin

g C

ondi

tions

5.

3.6

Typ

ical

Yie

lds a

nd P

rodu

ct Q

ualit

y 8.

3.7

Pret

reat

men

t of

Cat

alyt

ic R

efom

er F

eeds

tock

8.

3.8

Cat

alyt

ic R

efor

min

g Fo

r Aro

mti

cs P

rodu

ctio

n 8.

4 H

YD

RO

CR

AC

KN

G

8.4.

1 A

pplic

atio

ns o

f Hyd

rocr

acki

ng

8.4.

2 T

ypes

of

I-ly

droc

rack

ing

8.4.

3 H

ydro

crac

king

Rea

ctio

ns

8.4.

4 H

ydro

crac

king

Cat

alys

ts

8.4.

5 Pr

oces

s D

escr

iptio

n 8.

4.6

Typ

ical

Ope

ratin

g C

ondi

tions

Page 6: Petroleum Refining Technology

(4

8.4.7 T

ypical Yield Pattern

8.5 CA

TALY

TIC A

LKY

LATIO

N

8.5.1 A

lkylation Reactions

8.5.2 H

,SO, A

lkylation Processes 8.5.3

HF A

lkylation Processes 8.5.4

Process Variables

8.5.5 T

ypical Operating C

onditions 8.5.6

Com

parison of %SO

, and HF A

lklation Processes 18.6

CA

TALY

TIC ISO

ME

RIZ

AT

ION

8.6.1

Chem

istry and Catalysts of the Process

8.6.2 U

OP B

utamer Isom

erization Process 8.6.3

UO

P Penex Process 8.7

CA

TALY

TIC PO

LY

ME

RIZ

AT

ION

8.7.1

Chem

istry and Catalysts of the Process

8.7.2 U

OP C

atalytic Polymerization Process

8.7.3 IFP D

imersol Process

9.1 IN

TR

OD

UC

TIO

N

9.2 H

YD

RO

GEN

SUL

PHID

E R

EMO

VA

L PRO

CESSES

9.2.1 A

bsorption by Regenerative Solvents

9.2 2 A

dsorption on Solid Beds

9.3 SU

LPH

UR

CO

NV

ER

SION

PRO

CESSES

9.3.1 C

laus Process 9.3.2

Selective Oxidation Processes

9.3.3 W

et Oxidation B

ased on Aqueous Solutions

9.3.4 T

hermal C

racking of YS

19.4

SWEETEN

ING

PRO

CESSES

9.4.1 C

austic Treatm

ent 9.4.2

Solutizer Process 9.4.3

Doctor T

reating Process 9.4.4

Copper C

hloride Sweetening

9.4.5 H

ypochlorite Sweetening

9.4.6 A

ir and Inhibitor Treating Process

9.4.7 M

erok Processes 9.4.8

Sulphuric Acid T

reatment

9.4.9 C

lay Treatm

ent 9.5

SOLV

ENT EX

TRA

CTIO

N PR

OC

ESSES 4.5.1

Edeleanu Process

9.5.2 U

dex Process 9.5 3

Sulfolane Process 9.6

HY

DR

OTR

EATIN

G PR

OC

ESSES 9.6.1

Applications of H

ydrotreating 9.6.2

Hydrotreating R

eactions 9.6 3

Hydrotreating Process for D

istillate Desulphurization

9.6.4 H

ydrotreating Process for Smoke Point Im

provement

10 LUBE O

IL MA

NU

FAC

TU

RIN

G PR

OC

ESSE

S 296-319

10 1 IN

TR

OD

UC

TIO

N

296 10.2

EVA

LUA

TION

OF C

RU

DE

OIL

S FOR

LUBE O

IL BA

SE STOCKS MA

NU

FAC

TU

RE

296

(xi)

10.3 VA

CU

UM

DISTILLA

TION

10.3.1 Process D

escription 10.3.2 T

ypical Operating C

onditions 10.3.3 T

ypical Yield Pattern and Product Q

uality 10.4

SOLV

ENT D

EA

SPHA

LT

ING

PRO

CESS

10.4.1 Process D

escription 10.4.2

Process Variables

10.4.3 Typical O

perating Conditions

10.4.4 Typical Y

ield Pattern and Feed/Product Quality

10.5 SO

LVEN

T EXTR

AC

TION

OF LU

BE O

IL FR

AC

TIO

NS

10.5.1 Com

parison of Furfural, NM

P and Phenol 10.5.2

Process Description

10.5.3 T

ypical Operating C

onditions 10.5.4

Typical Y

ield Pattern and Feed/Product Quality

10.6 SO

LVEN

T DEW

AX

WG

PRO

CESS

10.6.1 Process Description

10.6.2 Typical O

perating Conditions

10.6.5 Typical Y

ield Pattern and Feed/Product Quality

10.7 H

YD

RO

FINISH

ING

PRO

CESS

10.7.1 Process D

escrition 10.7.2 T

ypical Operating C

onditions 10.7.3

Feed and Prod:lct Q

uality 10.8

MA

NU

FAC

TU

RE

OF PETR

OLEU

M W

AX

ES 10.9

WA

X SW

EA

TIN

G-PR

INC

IPLE

S AN

D A

PPLIC

AT

ION

S 10.10 SO

LVEN

T DE

OIL

ING

10.10.1 Fundam

entals of Solvent Deoilig

10.10.2 Process Description

10.10.3 Process Variables

10.10.4 Typical O

perating Conditions

10.10.5 Fish

ing

of Waxes

11 MA

NU

FAC

TU

RE

OF B

ITU

ME

NS

320-327

11.1 IN

TR

OD

UC

TIO

N

11.2 SELEC

TION

OF C

RU

DE O

IL

11.3 M

ET

HO

DS O

F MA

NU

FAC

TU

RE

OF B

ITU

ME

NS

11.3.1 D

istillation 11.3.2 Solvent Precipitation 11.3.3

Air B

lowing

11.4 A

IR B

LOW

ING

PRO

CESS

11.4.1 Process Description

11.4.2 Process V

ariables 11.4.3 T

ypical Operating C

onditions 11.5

TYP!CA

L R

EFINER

Y PR

OD

UC

TIO

N

11.5.1 C

utback Bihunens

11.5.2 Bihunen E

mulsions

11.6 H

AN

DL

ING

AN

D D

ISTRIB

UTIO

N

12 CO

RR

OSIO

N C

ON

TR

OL

IN RE

FININ

G PR

OC

ESSE

S 328-338

12.1 TY

PES OF C

OR

RO

SION

12.2

FOR

MS O

F CO

RR

OSIO

N

Page 7: Petroleum Refining Technology

2 PE

TRO

LEUM

RERN

lMp T

ECH

Np4

OQ

Y

1.2

FOR

MA

TIO

N O

F O

IL A

ND

GA

S T

here

are

two

theo

ries

of

the

gene

sis

of p

etro

leum

: th

e or

gani

c the

ory

and

non-

orgM

c th

eory

. T

he

form

er

hold

s th

at p

etro

leum

is

of a

n o

rgan

ic o

rigi

n an

d is

th

e cu

rren

tly

favo

ured

pro

posa

l. It

pre

dict

s lim

ited

rese

rves

wor

ldw

ide;

mor

eove

r In

dian

res

erve

s ar

e pr

edic

ted

as m

inim

al. T

he la

tter

mai

ntai

ns t

hat

it i

s of

non

-org

anic

gen

esis

, sup

pose

dly

of

prim

ordi

al o

rigi

n. O

n th

e ba

sis

of th

is th

eory

, oil

rese

rves

wou

ld b

e m

uch

larg

er th

an th

ose

pred

icte

d by

the o

rgan

ic th

eory

. Ind

ia, o

il-po

or i

n th

e or

gani

c the

ory,

is pr

edic

ted

to b

e oi

l-ri

ch

in th

e no

n-or

gani

c on

e.

The

non

-org

anic

the

ory

that

was

muc

h pr

eval

ent

earl

ier

sugg

ests

tha

t oil

is fo

rmed

by

the

act

ion

'of

wai

kr o

n m

etal

lic c

aibi

des

or b

y at

mos

pher

ic ra

dioa

ctiv

ity o

r by

co

smic

ra

diat

ion.

?he

rm

e oc

curr

ence

of

oil i

n,m

eteo

rite

~, ig

neou

s dy

kes

and

in p

etro

zoic

rock

s w

eigh

s in

favo

ur o

f the

non

-org

anic

theo

ry.

The

org

anic

the

ory

whi

ch i

s th

e m

ost

prev

alen

t to

day,

sug

gest

s th

at th

e pe

trol

eum

w

as fo

rmed

from r

emai

ns o

f pla

nts

and

anim

als t

hat d

ied

mill

ions

of y

ears

ago

and

acc

umu-

la

ted

on

ocea

n fl

oors

. Tin

y, m

inut

e m

arin

e an

imal

s an

d pl

ants

co

mpr

isin

g m

ainl

y al

gae,

fu

ngi,

diat

oms

and

fora

min

ifer

a us

ed t

o fl

oat

on t

he su

rfac

e of

the

sea

and

wer

e ab

unda

nt

duri

ng t

he M

esoz

oic

(abo

ut 2

25 m

illio

n ye

ars b

ack)

and

Cai

nozo

ic (

abou

t 65

mill

ion

year

s ba

ck) p

erio

d. O

n th

e ot

her

hand

, ro

ck s

urfa

ce a

nd l

and

are

cont

inuo

usly

get

ting

ero

ded.

B

roke

n pi

eces

of

mat

eria

l lik

e sa

nd, c

lay,

lim

e ar

e ca

rrie

d aw

ay b

y ra

in a

nd s

ubse

quen

tJy

depa

mte

d on

bed

s of o

cean

s. I

n m

illio

ns o

f yea

rs t

he s

edim

ents

pile

up

to a

gre

at h

eigh

t (s

ever

al t

hous

ands

of

met

res)

and

sub

sequ

ently

, pre

ssur

e an

d te

mpe

ratu

re co

ntin

ue tq

ris

e in

*os

e ro

cks.

She

lls a

nd sk

elet

ons

of d

ead

plan

kton

g, sp

onge

s and

jelly

fish

sub

lime.

on se

a be

d an

d su

bseq

uent

ly g

et b

urie

d un

der

the

pilin

g se

dim

ents

. Aer

obic

bac

teri

a pr

esen

t in

fie

ocea

n fl

gor a

nd s

edim

ents

act

as

scav

enge

rs a

nd a

ttac

k th

e or

gani

c pa

tter

. So

me

com

plex

ch

emic

al b

ansf

orm

atio

n ta

kes

plac

e th

at is

fac

ilita

ted

by t

he e

norm

ous o

verb

urde

q,:p

res-

su

re,

risi

ng

tem

pera

ture

an

d th

e ab

senc

e of

oxi

dizi

ng a

gent

. The

pro

cess

con

tinue

s th

roug

h va

riou

s co

mpl

icat

ed st

ages

and

che

mic

al re

actio

nsfo

rmin

g fa

ts,

amin

o ac

ids,

lip

ids

and

fina

lly

into

oi

l an

d ga

s.

Oil

is

prod

uced

w

ithi

n th

e te

mpe

ratu

re r

ange

of

100-

200D

C. S

ourc

e ro

ck w

hen

subj

ecte

d to

gre

ater

ove

rbur

den

pres

sure

and

tem

pera

ture

be

yond

160

°C f

or a

long

per

iod

does

not

gen

erat

e liq

uid

oil b

ut g

as.

Am

ongs

t the

dif

fere

nt s

edim

enta

ry r

ocks

lik

e sa

ndst

ones

, sha

les,

cla

ys a

nd li

mes

tone

s,

the

clay

s ar

e m

ore

suit

able

for

form

atio

n of

oil

and

serv

e as

'sou

rce

rock

s'. W

ith th

e pi

ling

up o

f se

dim

ents

, low

er s

edim

ents

get

pro

gres

sive

ly c

ompr

esse

d an

d th

e fl

uids

in

them

are

sq

ueez

ed o

ut.

Oil

form

ed i

n th

e cl

ay r

ises

up

or

side

way

s an

d if

the

roc

k ab

ove

is,l

ike

a sa

ndat

me

wit

h po

re s

pace

o, fi

ssur

es a

nd fr

actu

res,

the

oil t

ends

to g

et a

ccum

ulat

ed in

suc

h a

rese

rvoi

r, p

rovi

ded

this

upw

ard

and

side

way

s m

igra

tion

is p

reve

nted

by

the

inte

rven

tion

of

an

impe

rvio

us l

ayer

of

rock

kno

wn

as ca

p ro

ck fr

om m

ovin

g fu

rthe

r. T

his

laye

r tra

ps

the

oil.

In a

nor

mal

oil

pool

gas

rem

ains

at t

he t

op,

oil

belo

w i

t an

d w

ater

fur

ther

bel

ow. T

hese

po

ols

rem

ain

inta

d ti

ll d

istu

rbed

by

eart

h.

1.3

OIL

AN

D G

AS

EX

PLO

RA

TIO

N

Oil

expl

orat

ion

is a

com

plex

pro

cess

. It

beg

ins

wit

h pr

ogno

stic

atio

n an

d in

volv

es au

enti

re g

amut

of

activ

ities

. m

e hu

nt f

or t

he h

ydro

carb

ons

is f

ocus

ed a

t th

e fa

vour

able

or

pro

mis

ing

area

s ba

sed

on g

eolo

gica

l co

nsid

erat

ions

. G

eolo

gica

l sur

vey

aim

s at

sele

ctio

n 'an

d m

appi

ng o

f suc

h ar

eas

whi

ch s

atis

fy th

e cr

iter

ia o

f be

ing

sedi

men

tary

rock

s pr

efer

ably

of

m

arin

e or

igin

wit

h th

e pr

esen

ce o

f an

ticlin

e st

ruct

ures

of

Mes

ozoi

c (5

0 pe

rcen

t of

oil

prod

uced

bel

ongs

to

this

era

), C

aino

zic

(40

perc

ent

of o

il pr

oduc

ed b

elon

gs t

o th

is e

ra) a

nd

Pale

ozic

(10

perc

ent

of o

il pr

oduc

ed b

elon

gs to

this

era

) per

iods

.

kfik

wkr

; ~x

~t

~~

A~

~o

h;

~R

b~

ar

cn

o~

AN

D R

EFIN

ING

Owing to

the

pres

ence

of f

ault

pla

nes

and

fiss

ures

, a s

eepa

ge of

oil

to ih

e su

rfac

e m

ay ta

ke

plac

e. T

he a

naly

sis

of

surf

ace

sam

ples

of s

oil,

wat

er a

nd o

il or

gG

y'in

suc

h ca

ke$';

fo

r de

tect

ion

of o

il an

d ga

s is k

now

n as

geo

chem

ical

pro

spec

ting.

M

agne

tic s

urve

ys a

re t

hen

done

. M

agne

tom

eter

sur

vey

is c

arri

ed o

ut e

ithe

r on

the

gr

ound

or

from

the

air

by

air-

born

e m

agne

tom

eter

. It i

s ba

sed

on t

he p

rinc

iple

th

at t

he

mag

netic

att

ract

ion

on th

e su

rfac

e de

pend

s on

the

mag

netic

int

ensi

ties

of t

he ro

cks

and

thei

r di

stan

ce f

rom

the

sur

face

. It

hel

ps t

o de

linea

te th

e na

ture

and

pos

sibl

e di

p an

gle

of

the

subs

urfa

ce ro

cks.

Dip

is th

e an

gle

that

a g

eolo

gica

l st

ratu

m m

akes

wit

h a

hori

zont

al p

lane

(t

he h

oriz

on):

the

incl

inat

ion

dow

nwar

d or

upw

ard

of a

str

atum

or

bed.

The

sam

e pr

inci

ple

can

be

appl

ied

to

the

mea

sure

men

t of

the

gra

vita

tion

al a

ttra

ctio

n at

the

surf

ace

by

a gr

avim

eter

. T

hese

two

met

hods

toge

ther

hel

p in

dem

arca

ting

are

as h

avin

g th

icke

r pi

le o

f se

dim

ents

wit

h be

tter

cha

nces

of o

il.

The

seis

mic

met

hod

of o

il an

d ga

s ex

plor

atio

n in

volv

es g

ener

atio

n of

a s

erie

s of

sho

ck

wav

es i

n t

he s

ubsu

rfac

e an

d pi

ckin

g up

the

refl

ecte

d w

aves

by

sens

itive

geo

phon

es w

hich

ar

e la

id a

long

a l

ine

on t

he s

urfa

ce. T

he ti

me

take

n fo

r th

e re

turn

sig

nifi

es th

e ve

loci

ties

thro

ugh

the

subs

urfa

ce r

ocks

and

the

se c

an b

e in

terp

rete

d to

ass

ess t

he n

atur

e of

rock

s an

d th

eir

angl

e of

dip

. T

he fi

eld

stud

ies

are

supp

orte

d by

an

eq

ud

y e

labo

rate

test

ing

of

sam

ples

in

the

labo

rato

ry.

Sop

hist

icat

ed

mod

ern

equi

pmen

t li

ke

Ele

ctro

n M

icro

scop

e,

Mas

s Sp

ectr

ogra

ph,

X-r

ays C

hrom

atog

raph

, Nuc

lear

Mag

netic

Res

onan

ce (NMR), S

pect

rosc

opy,

In

fia-

red,

Ultr

a-vi

olet

and

Dif

fere

ntia

l T

herm

al Analysis

(DT

A) a

re in

disp

ensa

ble

aids

. On

the

basi

s of

a

ll t

hese

stu

dies

, th

e m

ost s

uita

ble

plac

es w

here

oil

is l

ikel

y ta b

e fo

und

is

sele

cted

for d

rilli

ng.

11

~Q

L~

NG

FO

R O

IL A

ND

GA

S

The

dri

llin

g eq

uipm

ent

(sho

wn

in F

ig. 1.1

) con

sist

s of

a t

all h

uge

tow

er c

alle

d 'd

erri

ck'

anch

ored

to th

e gr

ound

, en

gine

s, Q

d pu

mps

, w

ater

tan

ks,

draw

-wor

ks a

nd m

any

othe

r m

odul

es.

The

trav

ellin

g bl

ock

is s

uspe

nded

from

the

crow

n bl

ock

(a la

rge

pulle

y at

the

top

of th

e de

rric

k). T

he sw

ivel

, att

ache

d by

a l

arge

hoo

k to

the

trav

elli

ng b

lock

, can

rot

ate

free

ly,

and

the

kelly

is f

itte

d on

to th

is. R

otar

y ta

ble

at th

e ce

ntre

of th

e de

rric

k flo

or h

olds

the

kelly

(w

hich

has

a s

quar

e or

hex

agon

al c

ross

-sec

tion)

and

can

be

rota

ted

at a

des

ired

spe

ed b

y th

e en

gine

. T

o be

gin

drill

ing,

the

kelly

is h

aule

d u

p th

e de

rric

k, it

s bo

ttom

is f

itted

wit

h a

dril

l bit

and

low

ered

thro

ugh

the

rota

ry ta

ble

unti

l th

at b

it is

rest

ing

on th

e ea

rth.

With

the

star

ting

of

the

engi

ne,

the

rota

ry ta

ble

rota

tes

the

kelly

and

the

dri

ll b

it w

hich

is p

ress

ed

hard

aga

inst

the

ear

th b

y th

e w

eigh

t of t

he d

rill

stri

ng a

bove

, cut

s an

d pe

netr

ates

the

rock

at

the

botto

m.

Muc

h of

the

succ

ess o

f dri

lling

dep

ends

on

the

qual

ity

of m

ud w

hich

is a

spe

cial

ly pr

epar

ed

slur

ry o

f wat

er,

vari

ous

chem

ical

s and

adh

esiv

es li

ke b

aryt

es, b

ento

nite

s, x

anth

anit

e. I

t is

pu

mpe

d th

roug

h th

e dr

ill c

olum

n to

car

ry o

ut s

ever

al im

port

ant

func

tions

suc

h as

rem

ovin

g cu

ttin

gs to

the

surf

ace,

coo

ling

the

bit

(hea

t gen

erat

ed is

due

to

fric

tion)

, lu

bric

atin

g th

e bi

t, pr

ovid

ing

buoy

ancy

to th

e dr

ill s

trin

g to

redu

ce th

e ho

ok l

oad,

ret

aini

ng th

e si

de w

all o

f th

e w

ell f

rom

cav

ing

in, a

llow

ing t

o ex

amin

e th

e ho

le b

y lo

wer

ing'

a v

arie

ty o

f in

stru

men

ts

and

bala

ncin

g th

e fo

rmat

ion

pres

sure

tha

t pr

even

ts t

he fo

rmat

ion

flui

ds fr

om r

unni

ng in

to

the

wel

l. W

ith th

e in

crea

se in

dep

th of

the

open

hol

e, t

he si

de w

alls

of t

he w

ell t

end

to c

olla

pse.

To

avo

id th

is,

a ca

sing

pip

e is

intr

oduc

ed in

to th

e ho

le. T

he a

nnul

ar p

ortio

n be

twee

n th

e ho

le

and

the

casi

ng p

ipe

is c

emen

ted.

Mh

er

drill

ing

is c

arri

ed o

ut w

ith s

mal

ler d

iam

eter

bit,

and

at

a ce

rtai

n de

pth

a sm

alle

r dia

met

er ca

sing

is in

trod

uced

and

cem

ente

d in

the

sam

e man

ner.

Page 8: Petroleum Refining Technology

v

3 J LC.

z

20"s " W X = Z m = * 1 Fa; 8 c l m e m 5." c ? r- $. g

1 8 - g P ::&g 5: - i g s e . c a c 8 - 0 Z " Z ~ E " % 2 r -a$ 1 ". 8' 2. 0 9 C w m @'" 3 u:gg ! $ a m Fr m q s

0 % C a w D a m ! $ u, ;ilc

E k " " g a g $ ? ;1

a p e " 8. B i.3 1 €i g g f 8 g B "9 a g g: s:P 3 e n g s't ID

k z " 9 - g 1 g.c * e, * $ z9E ZB m m u CLg w,. g 3 q g"c$ g $ g * C P g

- 0 m g s p 3 q * , . g g 3 s l$go"*g m o -

C g g g 5 1 E . m

R $ 3 g 3 kg,pg o m < q U w E ' m g g $ $ 2 B $ 6 . ; gap ~ 3 , ~ e =

+ a s r n $ B r , e l t r 1 8 E&e:&g E e ~ s g 8 8 .1 .&

g 9 m m 0 E m m g a g a 3 * g r E v -

m e , e ?Ear , 6.9. = &g.gQ

4 . d g i k, p 2 o m a e , - m

kg: gJ g s g g B 0% . OP 3 xgEi

g: P z u -,

Page 9: Petroleum Refining Technology

pore

s. S

econ

d li

mit

atio

n is, $

hat,

the

adva

pcin

g. w

ater

fq

nt

:byp

aqse

s sjg

pif~

qt.~

rt$n

?~~

of

the

rese

rvoi

r du

e to

di

ffic

ult :

wel

l pla

cem

ents

and

wex

pe+g

:.,ge

olog

i+

cd

gu

rati

~n

s.

Thi

s la

ck o

f a p

erfe

ct! s

wee

p ef

fici

ency

is re

spon

sibl

e fo

r lea

ving

behi

nd c

rude

oil'

$ -!a

s no

t re

ache

d by

wat

er. fl

ood.

, .

A

num

ber o

f met

hods

ltech

niqu

es a

re em

ploy

ed to

rec

qver

the

rem

&in

g oi

l. T

he d

iffk

rent

te

chni

ques

may

be

,bro

adly

cla

ssif

ied

into

thre

e ca

tego

ries

:

(a) M

isci

ble/

imm

isci

ble d

ispl

acem

ent p

roce

ss

Mis

cibl

e hy

droc

arbo

n di

spla

cem

ent (

LPG

enr

iche

d ga

s &

lean

gas

) o

Car

bon

diox

ide

inje

ctio

n In

ert g

as in

ject

ion

(Nitr

ogen

, air

, etc

.)

(b) T

herm

al re

cove

ry p

roce

sses

S

team

sti

mul

atib

n S

team

floo

ding

(inc

ludi

ng h

ot w

ater

) In

-sit

u co

mbu

stio

n

(c)

Che

mic

al fl

oodi

ng p

roce

sses

Su

ifac

tant

$oly

rnei

in

ject

ion

Poly

mer

inje

ctio

n A

lkal

ine

floo

ding

Sele

ctio

n of

a

suit

able

EO

R

met

hod

requ

ires

a

care

ful

anal

ysis

of

re

serv

oir

conf

igur

atio

n an

d th

e oi

l pr

oper

ties.

Tra

ppin

g an

d re

leas

e of

flu

ids

from

por

ous

med

ia i

s a

com

plex

phe

nom

ena.

For

a sp

e.ci

fic s

yste

m, t

rapp

ing

beha

viou

r is c

ontr

olle

d by

Ci),

the

pore

ge

omet

ry o

f ro

ck m

atri

x, (

ii)

flui

d-ro

ck p

rope

rtie

s,

in p

arti

cula

r, w

etta

bili

ty a

nd (

iii)

fl

uid-

flui

d in

tera

~o

ns in

clud

ing

visc

osity

, ro

ck

dens

ity

diff

eren

ce, i

nter

faci

al

tens

ion

and,

par

titi

on

coef

fici

ent.

The

ge

nera

l pr

oper

ties

of p

ore

syst

em,

its

shap

e, s

ize

and

dist

ribu

tion

in

the

rock

pla

ys a

n im

port

ant r

ole

in tr

appi

ng o

f oi

l. It

is e

stab

lish

ed t

hat

(1)

Tra

ppin

g of

flu

ids

occu

rs

in

uniq

ue

and

repr

oduc

ible

pat

tern

s w

hich

are

con

trol

led

by

capi

llary

for

ces,

(2)

Nea

rly

com

plet

e ne

twor

ks o

f in

terc

onne

cted

equ

al s

ize

pore

s ex

ist

thro

ugho

ut t

he p

ore

size

dis

trib

utio

n, (

3). in

divi

dual

po

res

have

goo

d ac

cess

ibili

ty w

ith

adja

cent

por

es, t

here

by a

llow

ing

alte

rnat

e pa

ths

of fl

ow a

roun

d ig

olat

ed im

mob

ile p

hase

s, (

4)

Flui

ds

can

be t

rapp

ed

at p

ore

cons

tric

tions

for

all

degr

ees

of

wet

ting.

Non

-wet

ting

pqas

es a

re t

rapp

ed in

dis

cont

inuo

us m

asse

s w

hose

leng

ths

are

larg

ely

dete

rmin

ed b

y in

terf

acia

l te

nsio

n an

d po

tent

ial

grad

ient

. Fo

r se

lect

ion

of

suit

able

E

OR

m

etho

ds

labo

rato

ry in

vest

igat

ion

unde

r si

mul

ated

con

ditio

ns o

f re

serv

oir

are

nece

ssar

y. M

athe

mat

i-

cal

mod

els

(3 p

hase

, 3

dim

ensi

on)

are

used

to

anal

yze

the

rese

rvoi

r ge

omet

ry.

The

pa

st

perf

orm

ance

of

th

e re

serv

oir

is m

atch

ed t

o pr

edic

t th

e pe

rfor

man

ce o

f re

serv

oir

unde

r di

ffer

ent

oper

atin

g co

nditi

ons.

Bas

ed

on t

hese

mod

ellin

g st

udie

s, t

he m

ost

suit

able

EO

R

met

hoai

s se

lect

ed fo

r max

imum

~pro

duct

ion of

the

oil

in p

lace

. In

Ind

ia,

the

incr

ease

in

crud

e oi

l pr

oduc

tion

is n

ot s

igni

fica

nt d

urin

g th

e la

st 4

5

year

s. N

o ne

w

oil

fiel

ds

wit

h su

bsta

ntia

l re

serv

e is

di

scov

ered

. T

he

perc

enta

ge

of

prim

ary

reco

very

in th

e to

tal o

ilgro

duct

ion

is g

radu

ally

dec

reas

ing.

Rat

e of

pro

duct

ion

from

B

omba

y H

igh

is r

epor

ted

to h

ave

alre

ady

show

n th

e de

clin

ing

tren

d. S

ome

of t

he o

ld

oil

fiel

ds o

f A

ssam

and

Guj

arat

und

er p

reva

iling

pri

ce s

truc

ture

hav

e al

read

y re

ache

d th

eir

econ

omic

lim

it. O

n ec

onom

ic te

rms,

bot

h O

NG

C a

nd O

IL m

ay p

refe

r to

plu

g th

e w

ell,

pull

ptliw

Uk,

&:'

A

.:: .;,

'' ;

~to

~A

no

~;~

~b

~u

cn

o~

A

ND

RER

NIN

G

7

the

pipe

and

aba

ndon

th

e lf

ield

. It

is b

eWr t

s us

e E

OR

met

h6da

aft

er p

rim

ary

reco

very

. It

is i

mpe

rati

ve th

at p

rope

r ass

essm

ent o

f EO

R p

oten

tial i

n th

e co

untr

y is

requ

ired

for m

akin

g re

cove

ry p

lans

. T

he s

ucce

ssfu

l ap

plic

atio

n of

any

EO

R p

roce

ss d

epen

ds o

n it

s vi

abili

ty. T

he

pric

e of

oi

l is

the

mos

t im

port

ant

fact

or f

or h

ow m

uch

will

be

prod

uced

and

w

hen.

Gas

in

ject

ion

may

not

find

wid

eapp

lica

tion

in In

dia.

It

is t

rue

that

nat

ural

gas

or

asso

ciat

ed g

as,

prop

ane,

enr

iche

d ga

s an

d le

an g

as a

re av

aila

ble i

n In

dia.

But

the

pres

sure

requ

ired

to

lique

fy

the

gas

is h

igh

and

it m

ay n

ot s

uit t

he s

hallo

w In

dian

rese

rvoi

rs. S

o is

the

cas

e w

ith

air

and

nitr

ogen

gas

inj

ectio

n.

But

in

so

me

rese

rvoi

rs c

arbo

n di

oxid

e co

uld

be i

njec

ted.

Aga

in i

t de

pend

s on

the

avai

labi

lity

of lo

w c

ost

carb

on d

ioxi

de i

n pl

enty

. It

is

esti

mat

ed th

at a

bout

4-

6 m

illio

n cu

bic f

eet o

f CO

2 is

requ

ired

to

reco

ver

a ba

rrel

of

crud

e oi

l, A

lthou

gh t

herm

al

met

hods

pre

dom

inat

e as

mos

t suc

cess

ful E

OR

pro

cess

es,

they

may

not

be

appl

icab

le on

a

larg

e sc

ale

in I

ndia

. D

epq

of

the

Indi

an re

serv

oir

and

API

val

ues

of 2

8 - 4

5 re

stri

ct t

he

inje

ctio

n of

ste

am o

r ho

t w

ater

for

add

ition

al r

ecov

ery

beca

use

of a

ppar

entl

y un

attr

acti

ve

cost

ben

efit

rati

o. O

f cou

rse i

n W

este

rn s

ecto

r it

may

be

succ

essf

ul in

som

e res

ervo

irs.

In-s

itu

com

bust

ion

is t

he m

ost

diff

icul

t m

etho

d to

pre

dict

pro

perl

y. M

oreo

ver,

it i

s ec

onom

ical

an

d su

cces

sful

in h

eavy

oil

reco

very

onl

y.

It a

ppea

rs t

hat

the

chem

ical

fl

oodi

ng v

iz.

poly

mer

fl

oodi

ng

or s

urfa

ctan

t-po

lym

er f

lood

ing

may

pro

ve

succ

essf

ul i

n In

dia.

Fo

r al

kali

ne fl

oodi

ng, a

cid

num

ber

of t

he c

rude

mus

t be

high

whi

ch i

s no

t so

with

Ind

ian

crud

es.

Poly

mer

floo

ding

met

hod

may

bec

ome

mor

e pop

ular

in In

dia

not o

nly

for i

ts ea

sy h

andl

ing

but

also

fo

r th

e ec

onom

ic r

etur

ns.

Surf

acta

nt/p

olym

er f

lood

ing

is

requ

ired

to

be

ass

esse

d pr

oper

ly,

part

icul

arly

the

non

-com

patib

le n

atur

e of

sur

fada

nt to

var

ious

mon

oval

ent a

nd

biva

lent

met

al i

ons

and

in In

dian

rese

rvoi

mkh

ese

met

als

are

plen

ty.

The

pro

duct

ion

of c

rude

oil

in I

ndia

is g

iven

in

Tab

le 1

.1. F

rom

a m

eagr

e 0.

5 m

illio

n to

nnes

of

oil p

rodu

ced

from

one

of

the

old

est o

ilfie

lds

in t

he w

orld

-Dig

boi i

n A

ssam

, th

e in

dige

nous

cru

de p

rodu

ctio

n is

exp

ecte

d to

go

up t

o 44

.45

MM

TPA

(m

illio

n m

etri

c to

nnes

*r

d

urn

) by

the

turn

of t

he c

entu

ry.

Till

194

7, In

dia

used

to

prod

uce

arou

nd 0

.5 to

1.0

M

MTP

A of

cr

ude

oil

from

Dig

boi

and

Nah

arka

tia

fiel

ds o

f Ass

am. A

fter

ind

epen

denc

e in

19

47, t

wo

publ

ic s

ecto

r co

mpa

nie~

wet

e fo

rmed

by

Gov

ernm

ent

of

Indi

a, n

amel

y O

il &

N

atur

al G

as C

omm

issi

on (O

NG

C) a

nd O

il In

dia

Lim

ited

(OIL

) to

expl

ore a

nd p

rodu

co o

il an

d li

atur

al g

as i

n In

dia

from

bot

h on

shor

e an

d of

fsho

re f

ield

s. Up

to 1

960,

In

dia

was

pr

actic

ally

dep

endi

ng o

n im

port

ed c

rude

oil.

O

NG

C fi

rst s

truc

k oi

l in

Cam

bay

in 1

958-

59 an

d in

Ank

alea

hwar

fiel

ds (G

ujar

at) i

n 19

60,

follo

wed

by

oil f

inds

in

oth

er p

mta

of

Guj

arat

suc

h as N

awag

am, A

hmed

abad

, Meh

sana

, G

andh

ar, K

alol

, Tap

ti b

asin

, 'et

c. B

igge

st o

il fi

eld

stru

ck b

y O

NG

C

was

B

omba

y H

igh

offi

hore

fiel

da in

Ara

bian

sea

in 1

974.

In

1976

, O

NG

C f

ound

a la

rge

sour

gas

re

se~

oir

at

S

outh

Bas

sein

, so

uth

of

Bom

bay

Hig

h of

fsho

re f

ield

s. A

lso,

gad

oil w

as f

ound

in

smal

ler

quan

titi

es a

t Hee

ra, P

anna

, Rat

na a

nd N

eela

m o

ffsh

ore f

ield

a in

Ara

bian

sea

.

Cru

de p

rodu

ctio

n in

the

cou

ntry

has

bee

n go

ing

thro

ugh

fluc

tuat

ing

fort

unes

. Fro

m a

hi

gh o

f 34

.09

mill

ion

tom

eu i

n 19

89-9

0, it

dip

ped

to 2

6.95

mill

ion

tom

es in

199

2-93

and

stay

ed a

t th

at le

vel i

n th

e fo

llow

ing

year

als

o. B

ut in

the

past

cou

ple

of y

ears

ther

e ha

s be

en

a re

cove

ry a

nd t

he

crud

e pr

oduc

tion

was

33.

865

mill

ion

tom

es i

n 19

97-9

8. T

he o

ffsh

ore

rese

rves

acc

ount

for

abo

ut 6

3 p

erce

nt o

f tot

al o

il pr

oduc

ed i

n th

e co

untr

y. T

his

reve

als

how

po

or t

he

coun

try

is in

on

shor

e oi

l res

erve

s an

d ho

w m

uch

it is

dep

ende

nt o

n B

omba

y H

igh.

T

he p

rodu

ctio

n of

nat

ural

gas

in

the

coun

try

is c

urre

ntly

abo

ut 7

4 m

illio

n st

anda

rd c

ubic

m

etre

s pe

r day

and

the

tota

l gas

ava

ilabi

lity

for s

ale

is a

bout

61

mill

ion

stan

dard

cubi

c met

res

per

day.

Page 10: Petroleum Refining Technology

Table 1.1 P

rod

uctio

n of C

rud

e Oil4n &

dia *

1.6 PETRO

LEUM

REFIN

ING

, OPER

ATIO

N AND O

PTIMIZA

TION

C

rude oil in its raw form

has got very limited use. B

y adopting various refining processes in the refineries, crude oils are separated into a num

ber of fractions which are suitable for

various uses. Crude oils received from

oil fields are stored in refinery storage tanks. .From

these takes crude oil is fed to the atmospheric distillation unit. A

ll the crude oils are basically m

ixture of hydrocarbons which can be physically separated in groups of different boiling range

by the conventional process of distillation. The fractionation of crude oil yields the follow

ing stream

s in the order of rising boiling ranges : M

ethane, Ethane and Propane m

ixture L

iquefied Petroleum G

as (LPG

) N

aphthasfGasoline fractions

KerosindA

viation Turbine F

uel (AT

F) H

igh Speed Diesel O

il (HSD

) and Light D

iesel Oil (L

DO

) R

educed crude oil (RC

O)

Depending upon the crude oils properties and im

purities present in them, the above

products are further treated to meet the required specification. R

educed Crude O

il is further distilled under vacuum

to recover some m

ore lighter fractions. This process produces light

vacuum gas oil (L

VG

O), heavy vacuum

gas oil (HV

GO

) and vacuum residue (VR). In order to

meet the viscosity specification of fuel oil, heavy residues such as H

VG

O, R

CO

and VR are processed in visbreaking unit to reduce their viscosity. To produce bitum

en, the vaccum

residue is air-blown in B

itumen B

lowing U

nit. To m

aximize the production of m

iddle distil- lates, heavy residues such as H

VG

O are processed in fluid catalytic cracking (FC

C) unit,

hydrocracking unit and coking unit. Straight-run naphtha of low

Octane N

umber is processed

in catalytic reforming unit to enhance its O

ctane Num

ber. Reform

ate rich in ben

zenh

luen

e

~F

TR

[31;EL

lM,~

ER

PT

OR

AT

ION

~~

OD

UC

TIO

N

AN

D R

EFIN

ING

a r9

is used as feedstock-fon Udex unitito prPduce benzene an& toluene. K

erosine fkacti~ns from

certain crudes such as A

ssam crude do'not m

eet specification on amoke point due to higb - -

aromatic content. To im

prove smoke point of these fractions, E

deleanu process is usually em

ployed.

1.6.1 Selection of P

rocesses for O

ptimization

Optim

ization is the process of determining the best poseible w

ay of selecting the proces. schem

e and fixing the unit capacities etc. The selection of procesdprocessing schem

e is to be optim

ized considering all the objective functions. The follow

ing factors would influence + .

decision making in the selection of processes and process schem

e for a given refinery : T

ype of crude Product slate P

roduct specification ~nve*tm

e;t and operating costs M

erits/demerits of alternative processes.

L T

yp

e of crude. The tyR

e of cvd

e to be processed in a refinery y

ill have a bearipg on t;

process scheme? For exam

ple, crudes containing high sulphur require the iqstallation of desulphq+ation

processps/sweetening processes for stream

s. Kerosine from

Aghajari c

n

has a peculiar problem of colour dekrioragon on ptorage w

hich cannot be corrected by treating I

in an Merox upit apd hence desulphurieatiop w

it would be req%

ed. Som

e crudes are I suitable for m

&ing lu

bricab

g oils, a

nd

,qp

~e

are not suitable for m

aking bitumen. In som

e cases the prodpcts do not require any tieatm

ent like some of the in9genous crudes e+

- T

herefore, each and every stream from

the crude distillap?,n unit has to be evaluated tol m

aking a suitable scheme of treatm

entd

secon

dq

processing facilities. e

od

uc

t slate. The capacity of the refiney, the type (lube or non-lube) and size oft.,

secondary groceseiffg wjb

is largely governed by the product slate which jn turn is decided

by the dem

,pd

of petroleum, ~ro

du

cts, The process scheme is selected so as to m

atch with t-

product slate. b Indiq, generally the yaxim

ization of middle distillates is,the m

ain criteria. J

In U.S.A

., the production ,of light djetillateq particularly, m

otor spirit is maxim

ized in Fr

' unit by keeping high severity operations, If the objective is to m

aximize H

SD in a refinery

processing high sulphur crudes, it would be advantageous to provide an FC

C unit w

ith 9

desulphurisation unit either for straight-run gap oil or cycle oils so as to,upgrade the heavl-. ends to the m

aximum

poaeible extent as limited by sulphur specifications. For extrem

e m

aximization of m

iddle distillates, a hydrociacker can also be considered which upgrades t

heavy ends to the middle distillates (A

TFkerosineiH

SD) better than any other know

nprocess. Y

ield of kerosin$HSD

from a hydracracker is of the order of 80 to 85 percent as com

pared about 50 percent from

FCC

unit. P

rod

uct specifications. G

eaerally the treatment processes are governed by tF

specifications of the products. Depending on the type of crude processed and the quality or

streams, a judicious selection of treating processes has to be m

ade from a sim

ple chustic wash

Merox sw

eetening units to a hydro=deeulphurisation unit. The flash point of the m

idc.- distillates are often relaxed, w

ith a view to m

-ize these products. T

herefore, to take advantage of such relaxed specifications, it w

ould be desirable to provide a naphtha splitt colum

n in the process schem

e, sa that heavy naphtha can be injected into kerosinddiesel cuts. In

vestm

ent and operating aosts, T

his is a very important point to be kept in view

whil-

fixing the refrnery capacity, selecting the processes and sizing the unit capacities. How

ever, the selection of process technology at tim

es may entirely be'governed by the products dem

and rather than by investm

ent cost limitations. Investm

ent costs are function of refinery size ar.-

Page 11: Petroleum Refining Technology

it

&a

sn

p~

~~

~y

t~

f~

hl

et

:f

ox

~

tihe

m'1

~1w

mp

1~xi

tyi~

ze6u

lts

as! t

he ca

pa@

f in

crea

ses.

~

nv

88

kr

n~

n~

pe

m~

rw

ess

ing

,ca

pa

cit

y

prog

ress

ivel

y go,

dow

n. h so

me c

as$s

,,ap

arti

dar

planh~siree~~~eomeieW~miud~md

kso

me

oth

ea w

ee it

may

pot

be.e

coao

mie

;JI.

For

exam

ple;

som

e oi

l com

pani

es d

o no

t co

nsid

er i

t eco

nom

ical

to p

rovi

de F

CC

Uni

t of l

ess

than

0.

6 M

MTP

A c

apac

ity. S

imila

rly,

the

late

st tr

ends

are

to p

rovi

de s

ingl

e cr

ude

dist

illa

tion

uni

t of

8 to

10

MM

TPA

cap

acity

. ,

i

i -

,I-

.. .-$Q

xp~f

$he,

plan

ts*t

ve co

nsum

ing h

igh

amou

nt o

f fue

1,ah

d util

ities

. T

his

aspe

ct has to

be

kept

iP~

Xie

w~

~w

~~

se3

ecti

ng

. a

proc

ess-

For e

xam

ple,

inxa

se o

fhyQ

rgcr

acke

r, th

etot

al e

nerg

y c

~n

s~

pt'

iop

b

sr~

b~

ut

$.6

tim

es t

han

that

of

Flui

d ca

taly

tic c

rack

er. F

ufih

er,

a su

bsta

ntia

l q

uan

tity

,q&

p~

pS

lth

ai~

co

psum

ed t

o m

eet t

he h

ydro

gen,

requ

irel

pent

of

hy

&g

c~~

&n

g. The

to

tal e

nerg

y co

nsum

ptio

n in

a fu

el re

fine

ry w

ould

.be

of t

he o

rder

of 1

0 to

11

perc

ent.

One

has

to

be c

auti

ous

in t

he s

elec

tion

of n

ew p

roce

ss t

echn

olog

y ke

epin

g in

vie

y th

e si

tuat

ion,

loca

tion

and

avai

labi

lity

of lo

cal e

xper

tise.

Som

e of t

he te

chno

l~gi

es for u

pgra

dati

on

of t

he h

eavy

resi

dues

may

not

be

stra

ight

way

mad

e ap

plic

able

@ In

dian

con

ditio

ns. D

evel

op

men

ts l

ike

cont

inuo

us c

atal

yst

rege

nera

tion

may

not

be

verJ

;atr

acti

ve to

refi

neri

es w

hich

up

qaSI

& qa

phth

a f?r

#e

prod

uctio

n of

mot

or s

piri

t ?f b

qder

*te

oc

hk

qu

m~

t.'~

esu

lPh

~sa

- ti

o~

i of G

el oi

l whi

ch is

$ow

bein

g pr

actic

ed e

lsew

here

with

7 the

oki

jedi

ve df

rM

ucin

g$ol

lutio

n in

con

cd+q

a$ed

@au

$+al

flr

ei-i?

rim

y-no

t &

e ap

pli,c

able

+@ s?

in_e

oth

er s

itua

tion

s, y

he

p

p:ol

$t$m

-

h@

s a

$$ow

. H

ydro

qack

inP

dd

ug

b a

"e$j

yitd

pmck

$s fo

; h&

hiki

ng'n

iidd

le

dist

illa

tes

hp

a so

Eh@

dcat

kd m

i!llurgy

an

d ik

gu+e

a sz

ecid

ope

rati

bnd

&d

rnew

nq

nce

c

aie

:~o

ce

s,o

,w a

@te

d,f

orJ

Fct

hyd

iocr

ack@

g"of

reei

du'e

s abu

ld c

all yo

; sf

i&q

t high

i'?v

estm

~ts

and

Gg'

hop,

perq

kirig

cost

s bec

aube

df t

he h

jrdr

dgen

rkqu

irem

enth

,,pa&

~ula

rly ko

r hi

gh &

[email protected]

&de

s'.'R

.eddc

ed

dvd

e oi

l; fi

od

indi

gent

&

crucY

$d b

ecau

se o

fthe

ir lo

w ?

ulpR

ur

and

met

al c

onbl

;t$ &

ohla

dre b

ette

r su

ited

to th

ikty

pe of

te&

olog

y.

Me$

ta/d

emqe

ts

OF alt

erq

div

q p

yoce

s&ir

: T

here

may

be

mor

e th

an q

ne p

rves

s to

do

the '

&m

e m

e OF

oper

atid

in. F

br e

xhlj

k, th

'e'r~

are

vari

ous'

type

s of

sw

ebte

nihg

l$hc

e~s f

or

naph

tha@

and

ulti

hat&

ly c

hohh

has

to b

e &

be

on th

e m

eritk

&&

dem

erits

of a

eihd

iyid

ual

proc

esse

s, o

pkra

ting

cpqp

t+d

qual

ity

of t&

e pf

oduc

t et

c. F

o* e

xtra

ctip

n of

aro

mat

ics:

fiom

ke

rosi

ne,

apar

t fr

om c

onve

ntio

nal

Ed

elea

d~

prdc

ess

one

coqd

pos

sibl

y ch

oose

shl

fola

ne

proc

ess

or &

d,hy

dr"d

gena

tion

in o

rddr

to

irp

~ro

ve th

ec'a

mok

e'po

iht.

For

the

extr

actio

n of

ar

qmat

ics

fr~

mth

e

lube

oil

dist

illa

tes

eith

er fu

rfur

al o

r phe

nol e

xtra

ctio

n co

uld

be a

dopt

ed.

1.6.

2 ~

~t

&i

?h

ti

~n

in

a R

~n

nin

g

Ref

iner

y dP

tim

izat

ion

ofth

e op

erit

ion

bf a

runx

i&;!

refi

neiy

is su

tij&

d to

the

infl

uenc

e of v

ario

us

fact

ors.

The

re ar

e, so

me f

acto

rs w

hich

are

bey

ond

refi

nery

's c

ontr

ol. T

hese

incl

ude :

(a)

ch

he

mix

ture

I

(b)

Typ

e of

pro

cess

ing

units

(c

) D

emaq

d pa

tter

n (d

) M

ovem

ent c

onst

rain

ts

(el

Prod

uct s

peci

fica

tions

E

arn

al s

trea

ms

(g)

Indu

stri

al re

latio

ns.

Tho

se fa

ctor

s w

hich

are

with

in r

efin

ery'

s co

ntro

l are

giv

en b

elow

. (a

) To

inve

stig

ate

the

poss

ibili

ties o

f im

prov

ing

over

pro

cess

ing

capa

citie

s not

onl

y fo

r cr

ude

oil b

ut a

lso

for s

econ

dary

pro

cess

ing

unit

s.

(b)

To

adop

t var

ious

eff

ectiv

e mea

sure

s of c

ontr

ollin

g the

eros

ion/

corr

osio

n in

proc

essi

ng

unit

s to

impr

ove

thei

r se

rvic

e fac

tors

.

PE

7R

r%g

EU

MfE

XW

a~

~~

EIM

:TlO

N

AN

D R

EFIN

ING

rw

(c)

To.

plan

(shu

t dow

ns of

var

i6us

uni

tsra

topt

imum

tim

e tu a

void

the&

@?&

ed h

tiiiti

eb

cons

qmpt

ions

. 1

,,I,

,

(d)

Var

ious

str

eam

s ob

tain

ed f

~m

di

ffvr

ent

pftc

essl

irg

unit

s a

i 6<

ikgn

tili

zed to

prod

uce

the

fini

shed

prod

ncts

. Se

vera

l str

eam

s ca

n be

util

ized

in th

e pr

oduc

tion

of

mor

e th

an o

ne p

rodu

ct. T

he b

lend

itig

phtt

ern

of s

ome

prod

ucts

like

mbt

or s

piri

t and

H

SD &

o si

gnif

ican

tly in

flue

nce t

he c

onsu

mpt

ion

of h

igh

pric

ed in

tpbt

ted

chem

ical

s lik

e an

tikno

ck c

ompo

unds

, cet

ane

impr

over

s et

c. T

his

aspe

ct s

houl

d al

so b

e ke

pt in

vi

ew w

hile

rout

ing

the

diff

eren

t str

eam

s fo

r pro

duct

ion

of t

hese

pro

duct

s.

(e)

The

pro

fita

bilit

y of

a r

efin

ery

can,

be in

crea

sed

cons

ider

ably

by s

light

red

uctio

n in

th

e bp

erat

ing

cost

s of i

ts u

nits

. In

ord

er to

ach

ieve

this

, the

ope

ratjn

g co

nditi

ons

of

the

unit

sho

uld

be o

ptim

ized

by

optim

izin

g th

e re

flw

ratio

s of

col

umns

, exc

ess

air

in t

he h

eate

rs a

nd m

aint

aini

ng a

pro

per c

ontr

ol o

n ut

ilitie

s an

d ch

emic

al co

mpo

si-

tions

in th

ese

unit

s.

1.6.3

Ref

Jnin

g C

apac

ity

in I

nd

ia

l'hd

tota

l xef

m$g

.i{pa

yjty

in

I?$+

as

' on,

\.Qi1

997

stan

ds a

t 61.

55 M

MT

PA of

whi

ch 5

8.55

M

Sd'I'P

A i

s ac

cbu

n~

d for by t

he p

uljli

c se

ctor

refi

neri

es @

able

1.2

). ~

'~R

PL

ac

cduh

ts fo

r the

b

tlb

ce. ~

jt$

'th

e ~

ng

oi~

~g

com

h$

,~io

nin

g

of IO

C'a

Pqn

ipat

re@

ery,

,+e,

~@re

~in

$cap

acit

y wh

ri?a

ch k~ 67

.55

~lk

'&~

.'~

e"el

'al ex

pans

ion

proj

ectk

ahd

gra

ssfo

ot ik

fine

ries

hiv

e be

en

plan

ned

to e

nhan

ce th

e,re

hip

g ca

paqi

ty in

the

co

mS

. Abo

ut 3

1 m

yion

tonn

es o

f adq

tion

al

&.dIA

i%k '

capa

city

is li

~e1

P tb bk

i cr'

@~

d'ib

Be

?om

try

1b9

Fti

i'th:

co

mm

i&i6

:n$k

of

a li&

ge ~

riv@

f$ sect

or r

efin

e'rj

. a$d

com

plet

ion'

of th

e eX

li+di

on,

p~dq

-es &

p

Publ

ic

s&&

r/jd

int

sect

or r

'efi

neri

es. T

hi'm

ajor

con

9bii

tion

is

e,xp

ecte

d to

c6r

ne4f

i6h +

! rii

iner

y be

ing

set u

p at

Jam

naga

r' by

Rel

ianc

e: T

he c

ompi

i(y

has

heel

ed u

p th

d ca

paci

ty #

%re

fine*

to

27

MIL

ITPA

from

the-

earl

ier p

lan

of 1

5,M

MT

PA re

Fner

y. A

mon

g th

e pu

blic

secp

~!ef

iner

ies,

Id

C's

Guj

arat

refi

nery

has

und

erta

ken

a h. 74

9 cr

ore

prog

ram

me

to e

xban

d it

s ~

apac

ity

by

3 M

MT

PA. H

PCL

's V

isak

hapa

tnam

ref

iner

y ha

s un

dert

aken

a R

s. 9

98 c

rore

pro

gram

me

to

expa

nd i

ts c

apac

ity b

y 3

MM

TPA

. MR

PL, t

he jo

int

vent

ure

betw

een

HPC

L a

nd t

he A

dity

a B

irla

gro

up is

exp

andi

ng it

scca

padi

tY bjr 8

MM

TPA

at'&

e'st

irha

tedl

cost

of Rs. 34

90 c

rore

. IO

C

Bar

auni

ref

iner

y ha

s an

inst

alle

d ca

paci

wof

3.3

MM

TPA

. The

cap

acity

is p

rim

arily

lim

ited

due

to c

rude

supp

ly c

onst

rain

ts fr

om A

ssam

oilf

ield

s. N

ow, t

he H

aldi

a-B

arau

ni c

rude

pip

elin

e Ii

ns b

een

laid

and

is u

nder

com

mis

sion

ing

to s

uppl

y im

port

ed c

rude

to B

arau

ni. A

part

from

th

ese

capa

city

add

ition

s in

1999

, Ess

ar's

ref

iner

y at

rJam

naga

r is l

ikel

y to

be

com

mis

sion

ed in

X

inrc

h 2G

02. T

he re

fine

ry w

as p

lann

ed w

ith

a 9

MM

TPA

cap

acity

, but

Ess

ar h

as s

ince

scal

ed

up

the

capa

city

to 1

2,M

MT

PA.

Tab

le 1

.2 R

efin

ing

Cap

acit

y in

Ind

ia Cap

acity

MMTPA

(as

on 1

.4. 1

997)

,

1.0

3.3

9.5

3.75

7.5

0.65

Com

pany

IOC

Ref

inev

Guw

ahat

i B

arau

ni

Guj

arat

H

aldi

a M

athu

ra

Dig

boi*

Page 12: Petroleum Refining Technology

*AO

C, D

igboi was taken over by the governm

ent in October 1981 and m

erged with IO

C

The refinery production and consum

ption of petdeqm+

products is giyen $

Tables 1.3-1.4.

In In$a the consum

ption of light. and heavy distillateshave beensfagnatkdgver t$epe.eod of last S

iie years. How

+, the dem

and foi m

idd1,e ,&atjljates' ia'~'&

ei$big 's@

ong'50h$

.ip

rec

kt tim

es. In order to m

eet :the' increasing d.em?d

for, middle disF

la%s:!60-65%

),'the second&

and tertiary processink f@

$ilities' . &

e . becoming$&

bf1;1.bd.y~ yelink$

. .

cpmplqxts.

' .

.

.. .. .::....,

'

H4

to

pmqesscrud? bib,?=

gpttihgg+temati&

awti6n:L

d$&

l?*%~+&

<~j$?s ki+ couM

'increase ihe

refin

e~

efficienqies.'@

e n,eed to co'nv* bottom

cif:?+e b,arrelil:iii$o cleiitofuel as~~mes,si~ific.mtim~;twce,

ip In,$a p@icul,+lyj@

09 pool 4aficit,c?nt$e tddb$lw

h a&d

Ind

ia costiflues to dep,pnd feafly

on impoited crude 'oil. '&

e.,e$sting refineries skbuld

therefore upgrade,t&eir technologies, o

p~

ize

sn

erg

y:c

@s

~p

ti~

*d fm

pro+e&

fficiency of furnaces and process equipm

erits to kclude the f1exib;iQt.y t;d p+c&

g the broad spect,mm

.

..

c

~d

e

oil.

Tablg 1.3 R

efinery Production in India

(In Thousand T

onnee)

ATF I

1001

HSD

[

7371

Pp

,QL

EU

WE

vb

PR

wQ

M; PblQ

pUG

TION

AN

D R

EFIN

IN0

3.

.- ,

Table 1.4 C

onsumption of P

etroleum P

rodu

cts in India

(In Thousand T

onn

es)

1519 . ...

14624 LD

O

Heavy ends

Furnace oil LSH

SHSH

WR

FO

1801 1636

1108

7907

4041 2079

. $j85

' , 1,

18289

1177 10016 3791 4164

1609

18196

4879 4550

1453 13389

6358 4044

Page 13: Petroleum Refining Technology

PETR

QLC

UM1R

EFIN

ING

TEC

HNO

LOG

Y

. . 1. S

. Abb

as, p

e no

xi-o

rgap

ic th

eory

of t

he g

enes

is of

pet

role

um, C

urre

nt S

cien

ce, V

ol. 7

1,

NO

, 9, p

pF87

7-68

4 (1

996X

, "

2. P

. Dut

ia, T

he o

il re

fini

ng in

dust

ry in

Indi

a, C

hem

ical

Indu

stry

Dig

est,

pp.

103-

110

(hhrc

h 1

997)

. 3. A

. Bor

thak

ur, K

.V.

Rao

and

B. S

ubra

hman

yam

, Rec

ent t

rend

s in

enh

ance

d oi

l rec

over

y by

che

mic

al m

etho

ds, C

hem

ical

Eng

inee

ring

Wor

ld, V

ol. XXXII, N

o. 4,

pp.

83-

86 (1

997)

. 4.

A.X

'~r0

r.a:

Sta

tus.

&pr

ojec

tions

in th

e oi

l ref

inin

g se

ctor

, Che

m. E

ngg.

Pro

gres

s, V

ol.

XX

XE.

N,o

. 4,

pp.

87-

88 (1

997)

. 5.

Aqo

nym

ous.

Ind

ia s

till l

aggi

ng p

oten

tial a

s m

ajor

pla

yer o

n w

orid

ene

rgy

mar

kets

, Oil

&

Gas

J.,

pp.

19-2

2 (Fe

b. 1

2,19

96).

CR

UD

E O

lLS

- CH

EM

ISTR

Y A

ND

CO

MP

OS

ITIO

N

2.1

INTR

OD

UC

TIO

N

Pet

role

um,

etym

olog

ical

ly, m

eans

roc

k oi

l. It

is

natu

ral

orga

nic

mat

eria

l co

mpo

sed

prin

cipa

lly o

f hyd

roca

rbon

s whi

ch o

ccur

in th

e ga

seou

s or

liqu

id s

tate

in g

eolo

gica

l tra

ps. T

he

liqu

id ,p

art o

btai

ned

afte

r th

e re

mov

al o

f di

ssol

ved

gas

is c

omm

only

ref

erre

d fto

as c

rude

pe

trol

eum

or

crud

e oi

l or

sim

ply

crud

e.

Cru

de o

il o

cm

in m

any

diff

eren

t pa

rts

of t

he w

orld

, and

its

stru

ctur

e an

d co

mpo

sitio

n va

ries

tacc

ordi

ng t

o it

s so

urce

to

such

an

exte

nt t

hat

each

pro

duci

ng a

rea,

and

fie

ld,

and

rese

ryoi

r bears

its

own

prof

ile ju

st a

s in

divi

dual

ly a

s fin

ger p

rint

s id

entif

y m

an.

2.2

CH

AR

AC

TER

ISTI

CS

OF

CR

UD

E O

lLS

C

rude

oil

has

been

def

ined

as

a na

tura

lly

occu

rrin

g m

ixtu

re, c

onsi

stin

g pr

edom

inan

tly

of

hydr

acar

bons

an

do

r of s

ulph

ur, n

itro

gen

and

or o

xyge

n de

riva

tive

s of h

ydro

carb

ons,

whi

ch is

re

mov

ed &

om th

e ea

rth

in a

liqu

id s

tate

or i

s cap

able

of b

eing

rem

oved

. Cru

de o

il is

com

mon

ly

acco

mpa

nied

by

vary

ing

quan

titi

es o

f ext

rane

ous s

ubst

ance

s suc

h as

wat

er, i

norg

anic

mat

ter

and

gas.

The

rem

oval

of s

uch

extr

aneo

us s

ubst

ance

s al

one

does

not

cha

nge

the

stat

us o

f the

m

ixtu

re a

s cr

ude

oil.

If s

uch

rem

oval

app

reci

ably

aff

eds

the

com

posi

tion

of t

he o

il m

ixtu

re,

then

the

resu

ltin

g pr

oduc

t is

no lo

nger

cru

de o

il.

Cru

de o

ils r

ange

wid

ely

in th

eir p

hysi

cal a

nd c

hem

ical

pro

pert

ies.

Typ

ical

pro

pert

ies

of

seve

ral c

rude

s are

giv

en in

Tab

le 2

.1. C

rude

oils

are

brow

nish

(lig

ht o

ils h

avin

g la

rge

amou

nts

of d

isti

llat

es) t

o br

owni

sh b

lack

(he

avy

oils

) in

colo

ur. H

eavy

oils

hav

e an

unp

leas

ant o

dour

(g

arlic

like

) due

to th

e su

lphu

r com

poun

ds, w

hile

the

ligh

t cru

des h

ave

plea

sant

aro

mat

ic li

ke

smel

l. T

houg

h ge

nera

l, th

is is

-not

$w

ays

true

. Dat

a fo

r a

cons

ider

able

num

ber

of c

rude

oils

in

dica

te t

he s

peci

fic

grav

itie

s be

twee

n 0.

73 id' 1.02

; mos

t cr

udes

gav

ing

spec

ific

gra

viti

es

lyin

g -&

twee

n 0.

80 a

nd 0

.95.

The

se v

alue

s ar

e fo

r su

rfac

e co

nditi

ons

of t

empe

ratu

re a

nd

pres

sure

. The

kin

emat

ic v

isco

sitie

s va

ry fr

om 0

.7 to

130

0 cS

t at 3

7.8"

C; t

he b

ulk

of t

he v

alue

s

! be

ing

in th

e ra

nge

of 2

.3-2

3 cS

t. In

term

s of

ele

men

ts, c

rude

oils

are

com

pose

d pr

inci

pally

of c

arbo

n an

d hy

drog

en. O

f the

ot

her e

lem

ents

pre

sent

, sul

phur

, nit

roge

n an

d ox

ygen

app

ear a

s het

eroa

tom

s in

hyd

roca

rbon

I

deri

vativ

es, s

ome

of w

hich

occ

ur a

s pet

ropo

rphy

rins

, i.e

. com

plex

es in

volv

ing

trac

es o

f met

als

I I (m

ainl

y va

nadi

um a

nd n

icke

l). C

arbo

nthy

drog

en ra

tio

is u

sual

ly b

etw

een

6 an

d 8.

A w

ide r

ange

of

met

alli

c el

emen

ts h

ave

been

foun

d, g

ener

elly

as t

race

s, in

the

smal

l am

ount

of a

sh o

btai

ned

by b

urni

ng m

any

crud

e oi

ls. T

he e

lem

enta

l com

posi

tion

of c

rude

oils

is g

iven

in T

able

2.2

. ! I G

Page 14: Petroleum Refining Technology

16 PETR

OLEU

M R

EFININ

G TEC

HN

OLQ

GY

2.3 CO

NSTITU

ENTS O

F CR

UD

E O

ILS

T

he main constituents of crude oils are hydrocarbons. T

he proportions of the different types of hydrocarbona vary from

one crude oil to another. Many m

embers of each type are

presegt. Naphthenic acids, com

plex nitrogen compounds, and m

ercaptans account for some of

the-yxygen, nitrogen and sulphur present in crude oils. In additioq, the resinous and asphaltic substances

present in some crudes contain oxygen and sulphur. Inorganic sulphur can be

present as hydrogen sulphide (HzS) dissolved in th

e oil. Crude oil also contains trace elem

ents suth as m

etals, mostly in -sm

all quantities-some contained in w

ater impuritieg and som

e existing as com

plexes in the hydrocarbon phase.

Tab

le 2.1 Typical P

rop

erties of Cru

de O

ils

Tab

le 2.2 Elem

ental com

position of crud

e oils

15. (

~e

h

conten

t, wt. %

(

- (

0.0047 (

0.006 (

0.004 1

-

~h

lbr

bi,~

~~

. pi,iphyrin&

,a+e tj.eeII'1y$,d8 &

.sinam,;af d

@+

~.~

#&

~

~~

&l&

l~

P%

$$

e

.. -. ... A

,%.

C. com

poun$s indicate a contributio? from,plant 6O

u,Kei3, a

~o

~~

~~

~~

~~

~,

_l

~~

~p

pr ku!$

Hi$tp~ji,dnd hob$ljly B ~

'ed$cin&eriiri~

iiibnf: @

&l$

pi

iio@hynns hm

%%

dn i.a

*&&:

bd+it.i$b0$ b

ow

n h

bt c61p"hli

$~

vh

~s':in

kP

+$

~<

&{

~&

~#

&,

&egikihblebom

ilaht tjbdrees: 1

so

jxid

hy&r:,brbo$s 8'iG

been r.e~<&~ed:th'e'~:bFdd$&

%ai

have structurkri tjrpital of substaixes'formea biologically: O

ther hydrocarboiii'st~u~tu~es~~ith

16. (K

UO

P

( 12.0

1 11.8

1 11.7

( -

-

Elem

ent

C H

S

N

---- 0

--- M

etals

biol'dg;icali*ni&,

li'a"sbeen.detecb'd. .' , :

. , - ::;< :,

;. :

. , ;:

. <.;; .;.:<

. -

: ;: <.Th& w&&

p, &#b&

ted .w

ith ?oil :ma. gas &

cc

um

yl~

t~o

n~

$8: :usually - jn&

&$aljri s~

lifiB)i and

appears Mm

any fnstmces to' be m

odified$eaWater, tkepnncipa1:diKere'nc~s~bei~

a'deficiency in sulphates, relatively less m

agnesium and com

monly.,greater concentration than norm

al sea w

ater. Traces of hydrocarbons andorgrtllic acids are p

ksen

t.

Am

ount, wf 8

83.9-86.8

11.0-14.0

0.06-8.00

0.02-1.70

0.08-1.82

0.0-0.14

2.3.1 Hy

dro

carbo

ns

Hydrocarbons are com

pounds composed solely of hydrogen (H

) and carbon (C). T

he main

types of hydrocarbons present in crude oils are alkanes, cycloalkanes, arenes and hybrids involving com

bination of these types. They range w

idely in boiling point, and many cannot be

distilled under atmospheric pressure w

ithout breakdown.

Alkanes.T

hese are open-chain saturated hydrocarbons. They are also know

n asparaffins. T

hey can be divided into two types:

Straight chain alkanes - x~orm

al B

ranched chain alkanes - iso or neo W

hen carbon atoms are connected in a straight chain, they are know

n as straight chain alkanes. W

hen carbon atoms are connected in a branched fashion, they are know

n as branched chain alkanes.

' '

Alkanes have a general form

ula Cn H2n + 2, w

here n is the number of carbon atom

s. The

names ofthe alkanes end in -m

e. The first four alkanes have special nam

es (methane, ethane,

propane, butane) related to their histories H

H

H

H

H

H

H

H

H

H

I

I I

I

1 I

II

II

H

-C-H

H

-C-C

-H

H-C

-C-C

-H

H-C

-C-C

-C-H

I,

I I

I I

ll

I

II

I

H

H

H

H

H

H

HH

HH

m

ethane ethane

propane butane

,t

if

From pentane (C

5 Hlz) onw

ards, Latin or G

reek numerals are used to reveal the num

ber of carbon atom

s per molecule. A

few exam

ples are given below:

CH

3 - CH

z - CH

Z - C

HZ

- CH

3 C

H3 - C

Hz - C

Hz - C

Hz - C

H2 - C

Hz - C

Hz - C

H3

n-pentane n-octane

,

From butane (C

4Hio) onw

ards, alkanes may exist in tw

o or more form

s (isomers) differing

in structure. For example, butane m

ay exist in two form

s as follows:

n-butane I

cH3

isobutane

Page 15: Petroleum Refining Technology

I l l

Page 16: Petroleum Refining Technology

Blphenyl

Naphthalene

Anthracene

Phenanthrene

The m

oat comm

on mononuclear am

matics found in crude oils, are toluene and m

-xylene. T

he possible constituents of crude oils. include polynuclear species containing up to at least eight condensed rings. M

any polycyclic aromatic hydrocarbons present in petroleum

are carcinogens.

Alkenes. ,T

hese are openchain unsaturated hydrocarbons, co

nw

g a carbon-cirbon

d&&

rh:!b. ona;

7 ' T

~~

~,

~

tgn&

the : chbbn-h,+ddi6h

pr!op,c~~

hk.xrPi.it:~

'd 'driabsgj,cli,c

m4; *t{a%

ahe;. C

iH,,

, G

oS :A,

:efi

ylei

e.;(

Si

eak.e)i :, ,an.d,,:& ?-1

;'d;a:v

i8r

.. I .......f...... 'th *e., w

e .' '..

*em

rs o

C~

W

l~

l

pF&,

.Ad

$&.&

64

?',le;&:,6f

.$&.&

;::hd&

,$p& *ivL

fd s&dtutai,is&

h&&

:& po8diti1;,d'e ped&

g,,od ,&ei'&

Pti:bh' s;i

hl,&Ij: 6$d

within the basic

hain

, mu.&

for =h

pr8',

.~6

:iti~g

hc

~w

&'b

~&

nn

~~

6.a

~

ljre expected, as follow

s:

HH

HH

I

ll

1

C=

C-C

-C-H

HH

HH

I

II

I

H-C

-C=

C-C

-H

I I

H

H

but-2-ene

The num

ber indicates the number of the first of the doubly bonded carbon atom

s, num

bered from the end nearer the double bond. In addition, the typical side-chain isoniei is

. .

..

..

..

.

,:

, ,

. .

. .

expected, that.is >

I!;,;, ,,.

H3C

H

,

, I

' ,.: : ;

j,

VC

,,

.

' I

..

, .-8

, : .;;

,.

C=

C

' I

H

3C

H

I.

I

isobutene (2methylpropene)

The tw

o possible geometrical isom

ers of but-2-me are the foliow

ing: H

-C-C

H3

CH

R-C

-H

These isom

ers are classified by the Latin preiixes cis (on this side) and trans (across)

indicating the relative locations of the two end m

ethyl groups. Coneequeptly, there are four

isomeric butenesin all.

,; ,,~m&~,.pe!mn~~in~bt';s~~~~;dii~b~~b~~~3j~~Iw~j.~wf~~8~.I!Q~,'s'~~

.... - ...

5

,: F

. am

Y1um

for in

e fBh~ii~~~O~~'b~fiv~~ti'6~.~di.;~!&t~~~IB~~~$t~~, nsm

r

pentylenes may supersede this. F

or the higher mem

bers of the series the IUPA

C system

is used. F

or example,

'H

I H

%

I H

-C-H

H

p,@adlene .

..

..

!

.:; :

. l;'3-butadl@ne:

:I ,:&penW

eriw

-..:. .I; 3, b'he~ttiine , .

.. .

..

;

;, ,!.

.'; ;;.<

!.:. v

. '

.'

t ':.

;, ,<,

;,! 2

! , : .: :'

' .

Al~

ee~~

ee.areo

pen

-cha

in~

hy

dro

earb

on

s co

~tah

ing

onecarbon-ctybon triple bond.

The fin&

.mem

ber:o$th

i~~s~eesi~acetylene,

Cfia,:wbich,appe~~8;injexten44 fo

h'la

as:the linear m

olecule: H-C

GH

. Additional m

embers of the alkyne seriea:.com

phe,-open-chain m

olecules somew

hat similar to the higher alkenes but w

ith each double bond replaced by a tri~

le bond. T

he.IW

AC

system of nom

enclature.ri~plies throughout th

e series as with the

alcenes, but the des&

tem

treats tho

!~~

htah

&ab

ers. as d&

vativee,:of acetylene. Thus, .I:

for example,. H

.arnW

fijj. cbuld be desd

&d

!& .&

ither but-l--ge' bi s&

ylacetylene. The

,

boiling and relative densities of the alkynes are slightly higher than those of the

corresponding alkanes. , .,

Cycloalkanoarenes. T

hese, also called naphthenoaromatics, are m

ixed polycyclic hydrocarbons and possess structures involving fusion of arom

atic with alicyclic rings, and m

ay .....

carry aliphatic side chains. These h

y$

~~

&~

~;~

Qu

$

appearing in the kerosine fraction,

increasing in concentration in the higher-boiling dbtillaticn fractions and residues. Bicyclic

~?!p~

t$enp~~

m~

$c.. $nee. tu.prn~ti-~

rhg

. &dfpop alicxy&

c) .ingee.? :p.$+in

and ..theic ,alkyl 4$vativ$ - 3

;" r'la!jiy$~. +&dadt' .9, keroeifte..apd:h&

.

. 7 ......<

... gas L

.

,oi4, ..... ,E

wpl+

: ,.-

of ,C

Q~

PO

~W

&

present .

are. .. giyen. belpw

: :

... .

. I .

..

.

. .

..

>

..

.

..

.

...

..

..

i.,.

! :

., .

.

...,.. .

..

.

..

..

.

In~

an

O'(~

~",o

~

':: "

..

.

I .k(~

ln.~

Cio

,H,2)

, -

(1,2, 3, Ctetrahydm

naphaalene)

Page 17: Petroleum Refining Technology

d'

2.

3.2

Non

-Hyd

roca

rbon

s C

rude

oils

con

tain

app

reci

able

am

ount

s of o

rgan

ic co

mpo

unds

wit

h st

ruct

ures

inco

rpor

at-

ing

one

or m

ore

(the

sam

e or

dif

fere

nt) a

tom

s of

sul

phur

, nitr

ogen

, or

oxyg

en in

add

ition

to

carb

on a

nd h

ydro

gen

and

som

e of

the

se a

re a

ssoc

iate

d w

ith m

etal

s su

ch a

n va

nadi

um a

nd

nick

el, i

.e. t

hey

are

orga

nom

etal

lic in

nat

ure.

S

ulp

hu

r co

mpo

unds

. Sul

phik

r'is

th8

mas

t. ab

unda

nt a

tom

ic c

onst

itue

nt o

f &de

oi

ls,

othe

rtha

n ca

rbon

and

hyd

roge

n. O

ne o

f the

ori

gins

of s

ulph

ur c

ompo

.yds

in th

e cv

de

oils

is

~~&~

~tci

rd:k

ulph

iw~h

-*~i

;it

.d tigs;s

iie$ .

bf&

e .fi

lari

t an

d'mirr

iLl

$&&

;ns'd;p

o&ted

,&

.;<,

:<,..

, .

,<

.,,

!

geol

ogic

al b

eds.

The

oth

er o

rigi

n is

the

bio

geni

c re

duct

ion

~f'"

dil$

h'&

.~'&

de

oil*

"&

-y

cons

ider

ably

in

thei

r su

lphu

r co

nten

t ra

ngin

g fr

om a

few

hun

dred

ths

by w

eigh

t to

as ;p

uch

#rce

ht

OT s

db

hd

i. ~

ulb

hu

y

coke

df o

f 13

.95%

fodd

d $ d

ad

po

int (

inet

ah S

tate

in

Ui$

.;Aj?

. is #

e,&

ghks

t . I

:.. re

cord

&

. su

lphu

r cdp

tent

of a

ny c

qde:

oil.

. . .,

'. ..

I'.

..

,*

.

The

*u

lph

~

com

~~

un

ds~

'~re

'se'

nt

in c

kd

e o

ils c

an' b

e di

vide

dlin

to t

hiol

q, &

on&

and

W

lph

ides

and

thio

phen

es. (

': i -

" .

,.,,.>.v-

@-

. .

.Thi

olsi

.als

o cal

led

mer

capt

ans,

-are

&he

sulp

hur a

na1o

gues

:of th

e al

coho

ls (i

.d.th

iodc

ohol

s)

and

char

acte

rize

d by

the

pre

senc

e of

the

sul

p-hy

dryl

gro

up, -

SHd

whi

ch ta

kes

the

plac

e of

a

hydr

ogen

. ato

m in

,an

alka

ne-p

~:cy

cloa

lk.a

ne

mol

scul

e.;T

hiol

s: are.t&amain;sul$hur.compo~ds

of lower~boiling.(.petroleum~~fraotioh~

(blo

w 20

0°C

). E

tam

ples

uf.t

his'd

ltrss

oh

aul~

hu

r CO

W-

poun

ds a

re g

ivep

bel

aw:

CH

3 SH

Q

HG

HzS

H

'(CH

sh Ck

SH

m

etha

peth

ld

, e@

anet

hiio

l ~s

opro

pane

thlo

l (m

ethy

l mer

capt

an)

(eth

yl,m

erw

~tan

) (~

sopm

p$im

erca

ptan

)

'. 'T

he #

rese

nce

of th

iols

:'in

the.

~~et

r~~c

!u~i

l"h

atti

ons

ca;i+

ies

-cof

p5si

oR ,I!

rcib

kem

s, c

'ta

lyit

p&

sdin

&

an.d

~p

le'&

*t'

i~6

0ra

ta~

,&d

pf&

oa

ouis

. mb

jg:a't

e n&

bM

c:h&

lj;

poi*

oi;d

&

.?C,..

.. I ..

~.

in lo

w c

once

ntra

tion,

how

ever

, and

they

are

oft

en u

sed

as o

dour

ants

iii L

PQ

The

ibw

er th

ibls

ar

e th

e in

ost m

alod

ouro

us..O

ne p

art i

n 50

mill

ion

of e

than

ethi

ol c

an b

e de

tect

ed in

air

by

the

hum

an n

ose.

The

odo

ur is

str

ong

at 0

.6 p

pm a

rid d

istin

ct a

t 0.0

3-0.

07 p

pm. I

n h

igh

conc

entr

a-

tions

, the

odo

ur o

hang

es to

som

ethi

ng li

ke th

at of

chl

orof

orm

. T

hiol

s are

stro

nger

aci

ds th

an a

lcoh

ols,

and

use

is m

ade

of t

his

to re

mov

e lo

w m

olec

ular

w

eigh

t thi

ols f

rom

ligh

t gas

olin

es w

ith

caus

tic so

da so

lutio

n. H

ydro

proc

essi

ng te

chni

ques

are

em

ploy

ed to

desu

lphu

rise

oth

er o

il fr

actio

ns a

nd h

ere

com

bine

d su

lphu

r is

elim

inat

ed a

s hy

drog

en s

ulph

ide f

rom

all

type

of-

com

poun

d con

tain

ing

this

het

eroa

tom

.

CH

3 C

HSC

HC

H3

I I

(CH

I C

Hdz

S

CH

3 C

H3

3-th

iap'

enta

ne

2,4-

dlm

ethy

l-3th

iipen

tane

(d

leth

yl su

lphl

de)

A

(dh

wrw

yl su

lphi

de)

- m

~h

ex

an

am

wp

hl

de

)

As

in th

e ca

se o

f thi

ols,

the

sulp

hide

s are

gen

eral

ly v

ery

mal

odou

roue

. A

few

low

mol

ecul

ar w

eigh

t dis

ulph

ides

(d

ith

iaab

nw

) hav

e al

so b

eens

how

nto

be p

rese

nt

in c

rude

&. The a

ccur

renc

e of

dis

ulph

ides

in;p

rude

oile

may

be

owin

g to

the

seco

ndar

y re

actio

n of

thi

ols

wit

h tln

olri

aant

suc

h as

air

or free su

lphu

r. O

rgan

ic d

isul

phid

es a

re is

olog

s of

the

or

gani

c pe

roxi

des,

RO

OR

, but

are

muc

h m

ores

tabl

e. E

xam

plea

are

giv

en b

elow

:

23-d

lthla

buta

ne

CH

s (m

ethy

l dls

ulph

lde)

2-

mem

yC3!

&lth

iehu

xane

~

a~

~.

dl

su

lp

hI

de

)

Som

e ex

ampl

es o

f thi

ophe

nes

foun

d in

cru

des

are

give

n be

low

:

thlo

phen

e 2-

emyt

thlo

phen

e be

nzo(

b)th

loph

ene

Thi

ophe

ne a

nd

its

alk$

dN

vati

vee

are n

o~

y,r

~la

tiv

~I

y.s

c~

ce

co

nsti

tuen

ts o

f cr

ude

oils

, but

con

dens

ed sy

stem

-ben

zoth

ioph

enes

, dib

enzo

thio

phen

es, a

nd h

ighe

r po

lycy

clic

s (e

.g.

ben

ibn

aph

th~

thio

~h

enes

) ar

e im

part

ant

com

pone

nt8 o

fall

hig

h au

lphu

r cr

udes

. T

hiop

hene

de

riva

tives

are

pd

cula

rly

abu

ndan

t in

erud

e oi

ls c

onta

inin

g hi

gh p

ropo

rtio

ns o

fmm

atic

s,

resi

ns a

nd a

spha

lten

es.

Page 18: Petroleum Refining Technology
Page 19: Petroleum Refining Technology

910

aplu

3 JO

uo!

pa&

ssa1

3 j

o-

po

ql

a~

d~

go

np

amg Sn p

.g e

lq

~~

:shi

o~~

oj

SB a

m s

u0q~

eoo"

pbqj

o sass

el:,

pa

ra

m 10

3 dbn

x jo

f~~

rip

A

.s!s

ap.jq

+am

E u

o an

gp

pe

SF

lgae

j uog

e5pa

jSs.

req3

sm

spuq

q L

O s

aq

qx

rod

.pa,

ws!

p s3

tim1o

n gua

arad

(jd p

w (~i

'09

"0s

'01

qF! s

amqe

&&

&q'

~*'I

@B

X$A

B

Kq

ahm

a u

orp

ms

i~~

N

J,

~

u1

0~

~~

paq

e$4

ds~

~1

og

a~rg

rt

rna~

oiqa

d a9

30

qqo

d ~

Utf

i0~

'&83

3~%

? aq

L .3

;g9

a9~

/30

~b

'g

3~ ~

~~

~~

?q

&s

:~

p

i j

p~ 7 i 'P

:yo

'F&

xZ;!~

:dq

as

e~

a~

e

aw

r! u a:?

qm

(TIZ

)-- -

3

1 - = a

onx

I ,

(9J)

:u

qskd

i&

Bp

on

dJ a

p7 q

'8r@

p~

om

' 'k

+ef

i~g

aad

s qq

y $$

dd

Zq

oq

&qq

a.uoa

IW

BJ

'(*0

3~s?

sn~

q'E

@ti

,61a

rim

n)

sod i

dq p&

~aA

ap%

! 'd

onx

'i$$b

& u

o~

e~

~b

qj

a

u '

I i

o~

~~

~~

o~

~&

~p

~~

~~

1

.v~

,

,I

,

, t

.

~P

aq

d~

g~

qE

. ?F

I!O

;aP!v

30

uoR

e~J!

$m ?!.I%

W

+:(

PU

O!T

W.

Xaq

, sy

~~

?~

,?~

,;~

~),

jo~

~&

ye

@

?K

J!?

~~

S

RY

~W

pa

s~w

y

.sau

!m~

nea

mp

sn<

eyq s

3 9*n

p303

3a ~I

!Q, a

pr

u~

jo,~

wp

~m

~~

~1

r3

~a

~

syao

~sp

aaj jo d

0n)F

se n

am s

e .-a

'le

aq a

g!aa

ds

'que

qsuo

a bl

pad-

bq!s

oasr

~ 'q

uquo

3 ua

Sorp

6q

s-e q

ans

sava

dord

ia

qo

pue

d0n

x u

aa

wq

pad

o~

a~ap

su

o!+8

1auo

a L

xequ

aura

~dur

oa aq

q u!

saq

lo33

ej a

wjo

etl

aqnJ

asn

uy

ur

aq

, 'uo!

qaeq

a

w u!

suoq

ieao

lplC

qjo a

dLq

~ep

!+%

d re

jo

aaue

u!ur

opa~

d aw

qe

3!p

~ 03 p

asn

aq tr

ea s

uoga

eq w

na~

oqad

jo d

on

xjo

sanI

ea a

q? '

mu

0'11 - 0'6

0'zT - 0

.11

O'ET - 9'ZT

sa!la

mox

v sa

uayq

qd8~

su

gsis

d

Page 20: Petroleum Refining Technology

2.4.2 C

orrela$inqJn~@

xi ..

: .,;:,

..

-~

~e

c

o~

Fp

index ((311, developed by U

S Bureav of ~

ine

s, is B

iven by the following

empiiiical eqfiation:;

: .., : ,:I.,: ; ,.

. 1

1

., .., . ..

where fi ie'the average boiling point, O

R ,'determ

ined by the standard-BureaU

8'df Mbes

distillation method and G

is the specific gravity at 15.56°C/15.560C

. C

I values of a petroleum fraction betw

een 0 and 15 indicate that the components of the

fraction are'predominantly paraffinic in nature. C

I values between 15 and 50 indicate a

predominance either of naphthencs or of m

ixtures of paraffins, naphthenes ad qom

atics in the p&

roleum

fraction. CI values above 50 indicate a predom

inance of aromatics in the

fraction. ,

I,

..

,

2.4.3 Method of stru

ctural G

roup Analysis

The m

ethodi?f.siyctyd group analysk.,deseribq? the .ch$ajier; qf. the fraction in terms

of elements constituting a h

, theticalaverage molecule2Paving the chem

ical and pbxeiqal p..,

.. !...I ...'

properties of the eum

of

'e. indiiridual comporien&

..,p;f ;@2:B

acti,on,. awp

rdb

..to .thek

concentration. This m

ethodclarjsifies the crude.oils into:.sev& C

lasses (Table 2.7).

Table 2.15D

enomination an

d C

lassification of Cru

de O

il Classes

1. G

.D. H

obson (ed.), Modem

Petroleum T

echnology, Part 1

(Chapter 91, 5th edition,

John Wiley &

Sons, New

York, (1984).

2. L.F. H

atch and S. Matar, From

Hydrocarbons to Petrochem

icals, ~u

lf

Pubyishing

Com

pany, (1981). 3.

L.F. H

atch, A chem

ical view of refining, H

ydrocarbon Processing, Vol. 48, N

o. 2, 77-78 (1967).

4. B

.B. A

grawal and I.B

.Gulati, T

race metals in petrolem

and petroleum products;

Part I - O

ccurrence, nature & significance, Petroleum

and Hydrocarbons, V

ol. 6, N

O. 4, 193-197 (1972).

5. B

.B. A

grawal and I.B

. Gulati, T

race metals in petroleum

and petroleum produds ;

Part 11 - Individual constituents and their significance. Petroleum and H

ydrocar- bons, V

ol. 6, No. 4,

198-202 (1972). 6.

P. Jones, The presence of trace elem

ents in crude oils and allied substances, The

Institute of Petroleum, 73-76 (A

pril Jun

e 1988).

Class I I1

,u

, i',.

TRA

NS

PO

RTA

TION

OF W

AX

Y C

RU

DE

OILS

3.1 INTR

OD

UC

TION

C

rude oils contain a mixture of light and heavy hydrocarbons. T

ypically, a stabilized oil m

ay contaitl paraffinic, naphthenic and aromatic com

ponents as heavy as Cso. In addition,

poli& ahd asphaltenes M

&

also be'present. The lighter com

ponents in the crude oil kdep the

he&d&

toxhpohents in solution. This solubility depends very strongly on the tem

perature. If the tem

perature of the oil is decreased, the soldbility of the heaw

hjkirocarbons atiy be

sufficiently reduced to cause precipitation of these components in the form

of solid wax crystals.

The polars and asphaltenes m

ay also co-precipitate with w

ax crystals. The phenom

enon of w

ax separation from petroleum

fluids at low tem

peratures has been a problem to users of

petroleum products for a long period. It can occur in

lubricating oils, residual fuels and crude oils. '

The presence of w

ax crystals changes the flow behaviour of the crude oil from

New

tonian to non-N

ewtonian. T

he wax crystals usually lead to higher viscosity w

ith increased energy consum

ption for'pumping and a decreased capacity. In addition, if the oil is cooled during

transportation, the w

ax crystals tend to deposit on the colder pipe wall. W

ax deposits can lead to increased pipeline roughness, reduced effective diam

eter, more frequent pigging require-

ment and potential blockage. If these deposits get too thick, they can reduce the capacity of

the pipeline and cause problems during pigging. W

ax deposition in process equipment m

ay lead to m

ore frequent shutdowns and operational problem

s. In extreme cases, w

ax crystals m

ay also cause oil to gel and lead to problems of restarting the pipeline.

Great potential savings can be derived from

accurate prediction of wax form

ation. The

knowledge of the m

agnitude of wax deposition can lead to reduction of insulation requirem

ents for production and transportation system

s. Conversely, problem

s with w

ax can be addressed in an early stage of a project so that sufficient therm

al insulation is planned for instead of

1 expensive chem

ical injection and loss in capacjty or loss of availability. Process heat loads can

I be reduced by increasing efficiency of heat transfer. C

apacity reduction in heat exchangers can be overcom

e. This reduction results from

blockage or vibration problems. T

he size of export

i pum

p8 and flow lines c+

be reduced by an accurate knowledge of the effect of,w

ax formation

on crude viscosity. The m

inimum

pigging frequency can be estimated. In addition, problem

s

I related to start up and shutdow

n can be solved cost effectively. T

he crystallization of wax in crude oils causes severe difficulties in pipelining and storage.

I T

he crystallization of waxes at low

temperature causes reduced liquidity of w

axy crude oils I

which considerably w

pe

rs

the transportation of crude oils through long distance pipelines. 1 I

Several m

ethods exist for handling waxy crudes for ease of transportation. For exam

ple,

1 pigging the pipeline is useful for rem

oving thin layers of wax only. A

highly waxy crude m

ay

Denom

ination of crude oils P

ar

ec

Parfinic-naphthenic

-

--

Class delim

itation by structuml in&

values

%C, 2 72 %CP 2

50; %CP + %CN 2 90

Page 21: Petroleum Refining Technology

PETR

OLE

UM'R

EFIN

ING

TECH

NOLO

GY

requ

ire

fieq

uent

.pig

ging

to ke

ep th

e w

ax a

ccum

ulat

ion

man

agea

ble.

Api

ggin

g op

erat

ion

ofte

n ra

ttir

es si

gnif

ican

t am

ount

s of

cos

tly o

ffsh

ore

man

-hou

rs. T

akin

g in

to c

onsi

dera

tion

all

the

&o-

econ

omic

as

pect

s ad

diti

ve tr

eatm

ent i

s rep

orte

d to

be

the

mos

t sui

tabl

e m

etho

d fo

r th

e tk

wo

rta

tio

n o

f w

axy

crud

e oi

l, w

hich

can

dep

ress

the

pou

r po

int

and

impr

ove

the

flow

ch

arac

teri

stic

s at

low

tem

pera

ture

s.

,\,

~.$

+~

P~

~~

U~

~'~

R~

NS

PO

RT

AT

ION

F

or t

he

tran

spor

tati

on o

f lar

ge q

uant

itie

s of

cru

de o

ils, p

ipel

ines

are

the

mos

t ec

onom

ic

mea

ns. U

nder

saf

ety

aspe

cts,

tran

spor

tati

on b

y pi

peli

ne g

uara

ntee

s the

bes

t pro

tect

ion

for t

he

envi

ronm

ent.

Fur

ther

, the

re is

no

hand

ling

of o

ther

traf

fic

and

no d

istu

rban

ce b

y no

ise

or a

ir

poll

utio

n. A

cont

inuo

us su

pply

to th

e re

fine

ries

is n

orm

ally

ass

ured

and

this

is n

ot e

ndan

gere

d by

wea

ther

con

diti

ons s

uch

as fo

g, ic

y ro

ads,

or t

raff

ic c

ondi

tion

s alo

ng in

land

wat

erw

ays,

suc

h as

hig

h or

low

wat

er le

vel,

ice,

etc

. H

owev

er, e

ach

pipe

line

sys

tem

requ

ires

ver

y hi

gh in

vest

men

t whi

ch s

houl

d be

use

d m

ost

econ

omic

ally

. The

mos

t ec

onom

ical

and

eff

icie

nt o

pera

tion

of

a pi

peli

ne c

ould

be

reac

hed

by

mai

ntai

ning

a c

onti

nuou

s co

nsta

nt f

low

rat

e w

itho

ut a

ny in

terr

upti

on.

Als

o, i

p r

espe

ct o

f a

reli

able

and

cont

inuo

us su

pply

to th

e re

fine

ries

, a st

eady

-sta

te th

roug

hput

, wit

h so

me s

easo

nal

fluc

tuat

ions

due

to m

arke

t req

uire

men

ts, s

houl

d be

env

isag

ed. O

ther

wis

e, a

ddit

iona

l sto

rage

vo

lum

e h

as to

be

prov

ided

for

larg

e qu

anti

ties

of c

rude

oil

and

this

wou

ld b

e ve

ry e

xpen

sive

. In

terr

upti

ons

by s

hutd

own

of a

pip

elin

e ar

e by

no

mea

ns d

esir

able

. How

ever

, a s

hutd

own

may

occ

ur d

ue to

the

follo

win

g op

erat

iona

l re

ason

s:

(a) T

here

ia a

n in

adeq

uate

sto

ck of

oil

in th

e te

rrni

nd. T

his c

ould

be

caus

ed b

y di

stri

buti

on

in ta

nker

sch

edul

es, f

or in

stan

ce, d

ue to

wea

ther

con

ditio

ns.

(b) T

here

are

no

deli

very

req

uire

men

ts b

y th

e re

fine

ries

fed

by

pipe

line

. Thi

s co

uld

be

caus

ed b

y di

srup

tion

in

oper

atio

ns s

f one

or m

ore

of t

he p

roce

ssin

g un

its

of t

he

refi

neri

es, f

or

inst

ance

, due

to e

quip

men

t bre

akdo

wn.

(c

) A p

ress

ure

test

for l

eaka

ge c

ontr

ol of

the

pip

elin

e ha

s to

be

perf

orm

ed.

(d) R

epai

r, m

aint

enan

ce w

ork

on t

he p

ipel

ine

syst

em in

clud

ing

pum

ps i

s re

quir

ed.

(e) T

he p

ipel

ine

mig

ht b

e sh

utdo

wn

auto

mat

ical

ly b

y ex

ceed

ing

the

oper

atio

nal

safe

ty

lim

its.

T

hese

shu

tdow

ns a

re n

ot e

xpec

ted

to la

st lo

nger

than

3-4

day

. Und

er e

xtre

me

cond

itio

ns

one

coul

d th

ink

of e

xtra

ordi

nary

long

shu

tdow

ns. T

he re

ason

s m

ight

be

gove

rnm

ent

acti

on,

eart

hqua

ke, s

trik

e, w

ar, e

tc. H

owev

er, u

nder

nor

mal

con

diti

ons,

they

are

'not

exp

ecte

d.

Ine

n tr

ansp

orti

ng w

axy

crud

e oi

ls, t

hese

ope

rati

onal

poi

nts

of v

iew

'are

of

cons

ider

able

im

port

ance

.

3.3

WA

XY C

RU

DE

OlL

S

The

cru

de o

ils p

umpe

d in

pip

elin

es u

p to

the

ear

ly s

ixti

es g

ener

ally

sho

wed

nor

mal

ch

arac

teri

stic

s in

resp

ect o

f pum

ping

con

diti

ons s

uch

as vi

scos

ity'a

nd lo

w p

our p

oint

. now

ever

, th

e op

enin

g up

of

rem

ote

oil f

ield

s in

Nor

th A

fric

a an

d In

dia

in th

e 19

60's

to e

xplo

it th

e lo

w

sulp

hur

(but

wax

y) c

rude

s in

thes

e lo

cati

ons,

and

th

e ne

ed t

o pu

mp

tKes

e oi

ls th

roug

h th

e m

uch

cold

er p

ipel

ines

has

led

'oil

pro

duce

rs t

o st

udy

the

pum

pabi

lity

of

wax

y cr

udes

at

tem

pera

ture

s be

low

th

e po

ur p

oint

lim

it. T

he a

dvan

tage

s of

thes

e cr

ude'

oils

in

resp

ect o

f hig

h re

serv

es, l

ow s

ulph

ur c

onte

nt, g

ood

dist

illa

te p

rodu

ct y

ield

and

its

low

dsc

ous

flow

und

er fa

ir

tem

pera

ture

con

diti

ons

are,

how

ever

, par

tly

com

pens

ated

by

the

disa

dvan

tage

of

high

wax

co

nten

t, w

hich

res

ults

in a

hig

h po

ur p

oint

and

und

er c

erta

in c

ondi

tion

s of l

ow te

mpe

ratu

res

coul

d cr

eate

ope

rati

onal

dif

ficu

ltie

s af

ter

a lo

ng-t

erm

shu

tdow

n of

the

pip

elin

e. W

orld

wid

e,

one

can

dist

ingu

ish

abou

t 15

00 va

riet

ies

of c

rude

oil

of w

hich

10

to 2

0 pe

rcen

t are

con

side

red

TRAS

PORT

ATIQ

N QR

WAX

Y,CR

UDE

OIL

S 31

to b

e th

e:w

axy.

Suc

h a,

clas

sifi

cati

oo~

was

base

d-on

the

wax

con

tent

.oE

the,

cmde

aad

itsp

ou

r po

int;

The

,cha

ract

eris

tics

of

som

e of

thes

e cr

udes

are

giv

en in

-Tab

le3:

l. In

-con

tras

t, mos

$of

the

Mid

dleE

ast c

rude

oil

s hav

e a

pour

poi

ntbe

low

0 OC

and

wax

con

tent

less

than

7w

t.k

and

th

eref

ore

pose

no

prob

lem

s in

pip

elin

e tr

ansp

orta

tion

eve

n at

low

tem

pera

ture

s.

Wax

y cr

ude

oils

exh

ibit

non

-New

toni

an b

ehav

iour

at

tem

pera

ture

s be

low

abo

ut 1

0°C

ab

ove

the

pour

poi

nt. T

he w

ax c

an c

ryst

alli

ze a

s th

e cr

ude

is co

oled

to fo

rm g

el o

r a p

arti

al g

el.

Und

er s

tati

c co

ndit

ions

a r

igid

gel

is

form

ed, b

ut i

f th

e cr

ude

is c

oole

d w

hile

in

mot

ion,

th

e ap

pare

nt v

isco

sity

will

inc

reas

e bu

t th

e m

ater

ial

rem

ains

flu

id:

The

refo

re, t

he

rheo

logi

cal

prop

erti

es a

re fu

ncti

ons

of t

empe

ratu

re, s

hear

rat

e, s

hear

str

ess

and

past

his

tory

. Pro

blem

s in

pum

ping

the

se c

rude

s w

ill o

ccur

if t

he te

mpe

ratu

re d

rops

and

the

flui

d be

com

es n

on-N

ew-

toni

an a

nd if

gel

form

atio

n oc

curs

aft

er a

shu

tdow

n. T

he p

ipel

ine

faci

lity

mus

t be

desi

gned

to

reco

ver f

rom

thes

e pr

oble

ms

or p

reve

nt th

em. A

real

isti

c ap

proa

ch s

houl

d be

dev

elop

ed b

ased

up

on a

n ex

tens

ive

eval

uati

on of

the

rheo

logi

cal b

ehav

iour

of th

e cr

ude

oil u

nder

repr

esen

tati

ve

tem

pera

ture

and

she

ar c

ondi

tion

s. T

he tw

o rh

eolo

gica

l par

amet

ers

of w

hich

kno

wle

dge

is

indi

spen

sabl

e fo

r tra

nspo

rtin

g w

axy

crud

e oi

l thr

ough

pip

elin

e ar

e vi

scos

ity a

nd y

ield

str

ess.

B

efor

e we

go fu

rthe

r int

o rh

ealo

gica

l beh

avio

ur o

f the

cru

de o

ils,

a fe

w re

leva

nt te

rms

that

will

be

freq

uent

ly u

sed

are

defi

ned

belo

w.

abl

e 3.1

Ch

arac

teri

stic

s of

Wax

y C

rud

e O

ils

I I 3.3.1

Def

init

ion

s of

Rh

eolo

gic

al P

aram

eter

s S

Hea

r str

ess.

Con

side

r th

e st

eady

flow

of a

flui

d in

a h

oriz

onta

l pip

e of

cir

cula

r cr

oss-

sec-

ti

on. T

he fl

uid

flow

s wit

h an

ave

rage

vel

ocity

of U

in a

pip

e of

insi

de d

iam

eter

D. T

he p

ress

ure

diff

eren

ce b

etw

een

two

poin

ts 1 a

nd 2

, sep

arat

ed b

y a

dist

ance

of L

is (

Pi -

P2).

qe

decr

ease

in

pres

sure

in

the

flui

d re

flec

ts t

he

appl

ied

forc

e ca

usin

g th

e fl

uid

to fl

ow

and

if th

e fl

ow is

ste

ady

(i.e

. no

chan

ge i

n th

e flo

w a

nd h

ence

vel

ocity

), th

is f

orce

mus

t be

co

unte

r-ba

lanc

ed b

y a

shea

r for

ce of

equ

al m

agni

tude

at t

he

wal

l of t

he

pipe

. If r

, is

the

shea

r st

ress

at

the

pipe

wal

l, th

en f

orce

act

ing

on t

he f

luid

at

the

wal

l m

ust

be -

71 D

L r

w. T

he

nega

tive

sig

n in

dica

tes t

hat

this

forc

e ac

ts in

a d

irec

tion

opp

osit

e to

the

dire

ctio

n of

flo

w. T

he

1 fo

rce

acti

ng u

pon

the

flui

d du

e to

pre

ssur

e di

ffer

ence

is

(Pi -

P2).

In s

tead

y st

ate

(no

1 ac

cele

rati

on),

the

sum

of t

hese

two

forc

es is

zer

o. T

here

fo;e

, w

6 ca

n w

rite

Page 22: Petroleum Refining Technology

The above eQ

Uatibh rneteliy shew

s thaCthe,sheaps&

ss at-the pipe w

l i@

jUsti&

pther ~

ea

ns

of e*@

&ioh bP

"dti%n~

losd.-~rbin

E1$,3j1, itfdlfow

ru that.avddab1e~hear'strgSs~or a

particular pipeline depends,on the leligtbd

the line between tw

a,pump stations! and the

pressure difference. The availdble sheatj $tress can< be1 increased by increasing the initial

pressure, PI, and/or, reducing the section length of pipe, L. An exam

ple of calcu\ati~n of

available shear 'stress is given,below.

STA

TIO

N : V

IRA

MG

AN

TO AB

U R

OA

D

SVatic head at V

iramgan

Static head dt";sb'u Road

Pump puction

Differential heaq of each of the pum

pa at rated flow

Tw

o pumps w

illtbe operated in series. R

essure drop ah A

bu Road

Resdure dtop in the liile

Density of crude at pum

ping temperature

:. P

ressure drop

Inside diameter of line

Line length

Shear strees

= 0.000339 psi

= 23.4 dynes/m

2 If the available shear stress is equal to or m

ore than the. forcp peeded to

overcome the shear streas at the.innersqfape of the pjpe, $hen tbe,flow

3 l$e initiated.

Sh

ear rate. consider two p&

allq;l planes of area A, separated by &

:d~erqntiai&

jtance dr. T

he space between the tw

o planes is filled with a fluid. T

he lower plane is fixed. A

small

force F applied to the upper plane wiv give it a velocity dU in the direction of the force. If there

is no slip between the w

all and the flGd, the fluid adjacent to the upper plane or w

all &q also

have a velocity dU in the direction of the applied force and the fluid next to the low

er plane or w

hll will have a zero velocity. T

hus, a un

ifoy

velocity gradient of magnitude dU

/&r is set up

in the fluid since the shear force F is uniform across the distance dr;T

he velbcity gradient, dU

/cir, is comm

only referred to as the rate of shear. The shear force per unit area, F/A

, is called the shear stress.

Viscosity. It m

easures the ability of fluid to flow during steady state condition. It is the

property of a fluid that resisp a shear force. It can be thought of as the friction resulting when

one layer of fluid moves relative to another. V

iscosity, p, can be defined as the ratio of the shear stress to the rate of shear.

I /

TRA&&RYAT~ON O

F WA

XY CR

UbE

OILS

,For lam

inar flow in pipes, friction loss ie given by

. /

2

&.

(PI -P

2) 32 p

U

-= /

L

o2 w

hich can be rearranged in the form

[(PI - P2) D

I4LI

TW

-- '=

(8UD

) -(8U

D)

Therefore, for lam

inar flow,

. .

Rate of shear =

8U/D

J3.3)

and for turbulent flow,

Rate of shear =

(SU/D

) Cr

*..(3.4)

where C

ri3 correction factor which depends upon R

eynolds number.

Yield stress. It m

easures the ability of fluid to restart its flow aR

er shutdown of the

transportation system. T

he yield stress of an oil, at a given temperature is defined as the shear

stress required to initiate flow. It can thus be directly com

pared with theshear stress available or allow

able in a pipeline. T

he yield stress of waxy crudes ie influenced by-ite temperature

history, shear history, aging and composition.

3.3.2 R

heological Classification of Fluids

There exists a rate of shear and shear stress at each point in a flow

ing fluid. In determining

the rheology of fluids, any one of the following b

aic behaviour patterns (fluid types) may be

found upon agitation of the fluid at constant temperature.

New

ton

ian fluids. A

New

tonian fluid is one whose visco~

ity at a given temperature ie

independent of the rate of shear. There is a linear rdationship betw

een the shear streas and the rate of shear for a N

ewtonian fluid. T

he viscosity of a New

tonian fluid at a given

temperature is constant regardless of the velocity, previous agitation or shearing of the fluid.

Fluids

P

Purely viscour flddr

Tim

e dependent

P

I Flg. 3.1 R

heologlcal classlficaUon of lulds.

I

Page 23: Petroleum Refining Technology

Non

-New

toni

an fl

uids

. A no

n-N

ewto

nian

flui

d is

one

who

se vi

scos

ity a

t a g

iven

tem

pera

- tu

re is d

epen

dent

on

the

rate

of s

hear

. A fl

uid

havi

ng a

vis

cosi

ty g

reat

er th

an 20

Pa.

s is l

ikel

y to

be n

on-N

ewto

nian

. The

vis

cosi

ty of

non

-New

toni

an fl

uids

may

incr

ease

or d

ecre

ase

wit

h th

e ra

te o

f sh

ear,

dep

endi

ng o

n th

e ty

pe o

f fl

uid.

The

cla

ssif

icat

ion

of n

on-N

ewto

nian

flui

ds is

de

pict

ed in

Fig

. 3.1.

Tim

e-in

depe

nden

t non

-New

toni

an fl

uids

. A

non

-New

toni

an fl

uid

is s

aid

to b

e tim

e-

inde

pend

ent i

f the

she

ar s

tres

s at

any

rate

of

shea

r is

cons

tant

wit

h tim

e. T

he p

rope

rtie

s of

su

ch fl

uids

dep

endo

nly

on th

e m

agni

tude

of t

heim

pose

d sh

ear s

tres

ses a

nd n

ot o

n th

edur

atio

n of

the

stre

sses

. If

the

visc

osity

dec

reas

es w

ith

incr

ease

in

the

rate

of

shea

r, t

he f

luid

is

know

n as

a

pseu

dopl

astic

flui

d. T

his b

ehav

iour

,is g

ener

ally

rest

rict

ed to

a c

erta

in ra

nge

of s

hear

rate

s. A

t a

very

low

or h

igh

shea

r rat

e, fl

uid,

may

be N

ewto

nian

. If

the

visc

osity

inke

ases

wit

h in

crea

se in

rate

of s

hear

,the

flui

d is

know

n as

dil

atpn

t flu

id.

Bin

gham

-pla

stic

flui

ds e

xhib

it a

defi

nite

yie

ld s

tres

s be

low

whi

th n

o flo

w o

ccui

s (t

he

beha

viou

r is

that

of a

sol

id).

A fi

nite

forc

e mus

t be

appl

ied

to p

rodu

ce m

oven

lent

. The

line

* re

latio

nshi

p be

twee

n th

e ra

te o

f sh

ear

and

shea

r str

ess

for

Bin

gham

-pla

stic

flui

ds d

oes

not

pass

thm

ugh

the

orig

in.

Tim

e-de

pend

ent n

on-N

ewto

nian

-flu

ids,

A n

on-N

ewto

nian

flui

d is

sai

d to

be

time-

de-

pend

ent i

f th

e sh

ear

stre

ss c

hang

es w

ith th

e du

rati

on o

f sh

ear.

In

othe

r wor

ds, t

he v

isco

sity

of

suc

h flu

ids

at an

y ti

me

depe

nds

on th

e am

ount

of p

revi

ous

agita

tidn

or s

hear

ihg

of th

e fl

uid.

A

flui

d w

hose

vis

cosi

ty d

ecre

ases

wit

h ti

me

at a

giv

en s

hear

rate

is c

alle

d th

ixot

ropi

c.'If

the

visc

osity

of a

flui

d in

crea

ses

with

tim

e at

a g

iven

she

ar ra

te, W

e fl

uid

is c

alle

d rh

eope

ctic

. 1

) Vis

coel

asti

c fl

uid

s. T

hese

exh

ibit

man

y ch

arac

teri

stic

s of

sol

ids.

The

ir r

esis

tanc

e to

de

form

atio

n is

pro

port

iona

l to

the

usua

l vis

cous

eff

ect, p

lus an e

lhti

ceff

ect t

hat

is a

ac

tio

n

of ti

me.

Whe

n th

e ra

te of

str

ain

of s

uch

a fl

uid

is su

dden

Iy in

crea

sed,

ther

e is

a re

laxa

tion

tim

e du

ring

whi

ch t

he s

tres

s ch

ange

s fr

om i

ts o

rigi

dal t

o a

new

ste

ady-

stat

e va

lue.

Equ

atio

ns

deve

lope

d for

pse

udop

last

ic fl

uids

can

be

appl

ied

to th

e st

eady

-sta

te fl

ow of

vis

coel

astic

flui

ds.

Figu

re 3.2 s

how

8 the

vari

atio

n of

vis

cosi

ty w

ith s

hear

rate

for d

iffe

rent

type

s of f

luid

. Cur

ve

num

ber 1

is ty

pica

l of t

he re

spon

se o

f a

New

toni

an fl

uid.

A B

ingh

am-p

last

ic fl

uid

is c

hara

c-

teri

zed

by a

flow

cur

ve 2 w

hich

is

a st

raig

ht li

ne h

avin

g an

inte

rcep

t b o

n th

e sh

ear

stre

ss

axis

. The

stre

ss

is c

alle

d th

e yi

eld

stre

ss w

hich

mus

t be

exce

eded

for f

low

to co

mm

ence

. The

flo

w b

ehav

iour

is d

escr

ibed

by an e

quat

ion

.,-.-,

With

pse

udop

last

ic b

ehav

iour

, th

e fl

uid

disp

lays

inc

reas

ing

visc

osity

wit

h de

crea

sing

sh

ear r

ate.

Thi

s mea

ns th

at th

ere

is a

no

n-h

ear

rela

tion

ship

bet

wee

n sh

ear s

tres

s an

d sh

ear

rate

. Cur

ve n

umbe

r 3 re

pres

ents

pse

udop

last

ic b

ehav

iour

. Dila

tent

beh

evio

ur is

dep

icte

d by

cu

rve

num

ber

4.

Mos

t wax

y cr

ude

oil g

els e

xhib

it th

ixot

ropi

c or

occ

asio

nally

rheo

pect

ic b

ehav

iour

. Whe

n a

waxy c

rude

oil

is a

llow

ed to

coo

l bel

ow it

s po

ur p

oint

und

er s

tati

c co

nditi

on in

a p

ipel

ine,

the

para

ffin

s will

cry

stal

lize

caus

ing

the

enti

re m

ass o

f cru

de to

gel

. To

init

iate

flow

aga

in, a

fini

te

pres

sure

is re

quir

ed. F

or w

axy

crud

es, y

ield

str

ess

is a

n in

vers

e fu

nctio

n of

tem

pera

ture

and

in

crea

ses w

ith

decr

easi

ng te

mpe

ratu

re. W

ith th

e cr

ude o

il th

at is

belo

w it

s pou

r poi

nt, t

he w

ax

crys

tal s

truc

ture

s in

the

oil s

tart

to b

reak

dow

n as

flow

beg

ins.

Thi

s br

eakd

own

depe

nds

both

on

the

tim

e an

d ra

te of

she

ar.

Sta

rt u

p pr

essu

re d

epen

ds to

a l

arge

ext

ent o

n w

heth

er t

he o

il is

coo

led

unde

r st

atic

or

dyna

mic

con

ditio

n. F

or in

stan

ce, t

he a

dditi

onal

res

tart

pre

ssur

e w

ill b

e su

bsta

ntia

lly

high

er

I - W

RASP

ORT

ATIO

N OF W

AXY

CR

UM

,OIL

S

35

/2

Shea

r rat

e -

fig

. 3.2

Typ

ical

non

-~ew

tioni

onflu

ids.

for

a st

atic

ally

coo

led

pipe

line

(the

flui

d w

as a

bove

the

pour

poi

nt w

hile

flow

ing

and

allo

wed

to

coo

l dur

ing

shut

dow

n of

the

pip

elin

e) th

an fo

r on

e th

at h

as b

een

dyna

mic

ally

cool

ed (

the

flui

d was

alre

ady

belo

w p

our p

oint

whe

n pi

pelin

e w

as s

l~ut

dow

n), i.e

. the

cool

ing

occu

rred

due

-- to th

e flo

w o

f the

cru

de in

the

pipe

line.

3.4.

FLO

W P

RO

PE

RTI

ES

OF

WA

XY C

RU

DE

OIL

S

The

vis

cosi

ty of

cru

de o

il is p

erha

ps it

. mos

t im

port

ant p

hysi

cal p

rope

rty.

For

mos

t cru

des,

at

suff

icie

ntly

high

tem

pera

ture

, the

visc

osity

at a

give

n te

mpe

rahu

e is

cons

tant

and

the

crud

e,

alth

ough

chem

ical

ly ve

rym

mpl

?~, is

a si

mpl

e Ne

v

is re

duce

d,

how

ever

, the

flow

pro

pert

ies

of a

cru

de o

il ca

n re

adil

y ch

ange

ve

ry c

ompl

ex fl

ow b

eh

aw

due to th

e cr

ysta

lliza

tion

of

of a

spha

lten

es. T

he w

axes

bas

ical

ly c

onsi

st o

f fo

rm an

inte

rloc

king

str

uctu

re o

f pl

ates

, ne

edle

or

mal

form

ed ~

sta

ls. The

se c

ryst

als

Can

entr

ap th

e oi

l int

o a

gel-

like

stru

ehue

that

is c

apab

le o

f for

min

g th

ick

depo

sits

in p

ipes

and

Page 24: Petroleum Refining Technology
Page 25: Petroleum Refining Technology

Cor

rela

tion

of t

he m

odel

pip

elin

e te

st re

sult

s fo

r act

ual p

ipel

ine

de

sip

ie tl

orm

ally

bas

ed

on th

e pr

evio

us e

xper

ienc

e. S

ome o

f the

se c

orre

latio

ns a

re d

evel

oped

by th

e de

sign

ers

by p

ilot

plan

t tes

ts si

mul

atin

g th

e fi

eld

cond

ition

s in

a te

st lo

op.

A g

ener

al e

quat

ion

for c

alcu

latin

g re

star

t re

q~

rem

eh

fo

r a c

oole

d li

ne is

YLC

p=

- A

... (

3.6)

w

here

P i

s th

e pr

essu

re r

equi

red,

Y i

s th

e yi

eld

stre

ss o

f ge

lled

crud

e (th

itr v

alue

mus

t be

de

term

ined

in

labo

rato

ry te

sts

and

is d

iffe

rent

for

sta

tic

and

dyna

mic

coo

ling)

, L is

the

line

le

ngth

, C is

the

circ

umfe

renc

e of i

nsid

e pi

pe w

all a

nd A

is th

e cr

oss

sect

iona

l are

a of

pip

e.

3.5.

3 F

low

at R

esta

rt

kc A

t the

tim

e of

res

tart

of t

he p

ipel

ine

beca

use

of v

ery

high

vis

cosi

ty, t

he fl

ow ra

te is

ejrp

ecte

d to

be

low

. Thi

s, h

owev

er, d

epen

ds o

n av

aila

ble

shea

r str

ess a

s com

pare

d to

thej

riel

d st

ress

. In

any

case

, the

min

imum

flo

w c

ondi

tiori

s of

the

pum

ps h

ave

to b

e in

vest

igat

ed.

If a

pum

p is

op

erat

ed a

t a v

ery

low

flow

rate

, add

itio

nal w

ear d

ue to

unb

alan

ced

flow

is ex

pect

ed. F

urth

er,

due t

o th

e po

or e

ffic

ienc

y, th

e oi

l will

be h

eate

d an

d, a

fter

a sh

ort w

hile

, the

allo

wab

le m

axim

um

tem

pera

ture

will

be

exce

eded

. Thi

s li

mit

s th

e al

low

able

tim

e fo

r the

ope

ratio

n of

the

pum

ps

with

low

flow

. If

th

e re

star

t flo

w r

ates

do

not

mee

t th

e pu

mp

requ

irem

ents

, gp

ecia

l pu

mps

wit

h ap

- pr

opri

ate

char

acte

rist

ics h

igh

hea

d, lo

w fl

ow) h

ave

to b

e us

ed fo

r res

tart

of t

he p

ipel

ine.

3.5.

4.E

ffec

tive

Pip

elin

e V

isco

sity

Fo

r det

erm

inin

g pr

essu

re g

radi

ents

in th

e pi

pelin

e, e

ffec

tive p

umpi

ng v

isco

sitie

s ha

ve to

be

det

erm

ined

. Usi

ng th

ese

visc

ositi

es, t

he c

onve

ntio

nal f

orm

ulae

can

be

used

for c

alcu

latio

n of

pre

ssur

e dm

p.

The

effe

ctiv

e pip

elin

e vi

scos

ity fo

r cal

cula

ting

fric

tiona

l pre

ssur

e dr

op a

t var

ious

flow

rate

s an

d te

mpe

ratu

res

can

be p

redi

cted

by

rota

tion

al v

isco

met

er te

sts.

Due

to w

ax c

ryst

alli

zati

on

at lo

w te

mpe

ratu

re, t

he c

onve

ntio

nal c

apill

ary

tube

vis

com

eter

s can

not b

e us

ed. M

oreo

ver,

for

non-

New

toni

an fl

uids

vis

cosi

ty is

dep

ende

nt o

n sh

ear r

ate.

For

this

ser

vice

as

also

for

othe

r sl

un

y se

rvic

es, r

otat

iona

l vis

com

eter

s ar

e us

ed. T

he s

ampl

e is

take

n in

a d

oubl

e w

de

d c

up

(a re

frig

eran

t flo

wid

in b

etw

een

the

two

wal

ls).

The

out

er c

ylin

der i

s ro

tate

d by

a v

aria

ble

spee

d m

otor

. The

&er

cy

linde

r is s

uspe

nded

from

a to

rsio

n w

ire

cons

istin

g of

a s

tain

less

stee

l tu

be, t

he

defl

ectio

n be

ing

mea

sure

d by

a b

alan

ced

poin

ter.

The

rpm

of

the

oute

r cy

linde

r m

ultip

lied

by t

he i

nstr

umen

t co

nsta

nt g

ives

the

she

ar r

ate.

The

def

lect

ion

read

ing

of t

he

poin

ter m

ultip

lied

by a

noth

er in

stru

men

t con

stan

t giv

es sh

ear s

tres

s. T

he ra

tio

of s

hear

str

ess

to s

hear

rat

e gi

ves

the

visc

osity

of t

he fl

uid.

W

hen

the

oil i

s at

such

a te

mpe

ratu

re th

at fl

ow is

non

-New

toni

an, t

he R

eyno

lds n

umbe

r is

a f

unct

ion

of v

isco

sity

whi

ch it

self

is

a fu

nctio

n of

the

eff

ectiv

e rat

e,of

she

ar. T

here

fore

, an

inte

rmed

iate

cal

cula

tion

is re

quir

ed to

arr

ive a

t the

app

ropr

iate

pip

elin

e vis

cosi

ty fo

r cal

cula

t-

ing

pres

sure

dro

ps.

Vis

cosi

ty of

the

oil

to b

e pi

pelin

ed is

det

erm

ined

at v

ario

us te

mpe

ratu

re a

nd ra

te o

f she

ar

by r

otat

iona

l vi

scom

eter

s. T

hese

are

use

d to

plo

t-vi

scos

ity v

ersu

s te

mpe

ratu

re c

urve

s fo

r va

riou

s rat

e of

she

ar. T

his

plot

can

be

used

to d

eter

min

e th

e te

mpe

ratu

re be

low

whi

ch th

e oi

l will b

ehav

e as

non

-New

toni

an fl

uid.

It i

s req

uire

d to

find

the

effe

ctiv

e vis

cros

ities

of t

he o

il fo

r pu

mpi

ng a

t'dif

fere

nt f

low

rat

es a

t var

ious

tem

pera

ture

s.

The

fis

t ste

p is

to u

se th

e pl

ot o

f vis

cosi

ty v

ersu

s te

mpe

ratu

re-a

nd p

lot c

urve

s of

vis

cosi

ty

vers

us ra

te o

f she

ar fo

r dif

fere

nt te

mpe

ratu

res.

TRAS

PORT

ATIO

N O

F WAX

Y CR

UDE

OIL

S

The

.sec

ond

step

is t

o pl

ot c

urve

s of

vis

cosi

ty v

ersu

s ra

te o

f sh

ear

for

diff

eren

t pip

elin

e th

roug

hput

as f

ollo

ws:

Fo

r a

give

n flo

w r

ate,

an

equi

vale

nt s

hear

rat

e is

det

erm

ined

by

Eq.

3.3

. Ass

umin

$ th

e va

lue

for v

isco

sity

, the

Rey

nold

s nu

mbe

r is

cal

cula

ted.

If t

he fl

ow is

in tu

rbul

ent r

egio

n, th

e co

rrec

tion

fact

or f

or r

ate

of s

hear

is re

ad f

rom

the

plot

of t

he c

orre

ctio

n fa

ctor

for s

hear

rate

ve

rsus

Rey

nold

s num

ber.

Usi

ng th

is fa

ctor

the

effe

ctiv

e rat

e of

she

ar is

obt

aine

d. B

y re

peat

ing

this

for d

iffe

rent

val

ues

of v

isco

sity

, a c

urve

of v

isco

sity

ver

sus e

ffec

tive r

ate

of s

hear

for a

flow

ra

te c

an b

e su

peri

mpo

sed

on th

e pl

ot o

f vis

cosi

ty v

ersu

s rat

e of

she

ar fo

r var

ious

tem

pera

ture

. T

he in

ters

ectio

n of

the

cons

tant

thro

ughp

ut c

urve

s with

the c

onst

ant t

empe

ratu

recu

rves

$ves

th

e ap

prop

riat

e vi

scos

ities

to

be u

sed

for

thes

e co

nditi

ons.

An

eff

ectiv

e vi

scos

ity v

ersu

s te

mpe

ratu

re c

urve

can

be

plot

ted

for

the

vari

ous

Chr

ough

puts

. As

men

tione

d ea

rlie

r, u

sing

th

ese

valu

es o

f eff

ectiv

e vis

cosi

ty, p

ress

ure

drop

s in

the

vari

ous s

ectio

ns of

the

pipe

line

can

be

calc

ulat

ed.

3.6

ME

THO

DS

FO

R P

IPE

LIN

E T

RA

NS

PO

RTA

TIO

N O

F W

AXY

CR

UD

E O

ILS

O

ne o

f the

follo

win

g m

etho

ds fo

r pip

elin

ing

wax

y cr

ude

oils

may

be

cons

ider

ed:

(a)

Sele

ct p

umps

to al

low

a p

aral

leY

seri

es ar

rang

emen

t, w

hich

coul

d tra

nspo

rt a

t slo

wer

ra

teg

and

high

er p

ress

ures

whe

n re

quir

ed. T

he p

ipin

g co

uld

be m

anif

old

so t

hat

para

llel

arr

ange

men

t wou

ld b

e ac

com

mod

ated

by r

epos

ition

ing

of v

alve

s to

hand

le

high

er fl

ow r

ates

. (b

) U

se o

f sep

arat

e lo

w fl

ow, h

igh

head

pum

ps fo

r res

tart

ing.

S

ide

trap

s at

freq

uent

inte

rval

? to

allo

w s

hort

s6&

ons

to b

e st

arte

d se

para

tely

. R

ever

se p

umpi

ng to

cre

ate

back

and

fort

h pu

mpi

ng se

quen

ce w

hich

pro

hibi

ts s

tati

c co

ol d

own.

U

se o

f pou

r poi

nt d

epre

ssan

ts/f

low

impr

over

s.

Add

ing

hydr

ocar

bon

dilu

ent s

uch

as a

less

wax

y cr

ude

or li

ght d

istil

late

. Iq

ject

ion

of w

ater

to fo

rm a

laye

r bet

wee

n pi

pe w

all a

nd c

rude

. M

ixin

g w

ater

wit

h cr

ude

to fo

rm a

n em

ulsi

on.

Dis

plac

emen

t with

wat

er o

r lig

ht h

ydro

carb

on li

quid

in ca

se of

shu

tdow

n of

pip

elin

e.

Sep

arat

ion

at h

ighe

r tha

n no

rmal

pre

ssur

e to

allo

w a

s muc

h ga

s and

ligh

t hyd

roca

r-

bons

as p

ossi

ble t

o re

mai

n in

the

crud

e.

Con

ditio

ning

the

crud

e be

fore

pip

elin

ing

to c

hang

e th

e w

ax c

ryst

al s

truc

ture

and

re

duce

pou

r poi

nt a

nd v

isco

sity

. F

urth

er s

ub-d

ivis

ion

of p

ipel

ine

into

sm

alle

r se

gmen

t or

redu

cing

bat

ch l

engt

h of

w

axy

md

e to

incr

ease

max

imum

she

ar s

tres

s av

aila

ble.

C

ombi

natio

n of

the

abo

ve m

etho

ds.

Pipe

linin

g th

e cr

ude

as an

oil i

n w

ater

(O

m) e

mul

sion

redu

ces t

he fl

ow p

rope

rtie

s to

nea

rly

the

visc

osity

of th

e co

ntin

uous

wat

er p

hase

. An

ON

emul

sion

pip

elin

e han

dlin

g 40

000

barr

els

of o

il pe

r da

y (2

65 m

3 h-

l) o

f 70

vol.%

crud

e oi

l has

bee

n op

erat

ing

in K

alim

anta

n (B

orne

o) in

In

done

sia

sinc

e 19

62. B

lend

ing

wit

h a

less

wax

y cr

ude

oil

or d

isti

llat

e im

prov

es th

e flo

w

prop

erti

es b

y al

teri

ng t

he w

ax s

olub

ility

rel

atio

nshi

ps.

Bot

h of

the

se m

etho

ds h

ave

the

disa

dvan

tage

of r

educ

ing

the

crud

e oi

l car

ryin

g ca

paci

ty of

the

pip

elin

e. N

ote

that

sepa

rati

on

at th

e w

ell h

ead

to in

clud

e m

ore

cond

ensa

te in

the

crud

epjl

(if

avai

labl

e) h

as th

e sa

me

effe

ct

I as d

ilutio

n. T

here

is o

ne in

tere

stin

g ca

se o

f a s

hear

and

te~

per

atu

re trea

tmen

t bei

ng u

sed to

I fa

vour

ably

alt

er th

e flo

w p

rope

rtie

s of

wax

y cr

ude

oils

in (A

ssam

(In

dia)

. Mor

e re

cent

ly, p

our

i

Page 26: Petroleum Refining Technology

40 PETR

OLEU

M R

EFIN

ING

TECH

NO

LOG

Y

point depressantdflow im

provers have been developed that, in small concentration, affect the

crystal growth, and as a result im

prove the flow properties.

Of the various m

ethods developed, the use of pour point depressantdtlow im

provers is found to be m

ore attractive. The m

ain attraction of this method is its relative cheapnees and

variability of dosage with respect to the tem

perature and desired viscosity requirements.

3.6.1 Use of P

ou

r Po

int D

epressantslFlow

Imp

rov

ers (

The injection of pour point depressantfflow

improver additives appears to hold the greatest

promise of achieving the desired overall objectives of operational safety and operating

economy. N

ow im

provers should have the capacity to reduce the pour point, viscosity and yield stress under dynam

ic conditions; and restart the pum

ping after a shutdown w

ith the available shew

stress. C

hemically pour point depressantshlow

improvers are ashless polym

eric additives which

when added into the crude oil at 300-600 ppm

level reduce the pour point and viswsity of the

crude oil. Polymeric m

aterials.widely used as pour point depressantdflow

improvers are (a)

alkyl acrylate polymers and cdpolym

ers, (b) ole

h alkyl m

aleate copolymers, (c) vinyl ester

polymers and copolym

ers, and (dl alkylated polystyrene. Norm

ally, the average molecular

weight of the com

mercial available pour point depressants for crude oils is betw

een 2000 to 20000.

Various flow

improvers developed at R

RL

, Jorhat (India) are SWA

T-104, SW

AT

-106, FIR1 and FIR

I-B. T

hese are polymerdcopolym

ers, easily soluble in crude oil around 4M5O

C and

non-corrosive. They are used in pipelining crudes of B

ombay H

igh and Asssm

(India).

3.6.2 Mechanism

of Flo

w Im

pro

vem

ent

When a w

axy crude oil is cooled below its cloud point, the w

ax crystals form and begin to

agglomerate and w

ith further temperature reduction crystal agglom

eration reaches a point at w

hich a gel structure is formed below

the pour point due to interlocking of the growidg crystals

and dependent on constituents like resins, asphaltenes, asphalts, paraffin and microcrystal-

line waxes, etc., their m

olecular weight, structure and quantity and also on the rate of cooling

and degree of agitation during cooling. When the additives or flow

improvers are added, they

alter the wax crystal size and shape in som

e manner and prevent the tendency to interlock.

l'he'flow

improvers or pour point depressants act by retarding the grow

th of the wax crystals

in the XY crystallographic plane, thereby producing sm

aller crystals of higher volume/surface

ratio. It appears that the flow im

provers cocrystallize with the grow

ing wax crystal, leading

to the formation of a fault in the otherw

ise compact regular w

ax crystal and resulting in dim

inished gel strength, so that by coating on to a grow

ing wax crystal the flow

improvers

reduce the tendency of wax crystals to interlock.

3.6.3 Po

int of A

dditive Injectio

n

As a general rule, the additives should be injected into the crude above or around its cloud point and also at a tem

perature of some 20°C

above the pour point of the additive. The additive

pour point could be depressed considerably by cutting (diluting) the basic component w

ith kerosine, or arom

atic solvents. The preferred location of iqjection should be at a point w

here N

o heating of the oil is required (utilize the heat of formation)

Subsequent external application of heat can be avoided or minim

ised. T

he maxim

um benefit can be derived in the system

downstream

.

TRA

SP

OR

TATIO

N'O

F WA

XY CR

UD

E OILS

41

All of the above considerations point to additive injection into the crude stream

at well

head.

3.6.4 Po

ur P

oin

t Reduction b

y A

dditives P

our point measurem

ents on crude oils have been used to detect low tem

perature handling problem

s. How

ever, as mentioned already, they do not necessarily predict the field perfor-

mance. Pour point can at best be used for prelim

inary screening of various additives for their potency w

ith a particular crude oil. T

hese studies were carried out in the Salaya-K

oyali-Mathura crude pipeline by O

il &

Natural G

as Com

mission, India. T

he line was originally designed for transportation of low

pour point M

iddle East crude oils (L

ight Arabian and N

orth Rum

aila). With the discavery of

the B

ombay H

igh crude oil, it was decided to process this crude too at these refineries. E

fforts w

ere made to find a suitable solution to the problem

of pipeline transportation of this high pour point (30°C

) Bom

bay High crude oil to these refm

eries during winter. It w

as reported by m

odel pipeline tests that the line will not be able to take a restart after cooling statically to

low w

inter temperature of around 16O

C.

A num

ber of flow im

prover additives were tested for their effectiveness on B

ombay H

igh crude. b

orn

preliminary tests, Shell-sw

im-5T

and Esso Paradyne-80 w

ere reported to be the m

ost effective additives in lowering pour point. F

urther tests by rotational viscometers

indicated that, for similar level of dosage, both effective viscosity and yield stress w

ere reported to be low

er in case of Shell-swim

-ST as com

pared to Esso Paradyne-80. It w

as therefore concluded th

at shell-swim

-5T is superior to E

sso Paradyne-80. Subsequently, Shell-swim

-5T

was used for transportation of the B

ombay H

igh crude to Uran term

inal through the subm

arine pipeline from the production platform

. Extensive studies w

ere subsequently done at IIP

, Dehradun and G

ujarat Refinery to determ

ine the optimum

doping conditions for Shell-sw

im-5T

in Bom

bay High crude. k

om

these.studies the optimum

doping levels were

reported to be 250-300ppm of the Shell-sw

im-5T

. The effect of doping temperature on the pour

point was reported to be negligible.

3.6.5 Effect of F

low Im

pro

vers on Y

ield Stress a

nd

Viscosity

Significant reduction in yield stress and effective viscosities can be achieved by doping w

axy crude oils with flow

improvers. T

he following results w

ere reported for the effect of Shell-sw

im-5T

(flow im

prover) on Bom

bay High crude oil.

I

These results show

significant reduction in yield stress with 250 ppm

doping. Further

improvem

ent with higher doping levels is, how

ever, marginal. In fact in som

e cases the trend I 1

was reported to be reversed w

ith higher doping levels, as shown below

by the following m

odel pipeline tests conducted by O

NG

C.

Viscosity @

160C

CP

'45.0 45.0 42.4 41.0

Doping level

PPm

Nil

250 300

400

Yield stress @ 160 C

dyneslcm2

330.0 62.5 62.5 45.8

Page 27: Petroleum Refining Technology

42

PETR

OLE

UM R

WN

INQ

TEC

HNO

LOG

Y . -

I 1u

.I.

I 58

9 at

45

dyne

dcm

2 10

00

27.5

96

6 at

45 d

ynes

/cm

2 H

ence

, opt

imum

dop

ing

leve

ls b

y ex

tens

ive l

abor

ator

y st

udie

s mus

t be

dete

rmin

ed b

efor

e st

arti

ng a

dditi

ve in

ject

ion.

1

pin

t DeP

res-

sa

nt in

Bom

bay

Hig

h CNde

Nil

I

400

750

3.6.6

Inco

rpor

atio

n of

Low

Po

ur

Po

int C

rude

s in

Waxy C

rud

es

Aa m

entio

ned

earl

ier,

this

can

be

one

of t

he p

roba

ble

solu

tions

to p

ipel

ine

tran

spor

tati

on

prob

lem

s of w

ary

crud

es p

rovi

ded

the

low

pour

pin

t cm

de is

eas

ily a

vaila

ble f

or b

lend

ing

and

. no

pro

blem

s ar

e ex

pect

ed to

be

enco

unte

red

in p

roce

ssin

g th

e cm

de b

lend

as

far

aa p

rodu

ct

spec

ific

atio

ns ar

e co

ncer

ned.

Onc

e ag

ain

Be

exam

ple

of S

alay

a-K

oyal

i-M

athu

ra pi

pelin

e ca

n be

cite

d he

re. T

he G

ujar

at s

pd M

athu

ra re

fine

ries

fed

by this p

ipel

ine (

Guj

arat

part

ly) are to

p

mn

n p

artl

y B

omba

y H

igh

crud

e an

d pa

rtly

low

pou

r po

int

Mid

dle

Eas

t cr

ude.

A s

mal

l pe

rcen

tage

of tbP

Mid

dle

Eas

t cm

de m

ixed

wit

h B

omba

y H

igh

cmde

will

not

res

ult io a

ny

seri

ous

proc

essi

ng p

robl

ems.

The

rep

orte

d re

sult

s of

lab

orat

oq s

tudi

es o

n bl

ends

of M

iddl

e E

ut c

rude

wit

h B

omba

y Hig

h m

de

indi

cate

that

the

inco

rpor

atio

n of B

asra

h cm

de in

dop

ed

Bom

bay

Hig

h cm

de s

how

s no

furt

her r

educ

tion

in p

our p

oint

. Ib

iq co

uld

be d

ue to

redu

ctio

n in p

erce

ntag

e of

n-p

arfi

ns

whe

n B

asra

h cm

de is

mix

ed, t

he e

ffec

t of p

our p

oint

dep

re~

sant

be

ing

mor

e pr

edom

inan

t on

n-pa

raff

ins

as c

ompa

red

to ia

o-pa

rafi

ins.

How

ever

, a s

igni

fica

nt

redu

ctio

n in

the

yiel

d st

ress

of t

he b

lend

is re

port

ed, a

s sho

wn

belo

w.

due to co

ngea

ling a

t 18O

C.

21.2

43

5 at

45

dyne

s/cm

2 o

n n

I

100%

Bom

hnv Hioh

Yie

ld s

tres

s at

1 kc, dy

tws~

cm~

Vis

cosi

ty at

16°

C a

t flo

w d

eueI

op.

men

t, cP

The

dop

ing

tem

pera

ture

is

quite

impo

rtan

t as

far

as y

ield

str

esse

s ar

e co

ncer

ned.

The

bl

ends

of B

asra

h w

ith

Bom

bay

Hig

h cr

ude

dope

d at

50°

C is

repo

rted

to g

ive

bett

er r

esul

ts a

s co

mpa

red

to t

empe

ratu

re o

f 30

°C.

Thi

s is

sh

ow

by

the

follo

win

g ex

peri

men

tal

resu

lts

repo

rted

.

Tes

t was

aba

ndon

ed a

s oil

coul

d no

t be

trans

ferr

ed to

mod

el p

ipel

ine

- -

/ .

--I-.

100%

Bom

bay

Hig

h w

ith 2

50 pp

m o

f pou

r poi

nt d

epre

ssan

t 90

% B

omba

y H

igh

+ 10

% B

asra

h w

ith 2

50 p

pm p

our p

oint

de

~res

aant

.

Cru

de bl

end

.

330.

0

62.5

J

5.0

Yield

stre

ss a

t 16"

C, d

ynes

/cm

2 1

90%

Bom

bay

Hig

h + 1

0% B

asra

h w

ith 2

50 pp

m p

our

poin

t de

pres

sant

TRA

SPO

RTA

TIO

N O

F W

AXY

CRUD

E O

ILS

90%

Bom

bay

Hig

h + 1

0% B

asra

1 .

- po

int

depr

essa

nt

3.6.

7 C

rud

e O

il C

ondi

tion

ing

This p

roce

ss i

s de

velo

ped

by O

il In

dia

Lim

ited.

The

cru

de o

il co

nditi

onin

g is

a u

niqu

e pr

oces

s in

whi

ch th

e cm

de o

il is

firs

t hea

ted

to m

elt a

nd d

isso

lve t

he w

ax in

it. T

here

afte

r, o

n dy

nam

ic co

olin

g an

d w

brkb

g tb

ug

h th

e p

mp

the

crud

e oi

l is

subj

ecte

d to

sta

tic

cool

ing

at

a pr

edet

erm

hed

rate

. T

he r

esul

t is

the

con

ditio

ned

crud

e oi

l w

hich

has

muc

h im

prov

ed

phys

ical

pro

pert

ies

than

the

virg

in c

rude

oil.

The

con

ditio

ned

crud

e oi

l rem

ains

flui

d at

muc

h lo

wer

tem

pera

ture

and

pos

sess

es s

atis

fact

my

phys

ical

pro

pert

ies

so fa

r as

tran

spor

tati

on o

f cr

ude

oil t

hrou

gh t

he p

ipel

ine

to re

fine

ries

dur

ing

the

win

ter m

onU

s is

con

cern

ed. This

has

been

em

ploy

ed fo

r tra

nspo

rtin

g wary c

rude

oils

from

Ass

am (I

ndia

).

I, t

he a

ctua

l pro

cess

the

cru

de o

il is

hea

ted

to a

tem

pera

ture

of

lCO

°C i

n tu

be h

eate

r.

Bef

ore

ente

ring

into

the

tube

hea

ter,

the

cru

de o

il pa

sses

thr

ough

hea

t ex

chan

ger

and

exch

ange

s he

at w

ith

the

outg

oing

oil

from

the

hea

ter,

bri

ngin

g do

wn

its

tem

pera

ture

to

65O

C by

dyn

amic

cool

ing.

The

crud

e oi

l at 6

5OC

is s

tare

d in

a ta

nk fr

om w

here

it p

asse

s th

mug

h a

pum

p to

sta

tic

cool

ing

vess

els,

com

mon

ly c

alle

d co

nditi

onin

g ve

ssel

s, T

hese

ves

sels

are

es

sent

ially

she

U a

ndtu

be h

eat e

xcha

nger

d'in

whi

ch c

rude

oil

is ta

ken

in th

e sh

ell s

ide

and

cool

ing

wat

er is

pas

sed

thro

ugh

tube

s. T

he c

on&

onin

g ve

ssel

s fo

llow

a b

atch

tim

e cy

cle

of

208

min

utes

to a

chie

ve c

oalin

g of

cru

de o

il &

om 6

5OC to l8

.S0C

(th

is in

clud

es h

~&

g

tim

e of

cm

de oi

l and

its

empt

ying

out

tim

e al

so).

The

cool

irig o

f the

crud

e oil

in th

e co

ndit

iohg

vess

els

is e

ffec

ted

by c

ircu

latin

g w

atet

s, n

amel

y in

tem

edia

te a

nd re

lrig

erat

ed w

ater

s. I

nter

med

iate

w

ater

is

mai

ntai

ned

in a

clo

sed

circ

uit t

hrou

gh a

pum

p an

d he

at e

xcha

nger

in w

hich

coo

ling

med

ium

ia tbs

cool

ing

wat

er. T

he re

frig

erat

ed w

atu

is a

lso

mai

ntai

ned

in a

clo

sed

circ

uit

tho

ug

h a

pum

p an

d ab

sorp

tion

refr

iger

atio

n m

achi

ne. T

he c

ir

~t

w

ater

whi

le f

loin

g p

aat

evap

orat

or c

ham

ber o

f abs

orpt

ion

refi

gera

tion

mac

hioe

th

ou

gh

tube

bun

dles

get

s ch

illed

. h

the

tem

pera

ture

of c

rude

oil

is br

ough

t dow

n to

the

desi

red

leve

l of 1

8 - 2

g°C

, the

cmde

oi

l fro

m c

ondi

tioni

ng ve

ssel

s is

empt

ied

out a

utom

atic

ally

into c

ondi

tione

d oi

l sto

rage

tank

s.

The co

nditi

oned

oil

from

thes

e ta

nks

flow

s pi

pelin

e pum

ps th

roug

h a

boos

ter p

ump

and

this

5.0

25.0

5.0

25.0

po

int d

epre

ssan

t

E

50°C

Dop

ing

5.0

.---

- --

--

com

plet

es th

e pr

oces

s of

con

ditio

ning

.

90%

Bom

bay

Hig

h + 1

0% B

asra

h w

ith

300

ppm

pou

r I

5.0

I 25

.0

poin

t dep

ress

ant

I 90

% B

omba

y H

igh

+ 10

% B

asra

t po

int d

epre

ssan

t I

I E

3O0C

) Dop

ing

25.0

I 50

°CD

opin

g I

1

K. W

. won

, The

hody

nam

ics

for s

olid

solu

tion

- liqui

d - v

apor

equi

libri

a : W

ax p

hase

fo

rmat

ion from h

eavy

hyd

roca

rbon

mixtures, F

luid

Pha

se E

quili

bria

, Vol

. 30,

pp.

26

5-27

9 (19

86).

2. J.H. H

anse

n, A

. F

rede

nslu

nd,

K.S

.Ped

erse

n an

d H

.P.

Ron

ning

sen,

A t

her-

m

odvn

amic

mod

el fo

r pre

dict

ing

wax

form

atio

n in

cru

de o

ils, A

IChE

J, V

ol. 3

4, NO.

) 30

°C)D

opin

g

--- -

-"

12, p

p. 1

937-

1942

(1.9

88).

3.

S. ~angul~,Ftheological~arameteraand

so

lu

ti

o~

em

s

of w

axy

cmde

oil,

UR

Jh v

ol. 2

6, N

o. 2

, pp.

33-

34 (1

989)

. 4

P. D

atta

, H

. Dub

ey a

nd K

.L.P

ate1

, Pip

elin

e tr

ansp

orta

tion

of w

axy

crud

e oi

l fro

m

the

oil f

ield

s, C

hem

ical

Eng

inee

ring

Wor

ld, V

ol. X

W, p

p. 4

3-45

(199

0).,

5 R

. Pra

sad.

Waxy

crud

e oi

ls, I

n PI

PIN

G D

ESI

GN

HA

ND

BO

OK

J.J

. Mck

etta

, Ed.

. 1

-. -.

Mar

cel ~

ikk

er,i

l99

2).

6.

S

. Nai

k, C

.K P

atha

k, a

nd V

.P. S

harm

a, E

ffec

te of

ou

r pin

t de

p"es

sant

8 on

WaX

Y In

dian

cru

de o

il, IE

(1) J

., V

ol. 6

9, P

art

CH

2, p

p 60

-63,

(198

9).

Page 28: Petroleum Refining Technology

4 PETR

OLEU

M R

EflN

lNG

TECH

NO

LOG

Y

7. M

. N. S

unil Kum

ar, Review

s on polymeric and copolym

eric pour point depressants for w

axy crude oil, The Institute O

f Petroleum

, 0ct.-Dec., pp. 47-71 (1989).

8. B

. Sm

ith, Steps for finding crude properties, T

he Oil and G

as J., Vol. 77, N

o. 23, pp. 150-152 (1979).

9. L

. T. W

ardhaugh and D.V

. Boger, M

easurement of the unique flow

properties of w

axy crude oils, Chem

. Engg. R

es. Des., V

ol. 65, pp. 74-83 (1987). 10.

B. S

mith, H

eat transfer explored in pipelining high-pour-point crude oil, The O

il and G

as J., Vol. 77, N

O. 25, pp.110-lll(1979).

11. B

. Sm

ith, Restart of heavy crude lines probed, T

he Oil and G

as J., Vo1.77, N

o. 27, pp. 105-106 (1979).

12. B

. Sm

ith, Design of heavy crude facilities explored, T

he Oil and G

as J., Vol. 77, N

o. 29, pp. 69-70 (1979).

13. B

.M.A

. Rao, S.P. M

ahajan and K.C

.Khilar, A

model on the breakdow

n of crude oil gel, T

he Can. J. O

f Chem

. Engg., V

ol. 63, No. 1, pp. 170-172 (1985).

14. T

.Visw

anathan and KC

. Khilar, H

ydrodynamically induced gel breakdow

n in pipes, T

he Can. J. O

f Chem

. Engg., V

ol. 67, No. 3, pp. 353-360 (1989).

15. 3. S

estak, M.E. C

harles, M.G

. Caw

kwell and M

. Houska, S

tart-up of gelled crude oil pipelines, Journal O

f Pipelines, Vol. 6, N

o.1, pp. 15-24 (1987). 16.

M.G

. Caw

kwell and M

.E.C

harles, An im

proved model for start-up of pipelines

containing gelled crude oil, Journal of Pipelines, Vol. 7, N

O. 1, pp. 41-52, (1987).

17. A

. Majeed, B

.Bringeda1 and S

. Overa, M

odel calculates wax deposition for N

. Sea

oils, The O

il Gas J, V

ol. 88, No. 25, pp. 63-69 (June 18,1990).

18. R

.A. V

ora and D.P. B

harambe, Polym

eric flow im

provers, Indian J. Techol., V

ol. 31, N

o. 9, pp. 633-635 (1993). 19.

L.T

. Wardhaugh and D

.V. B

oger, Flow characteristics of w

axy crude oils : Applica-

tion to pipeline design, AIC

hE J., V

ol. 37, No. 6, p. 871 (1991).

20. J.A

. Svendsun, M

athematical m

odelling of wax deposition in oil pipeline system

s, A

IChE

J., Vol. 39, N

O. 8, pp. 1377-1388 (1993).

21. T

.F. Al-Fariss, E

ffect of wax on oil behaviour, Indian C

hemical E

ngineer, Vol. .=I,

NO

. 2, pp. 8-12 (1990). 22.

G.P.van E

ngelen, C.L

. Kaul, B. V

os and H.P. A

ranha, Study of flow

improvers for

transportation of Bom

bay High crude oil through subm

arine pipelines, Journal of P

et. Tech., V

ol. 33, No. 12, pp. 2539-2544 (1981).

23. T

.R. S

ifferman, Flow

properties of difficult-to-handle waxycrude oils, Journal of P

et. T

ech., Vol. 31, N

o. 8, pp. 1042-1050 (1979). 24.

C.A

. Irani and J. Zajac, H

andling of high pour point west A

frican crude oils, Journal of P

et. Tech., V

ol. 34, No. 2, pp. 289-298 (1982).

25. R

.N. T

uttle, High-pour-point and asphaltic crude oils and condensates, Journal of

Pet. T

ech., Vol. 35, N

o. 7, pp. 1192-1196 (1983). 26.

E.D

. Burger, T.K

. Perkins and J.H

. Striegler, S

tudies on wax deposition in th

eh

an

s A

laska Pipeline, Journal of Pet. T

ech., Vol. 33, N

o. 6, pp. 1075-1086 (1981). 27.

C. C

hang, D.V

. Boger and Q

.D. N

guyen, TLE yielding of waxy crude oils, Ind. E

ng* C

hem. R

es., Vol. 37, N

o. 4, pp. 1551-1559 (1992).

QU

ALIT

Y C

ON

TR

OL O

F

PE

TR

OLE

UM

PR

OD

UC

TS

~O

DU

CT

IO

N

Qunlity control of petrolcum

products 1s ;I n(bc(bssilq. il't hc protlucls ilrt! to give sillisii~ctory

pedormance to the custom

cra. Keeping in view

11

~. ascli~

in(~

ss of m

lch prlxluct. fi)r sp(*(:ilic purpose, standnrd urganisations have tn

fLrl m

d\v)(ls ol'trsl.~ and s~

cciticdin

nc. Bur\.;iu I

*

Ind

im S

tandard @IS

), New

Delhi is onc sc~

ch or~;rnis;~

lion in lndia w

hich stantlnrdihcs procedures and issues specilations. 111stilute of P

ctroleun~(ll'). 1J.K

and Anlvrican S(aic1y

for Testing &

Materials (A

Sl"l'), U

.S.A.

;IIX thc other tw

o i~

~~

~)

or

li

~~

~t

organisiltions w

llosc' m

ethods and specifications are widely follow

ed. Apart from

BIS

sl)ccifications, I!cntral Board

Of R

evenue, New

I)elhi has certain othcr specifications tbr the purpoxc ol'cxcisc Ic!vy. Some of

the important lim

its set by them are for carbon residue, flam

e height,fli~sh [m

int. a~

~d

visajsity.

4.2 CLA

SS

IFICA

TION

OF LA

BO

RA

TOR

Y TES

TS

Most of the laboratory tests can be broadly classified into seven groups 11;lst:tl 0

11 t11('

following characteristics: V

olatility C

ombustion

e V

iscosity and con

sistency

e

Melting point

e

Oxidation

Corrosion and protection

! e

Miscellaneous tests

Volatility is the m

ajor dcterminant ofthc tendency of a hydrocarbon to produce polontially

ex~

losiv

e vapours. It is also critically important to an cm

gine's start and warm

-up. Volatility

is gssessed by the follow

ing tests: (a) D

istillation (b) V

apour pressure (c) F

lash point and fire point T

he combustion properties of petroleum

products are evaluated by the following tests:

(a) Antiknock quality-O

ctane number, Perform

ance number

(b) Ignition quality-Cetane num

ber, Aniline point, D

iesel index, Calculated cetanc index

I I (c) C

alorific value (d

) Burning quality-Sm

oke point, Char value

I

Page 29: Petroleum Refining Technology

46

PETR

OLEU

M R

EFlM

lNG

TECH

NQLQ

GY

The

det

erm

inat

ion

of v

isco

sity

and

con

sist

ency

of

petr

oleu

m p

rodu

cts is

done

by

the

follo

win

g te

sts:

(Q

) K

inem

atic

vis

cosi

ty (R

edw

ood,

Say

bolt

, Eng

ler)

(b

) Vis

cosi

ty in

dex

(c) P

enet

rati

on te

sts

The

tes

ts d

esig

ned

to a

scer

tain

the

tend

ency

of

cert

ain

petr

oleu

m p

rodu

cts

to m

elt

or

liqu

efy,

,to s

olid

ify

or to

pre

cipi

tate

wax

-lik

e m

ater

ials

are

: (a

)'k8

ezin

g P

oint

(b

) Clo

ud p

oint

and

pou

r po

int

(c) D

rop

poin

t of g

reas

e (d

) Mel

ting

and

set

ting

poi

nt o

f wax

(e

l Sof

teni

ng p

oint

of b

itum

en

Met

hods

hav

e be

en d

evis

ed f

or t

he e

valu

atio

n of

sto

rage

sta

bili

ty a

nd r

esis

tanc

e to

ox

idat

ion

for g

asol

ine

and

avia

tion

turb

ine

fuel

. The

se in

clud

e:

(a) I

nduc

tion

per

iod

of g

asol

ine

(b) T

herm

al s

tabi

lity

of J

et fu

els

(c) G

um c

onte

nt

Mos

t cru

de o

ils a

re c

orro

sive

to g

reat

er o

r les

ser e

xten

t, fr

eque

ntly

due

to th

e pr

esen

ce o

f su

lphu

r co

mpo

unds

, org

anic

aci

ds (

mai

nly

naph

then

ic a

cids

) and

trac

es o

f br

ine.

The

refo

re,

test

met

hods

hav

e be

en d

esig

ned

to e

valu

ate

the

corr

osiv

e po

teqt

iali

ties

of

the

petr

oleu

m

prod

ucts

whi

ch a

re o

btai

ned

by p

roce

ssin

g of

cru

de o

ils. T

he fo

llow

ing

met

hods

are

ava

ilab

le:

(a) T

otal

sul

phur

(b

) Aci

dity

and

alk

alin

ity

(c) C

oppe

r-st

rip

corr

osio

n te

st

(dl S

ilve

r-st

rip

corr

osio

n te

st fo

r Avi

atio

n T

urbi

ne F

uels

T

he m

isce

Jlan

eous

test

s in

clud

e:

(a) A

sh

(b) C

arbo

n re

sidu

e (c

) C

olou

r (d

) Den

sity

.and

%pe

cifi

c gra

vity

(e

l Gas

ckp

mat

ogra

phy

of p

etro

leum

gas

es a

nd li

quid

s (f

) Ref

ract

ive

inde

x of

hyd

roca

rbon

liqu

ids

(g) L

ead

in g

asol

ine

(h) W

ater

sep

arom

eter

ind

ex (m

odif

ied)

(WSI

M)

(i) D

ucti

lity

T

he d

efin

itio

n, m

etho

d an

d si

gnif

ican

ce o

f tes

ts m

enti

oned

abo

ve a

re g

iven

bel

ow.

4.3

DIS

TILL

ATI

ON

T

he l

abor

ator

y di

stil

lati

on t

est

com

pris

es a

sim

ple

proc

ess

in w

hich

100 m

l sa

mpl

e is

va

pori

sed

in a

sui

tabl

y de

sign

ed f

lask

fit

ted

wit

h a

ther

mom

eter

, an

d co

nden

sed

in a

n

ice-

cool

ed tu

be a

nd c

olle

cted

in a

mea

suri

ng c

ylin

der.

Whe

reas

an

indi

vidu

al h

ydro

carb

on

wou

ld e

xhib

it a

sin

gle

boil

ing

poin

t, co

mm

erci

al fu

el b

lend

s boi

l ove

r a ra

nge

of te

mpe

ratu

res.

C

orre

spon

ding

rea

ding

s of

vap

our

tem

pera

ture

and

con

dens

ate

reco

vere

d ar

e m

ade

at

pres

crib

ed i

nter

vals

and

th

e re

sult

s ar

e pl

otte

d in

the

form

of

dist

illa

tion

cw

e. T

he in

itia

l bo

iling

poi

nt (

IBP

) is

tak

en a

s th

e te

mpe

ratu

re o

bser

ved

at t

he f

all

of t

he

firs

t dr

op o

f co

nden

sate

, and

the

fin

al b

oilin

g po

int

(FB

P) a

s th

e m

axim

um te

mpe

ratu

re r

each

ed d

urin

g

QUA

LITY

CON

TROL

OF

PETR

OLEU

M P

RODU

CTS

the

test

. Due

to s

mal

l los

ses

of v

apou

r a

t th

e co

nnec

tions

and

open

ings

in th

e ap

para

tus

and

the

resi

due

rem

aini

ng i

n th

e fl

ask

on c

ompf

etio

n of

the

tes

t, t

he t

otal

rec

over

y do

es not

gene

rall

y ex

ceed

abo

ut 9

7 pe

rcen

t. A

max

imum

dis

till

atio

n te

mpe

ratu

re li

mit

of 3

70%

has

to

be s

et, o

ther

wis

e th

e he

avie

r hy

droc

arbo

n m

olec

ules

are

liab

le t

o su

ffer

from

cra

ckin

g in

to

ligh

ter m

olec

ules

cau

sing

the

dist

illa

tion

cha

ract

eris

tics

to ch

ange

dur

ingt

heir

mea

sure

men

t.

Thu

s fi

els h

eavi

er th

an g

as o

ils c

anno

t be

test

ed c

ompl

etel

y fo

r dis

till

atio

n be

havi

our.

T

he d

isti

llat

ion

char

acte

rist

ics

give

a b

road

ind

icat

ion

of f

uel t

ype.

Bei

ng a

mea

sure

d

vola

tili

ty,

they

det

erm

ine

the

syst

em o

f fu

el m

eter

ing

requ

ired

(w

ick

feed

, car

bura

tion

or

atom

izat

ion)

, and

are

indi

cati

ve o

f the

vap

oris

atio

n be

havi

our o

f fue

ls in

sto

rage

(vap

our l

oss

and

vapo

ur lo

ck),

and

in p

isto

n-en

gine

man

ifol

ds (u

nifo

rmit

y of d

istr

ibut

ion

to c

ylin

ders

). T

he

exte

nt o

f th

e di

stil

lati

on r

ange

for

any

giv

en f

uel i

s re

pres

enta

tive

of

the

avai

labi

lity

of

that

fu

el fr

om th

e pa

rent

cru

de o

il. F

or a

fue

l wit

h a

high

dem

and,

the

aim

of t

he s

uppl

ier w

ill b

e to

ext

end

the

dist

illa

tion

ran

ge a

s fa

r as

pra

ctic

able

. How

ever

, due

to t

he in

terr

elat

ions

hip

betw

een

prop

erti

es a

nd th

e as

soci

ated

pro

blem

s, m

inim

um a

nd m

axim

um li

mit

s, re

spec

tive

ly,

may

nee

d to

be

set f

or th

e in

itia

l and

fina

l boi

ling

poin

ts.

The

sig

nifi

canc

e of t

his t

est v

arie

s fr

om p

rodu

ct to

pro

duct

. In

case

of c

rude

oil,

the

AST

M

dist

illa

tion

dat

a gi

ve s

ome

idea

of t

he f

rwti

ons

that

cou

ld b

e co

llect

ed b

elow

300

°C. I

f it

is a

tr

ue

boil

kg p

oint

(T

.B.P

.) di

stil

lati

on, t

he T

BP

cur

ve re

veal

s a

lot o

f ch

arac

teri

stic

s th

at a

re

usef

ul fo

r th

e de

sign

of t

he re

fine

ry. T

he 10

vol.%

of d

isti

llat

ion

for m

otor

spi

rit i

s an

indi

cati

on

of t

he

ease

wit

h w

hich

th

e en

gine

can

be

star

ted.

Too

hig

h a

FB

P w

ill c

ause

cra

nkca

se o

il di

luti

on.

4.4

VA

PO

UR

PR

ES

SU

RE

V

apou

r pr

essu

re o

f a

liqu

id f

uel

may

be

defi

ned

as th

e pr

essu

re e

xert

ed b

y th

e va

pour

ab

ove

the

free

sur

face

of

the

liqu

id a

t th

e gi

ven

tem

pera

ture

. F

or v

olat

ile,

non

visc

ous

petr

oleu

m p

rodu

cts,

it i

s de

term

ined

by

Rei

d m

etho

d. T

his

is th

e pr

essu

re e

xert

ed b

y va

poll

r w

hen

it is

in e

quil

ibri

um w

ith

the

liqu

id u

nder

the

cond

ition

s of

test

. For

liqu

efie

d pe

trol

eum

ga

s, th

e pr

oced

ure

is d

iffe

rent

and

the

dete

rmin

atio

n sh

ould

be

done

at 6

5%.

The

con

diti

ons

unde

r w

hich

vap

our

pres

sure

s ar

e de

term

ined

giv

e re

sult

s w

hich

are

not

true

bec

ause

of t

he '

air w

hich

is in

vari

ably

pre

sent

in a

ppar

atus

. ne

true

vap

our p

ress

ure

is h

ighe

r tha

n th

e R

eid

vapo

ur p

ress

ure

by a

bout

5 to

9 p

erce

nt b

ut th

is re

lati

onsh

ip v

arie

s w

idel

y.

The

sta

ndar

d R

eid

appa

ratu

s co

nsis

ts o

f a

fuel

cha

mbe

r co

mec

tea

to a

n a

ir c

ham

ber

of

four

tim

es v

olum

e, a

nd f

itte

d w

ith

a pr

essu

re g

auge

. T

his

test

is

impo

rtan

t wit

h x-on,

vzan

.oort,p

zur&

&jg-

the

gdso

line

*t

yp

es

of

sto

rage

tank

s em

ploy

ed a

nd th

e st

arti

ng c

hara

cter

isti

cs o

f mot

or h

els.

Hig

h va

pour

pre

ssur

e en

tail

s lo

ss o

f th

e ~

rod

uct

in s

tora

ge a

nd t

rans

port

atio

n. I

n ca

se o

f m

otor

sp

irit

, it m

ay c

ause

vap

our

lock

in th

e ga

soli

ne e

ngin

es.

4.5

FLA

SH

PO

INT

AN

D F

IRE

PO

INT

Fla

sh p

oint

and

fir

e po

int

can

be t

aken

as

indi

rect

mea

sure

- of

th

e pr

oduc

t.

The

flas

h po

int i

s th

e lo

wes

t tem

pera

ture

at w

hich

app

lica

tion

of t

est f

lam

e ca

uses

the

vapo

ur

abov

e th

e oi

l to

igni

te. T

he f

ire

poin

t is

the

low

est t

empe

ratw

e a

t whi

ch th

e oi

l ign

ites

and

co

ntin

ues

to b

urn

for

5 se

cond

. T

he d

eter

min

atio

n of

fla

sh p

oint

of p

etro

leum

pro

duct

s co

nsis

ts o

f hea

ting

a g

iven

vol

ume

of l

iqui

d at

a s

tand

ard

rate

of t

empe

ratu

re r

ise

unti

l vap

our

is p

rodu

ced

to s

uch

a de

gree

as

to g

ive

a fl

amm

able

mix

ture

wit

h ai

r in

an en

clos

ed sp

ace

(i.e

. clo

sed

flas

h po

int t

emp

erat

ye)

or

wit

h ai

r in

an

ope

n cu

p (i

.e. t

he

high

er o

pen

flas

h po

int

tem

pera

ture

), ig

niti

on r

esu

ltin

g

Page 30: Petroleum Refining Technology

- -

I Q

UALITY CO

NTR

OL O

F PETRO

LEUM

PRO

DU

CTS

49 48

PETRO

LEUM

REFIN

ING

TE~HN

O)~~&

~

tiom the applicalion of'a sm

all flame. A

t firc point, not only will the vapour-air m

ixture'fir)8h but the liquid w

ill continue to burn. A

bcl apparatus is used for determiningthc closed cup flash point of' petroleum

products h

;tvin

~ tlash points betw

een 19°C and 49°C

. Pcnsky-Martens ap

~aratu

ais used for deteym

in- in

g the flash point of fuel oils and lubricating oh

, bitumcn other than cutback bitum

en having ;I ilaxh point :~br>vc

49OC. C

lcvcland appariltus is used for determining the flash and fire points

of pctroleun~ products cxccpt l'uucl oils and those products having an open cup flash point below

79°C.

Ylirsh p

un

t measurcs thc tcntlcncy of the fuel to form

a flamm

able mixture w

ith air under conlrollcd laboratory conditions. T

his is tho only propcrty that must be considered in assessing

the ovcrull tlamm

ability l~azartl of a m

ntcrial. It is used in shipping and safety regulations thnldcfinc flttm

mable and com

bustible n~uterials. Petroleum

products having low flash points

irrlb ~~o

tential

to fire hazards. Flash point can indicate the possible presence of highly volatile ant1 tlan~

n~ablo

materials in rclativoly nonvolatile or nonflam

mnble m

akrial.

4.6 OC

TAN

E N

UM

BE

R

This is an

important test for m

easuring the antiknock quality of the gasoline (petrol or m

otor spirit). The knocking of the m

otor fuelsis compared using blends of reference fuels. T

he standard reference fuel8 used foroctanenum

bers below 100areiso-octiineand norm

al hep

twe

which arc assigned valuerr of100 and 0, respectively, on the octane num

ber scale. The octane

number of thc fucl is defined atl the volum

e percentage ofiso-octane t2,2,4-trimethyl pentane)

in a blcnd with n-heplanc w

hich is equal to the test fuel in knockintensity under standardised and closely controllcd conditions of test in a single-cylinder, variable cbm

pression ratio enbines, know

n as CF

li cnginerr. Thus, a fuel of 87 octane num

ber has a CFR

engihe perform

ance matching that obtainable w

ith a blend of 87 volume percent iso-octane and 13

volume percent n-heptane. T

hc rating can be done by either Research m

cthod or Motor m

ethod. T

he differences in the two m

ethods are as follows:

Octane num

bcr rcquirc~ncnts of gasoline engines depend on their com

pression ratio. If the fuel m

eets the minim

um requirem

ents in respect of octane number it ensures trouble B

ee ol~cration. Apart fiom

being a nuisance, the knocking in an engine may result in loss of energy

:~n

d at tim

es may cause severe dam

age to the engine.

4.7 PE

RFO

RM

AN

CE

NU

MB

ER

This is used to estim

ate knoekihg characteristics of aviation gasolines of octane number

highcr than 100. The standard reference fuels for knock ratings above 100 octane num

ber are iso-octane and its blends w

ith tetraethyl lead (TE

L). T

he ratings of aviation gasoline above 100 octane num

ber are normally expressed as perform

ance number.

The perform

ance number scale is based on engine pow

er output. The perform

ance number

of an aviation fuel represents approximately the m

aximum

knock-free power output. T

he

onrformance num

ber shows the percentage increase in aipcrafi engine pow

er for addition of r-------

TE

L to iso-octane and is given by

Performance num

ber - 100) O

ctane number =

100 + ( 3

-

On the perform

ance number scale, 100 octane num

ber equals 100 performance num

ber. T

he ratings of aviation gasoline above 100 octane number can be done by

(a) Aviation m

ethod (lean mixture rating);

(b) Supercharge method (rich m

ixture rating); and (c) xie ended m

otor method.

In aviation m

ethod, the rating is done at 1200 rpm

by comparing the com

bustion chamber

temperature for the fuel w

ith those of the blends of known perform

ance number. T

his lean m

ixture rating gives us an idea of the availability of knock limited pow

er in spark ignition type aircraft engines w

hen the aircraft is under cruising conditions. In supercharge m

ethod, the rating is done at 1800 rp

m by com

paring the ho

ck

limited

power of the fuel w

ith those for blends of iso-octane and isooctane plus TE

L. T

his is done at constant com

pression ratio by measuring indicated m

ean effective pressure at enough points

to define the mixture response curves for the sam

ple and the reference fuels. When the knock

limited pow

er for the sample is bracketed betw

een those for two adjacent reference fuels, the

rating is cakulated by interpolation. The rich m

ixture rating indicates the avd

abzty

of b

oc

k

limited pow

er when the plane is under take-off conditions.

In extended motor m

ethod, the rating is done in a C

FR engine norm

ally used for rating of m

otor gasolines by motor m

ethod (rpm=9O

O). T

he knocking intensity of the fuel is bracketed betw

een reference fuel prepared from iso-octane and T

EL

and the performance num

ber is calculated by interpolation.

4.8 CE

TAN

E N

UM

BE

R

Cetane num

ber is related to the ignition delay of a fuel in a diesel engine, i.e. how

rapidly

to lower cetane num

bers. C

etane number of diesel fuels is determ

ined in a single cylinder CFR

engine by comparing

the ignition delay characteristics of the diesel fuels w

ith that of reference blends of known

,,

cetane number. C

etane number of a diesel fuel is defined as the w

hole number nearest to the

value determined by calculation from

the percentage by volume of norm

al cetane in a blend w

ith hep

tametw

nonane which m

atches thdignition quality of the test fuel when com

pared bv this m

ethod..The m

atching blend percentages to the fiist decim

al are inserted in the follow

ing equation to obtain the cetane number:

Cetane num

ber = %

n-cetane + 0.15 (% heptam

ethyl nonane) ... (4.2)

The shorter the ignition delay period, higher is the cetm

e number of the fuel.

Cetane num

ber is the index of ignition quality of a fuel. High cetane num

ber fuels will

facilitate easy starting of compression ignition engines, particularly in cold w

eathers, and faster w

arm up. T

hese also result in increased engine efficiency and pow

er output, reduced

Page 31: Petroleum Refining Technology

exha

ust s

mok

e and

odo

ur a

nd c

ombu

stio

n noi

se. I

n th

e ab

senc

eoft

este

n&e,

the

dieg

el in

dex

or th

e ca

lcul

ated

cet

ane

inde

x w

ill g

ive

an a

ppro

xim

ate i

dea

ofth

e ig

nitio

fi q

uai*

of

thef

dcl.

C

etan

e nu

mbe

r can

als

o be

rou

ghly

ass

esse

d by

th

e fo

rmul

a:

Cet

ane

Num

ber =

0.72

x D

iese

l Ind

ex +

10

... (4

.3)

4.9

AN

ILIN

E POINT

Ani

line

is a

poo

r so

lven

t for

ali

phat

ic h

ydro

carb

ons a

nd e

xcel

lent

one

for

arom

atic

s. T

his

prop

ertg

is u

sed

in t

he

anil

ine

poin

t tes

t. A

nili

ne p

oint

of a

n oi

l is

the

et

ur

e

&

l&

f&

J-

aW

-.

. .

Equ

al v

olum

es o

f the

sam

ple

and

anil

ine

(5 m

l eac

h) a

re h

eate

d or

coo

led

wit

h st

irri

ng in

a j

acke

ted

test

tube

and

tem

pera

ture

at w

hich

com

plet

e m

isci

bilit

y oc

curs

is n

oted

. H

igh

anil

ine

poin

t ind

icat

es th

at th

e fu

el is

hig

hly

para

ffm

ic a

nd n

ence

has

a h

igh

dies

el

mde

x an

d ve

ry g

ood

igni

tion

qua

lity

. In

cas

e pf

ar~

maG

c&he

-mila

nilh

e poin

t is

low

ue

.. ._

+,-.- "

~.rrc

.-.n

--

i-oor.

4.10

DIE

SE

L IN

DEX

D

iese

l ind

ex is

an

indi

cati

on o

f the

igni

tion

qua

lity

of a

die

sel f

uel.

Thi

s is

dct

emin

ed b

y ca

lcul

atio

n fr

om th

e sp

ecif

ic g

ravi

ty a

nd th

e an

ilin

e po

int o

f th

e sa

mpl

e. A

lthou

gh it

is o

fthe

sa

me

orde

r as

the

ceta

ne n

umbe

r, i

t may

dif

fer

wid

ely

from

th

e ce

tme

num

ber.

Hig

her t

he

dies

el in

dex,

bet

ter

is th

e ig

niti

on q

uali

ty o

f th

e di

esel

ie

l. It

is n

orm

ally

use

d aa

a g

uide

to

igni

tion

qua

lity

of t

he d

iese

l fue

l in

the

abse

nce

of t

est e

ngin

e fo

r the

dir

ect m

easu

rem

ent

of

ceta

ne n

umbe

r.

The

die

sel i

ndex

is c

alcu

late

d as

follo

ws:

(a)

Die

sel i

ndex

= A

nilin

e po

int,

OF

x OA

PI

100

... (4.

4)

(b)

Die

sel i

ndex

= A

nili

ne g

ravi

ty c

onst

ant

100

... (4

.5)

(c)

Die

sel i

ndex

= C

etan

e nu

mbe

r - 10

0.

72

J4.6

)

4.1 1

CA

LCU

LATE

D C

ETA

NE

IND

EX

Cal

cula

ted

Cet

ane

Inde

x (C

CI)

is b

ased

on

spec

ific

gra

vity

and

the

10 p

erce

nt, 5

0 pe

rcen

t an

d 90

per

cent

dis

till

atio

n te

mpe

ratu

res

of t

he fu

els a

nd it

giv

es n

umbe

rs th

at c

orre

late

wit

h th

e en

gine

-tes

ting

met

hod.

The

rela

tion

ship

is

give

n Ly

the

follo

win

g fo

ur-v

aria

ble

equa

tion

: C

CI =

45.

2 +

0.08

92 T

ION

+ (0

.131

+0.9

01B

) T~

ON

+

(0.0

523 -

0.4

28

)Tg

o~

+ 0.

0004

9 [(

T~

oN

)~

- (T

~o

N)~

] + 10

7B + 6

0~

~

J4.6

) w

here

T

ION

= T

i0 - 21

5 , O

C

Tlo

= 1

0 pe

rcen

t dis

till

atio

n te

mpe

ratu

re,

OC

T~

ON

= Tm -

260,

OC

Tso

= 5

0 pe

rcen

t dis

till

atio

n te

mpe

ratu

re,

OC

T~

ON

=

2'90

-

310

OC

T90

= 9

0 pr

ecen

t dis

till

atio

n te

mpe

ratu

re, "C

B =

- 3

.5(G-O.85) -

1

G =

spec

ific

gra

vity

at

15O

C

QU

AM

Y C

ON

TRO

L O

F PE

TRO

LEU

M P

RO

DU

CTS

38

Thirr

CCI ia

use

ful f

or e

stim

atin

g ce

tane

num

bers

whe

n a

test

eng

ine

is n

ot a

vail

able

for

dire

ct m

easu

rem

ent,

and

it m

ay be

con

veni

ently

empl

oyed

for e

stim

atin

g ce

tane

num

ber w

hen

the

quan

tity

of s

ampl

e av

aila

ble i

s too

smal

l for

an

engi

ne ra

ting

.

CAL

ORIFI

C VA

LUE

Thi

s is

the

quan

tity

of h

eat r

elea

sed

per u

nit q

uant

ity

of fu

el, w

hen

it is

bur

ned

com

plet

ely

wit

h ox

ygen

and

the

prod

ucts

of c

ombu

stio

n re

turn

ed to

am

bien

t tem

pera

ture

. Thi

s qu

anti

ty

of h

eat w

ill in

clud

e th

e he

at o

f con

dens

atio

n (l

aten

t hea

t) o

f th

e w

ater

vap

our f

orm

ed b

y th

e co

mbu

stio

n of

the

hyd

roge

n in

the

fuel

, as i

t coo

ls to

am

bien

t con

ditio

ns. I

t is

calle

d th

e '@

ca

lori

fic

valu

e" o

r "h

i~h

er calo

rifi

c ya

lue"

. -

Mos

t hzt

ing

app

lica

tion

s can

not r

ecov

er th

e he

at o

f the

wat

er v

apou

r; it

sim

ply

esca

pes

wit

h th

e va

poui

out

of

the

chim

ney.

The

pot

enti

al h

eat

cont

ent

is t

here

fore

mor

e ne

arly

in

dica

ted

by s

ubtr

acti

ng th

is la

tent

hea

t fro

m th

e gr

oss c

alor

ific

val

ue, a

nd th

e re

sult

ant v

alue

is

cal

led

the

net c

alor

ific

val

ue, o

r low

er c

alor

ific

val

ue.

A w

eigh

ed q

uant

ity

of t

he s

ampl

e is

bur

ned

in a

bom

b ca

lori

met

er u

nder

con

trol

led

cond

ition

s. T

he c

alor

ific

val

ue i

s ca

lcul

ated

fro

m t

he w

eigh

t of

the

sam

ple

and

the

rise

in

tem

pera

ture

. It c

an a

lso

be c

alcu

late

d fr

om th

e fo

rmul

ae

Cal

orif

ic v

alue

= 1

2400

- 21

00 p

2 J4

.7)

in w

hich

cal

orif

ic v

alue

is in

caY

gm a

nd p

is d

ensi

ty a

t 15

OC

in g

m/c

rn3.

Cal

orif

ic v

alue

is

a m

easu

re o

f th

e en

ergy

ava

ilab

le in

a f

uel.

Thu

s a

know

ledg

e of

the

ca

lori

fic

valu

e of

the

fuel

, and

the

effi

cien

cy of

the

hea

ting

equ

ipm

ent,

is e

ssen

tial

to c

ompa

re

the

mer

its

and

runn

ing

cost

s of d

iffe

rent

fuel

s and

ene

rgy

cost

s. I

t is

a cr

itic

al p

rope

rty

of f

uel

inte

nded

for

use

in w

eigh

t-lim

ited

vehi

cles

.

4.13

SM

OK

E P

OlN

T Sm

oke

poin

t is

the

max

imum

fla

me

heig

ht i

n m

m a

t w

hich

the

fue

l will

bum w

itho

ut

smok

ing

*hen

det

erm

ined

in a

sm

oke

poin

t app

arat

us u

nder

spe

cifi

ed c

ondi

tions

. Sm

oke

poin

t app

arat

us c

ompr

ises

four

mai

n pa

rts-

lam

p bo

dy, c

andl

e so

cket

, can

dle

and

stan

d. T

he la

mp

body

wit

h ch

imne

y is

fitt

ed o

n th

e in

side

wit

h a

polis

hed

blac

k en

grav

ed sc

ale

whi

ch is

mar

ked

in w

hite

. A g

alle

ry is

secu

red

in th

e lo

wer

par

t of t

he b

ody.

The

can

dle

sock

et

asse

mbl

y is

des

igne

d to

giv

e a

smoo

th ri

se a

nd fa

ll o

ver t

he to

tal d

ista

nce

of t

rave

l. To

ens

ure

inte

rcha

ngea

bili

ty t

he c

andl

e is

fin

ishe

d to c

lose

tole

ranc

es. T

he a

ssem

bly

is m

ount

ed o

n a

stan

d. T

he s

ampl

e is

bur

ned

in a

sta

ndar

d la

mp

wit

h a

spec

ifie

d w

ick

for

five

min

utes

. The

he

ight

of t

he

flam

e is

read

whe

n it

leav

es n

o sm

oky

tail

. This is

an

impo

rtan

t tes

t for

eva

luat

ion

of il

lum

inat

ing

oils

(ker

osin

es) f

or th

eir

abil

ity

to

bum

wit

hout

pro

duci

ng s

mok

e an

d th

e as

sess

men

t of

the

burn

ing

qual

ity

of a

viat

ion

fuel

s.

Hig

her

the

smok

e po

int

bett

er i

s its

dom

estic

use

. It

als

o se

rves

as

a gu

ide

to a

sses

s th

e ar

omat

ic c

onte

nt o

f ker

osin

es.

4.14

CH

AR

VA

LUE

T

he a

mou

nt a

nd n

atur

e of

the

dep

osits

(ch

ar)

prod

uced

on

a w

ick

duri

ng c

ombu

stio

n de

pend

on

the

hydr

ocar

bon

com

posi

tion

of t

he fu

el a

nd a

lso

on th

e de

sign

of t

he a

ppli

ance

s in

'whi

ch it

is u

sed.

Cha

r oc

curs

as

a re

sult

of t

he b

reak

dow

n an

d de

com

posi

tion

of t

he k

eros

ine

unde

r the

loca

l con

ditio

ns ex

isti

ng at

the

wic

k su

rfac

e, a

nd th

ese

cond

itio

ns w

ill a

lso

dete

rmin

e w

hat p

ropo

rtio

n of

the

dec

ompo

sed

prod

ucts

rem

ains

on

the

wic

k.

Page 32: Petroleum Refining Technology

52 PETR

OLEU

M R

EFIN

ING

TEC

HN

OLO

GY

4.15 VIS

CO

SITY

K

inematic viscosity is defined ris the m

earidre of the red

sthi&

to gravity flow of a fluid,

the pressure head being proportional to the density. The tim

e of flow of a fixed volum

e of fluid is directly proportional to its kinem

atic viscosity. The unit of kinem

atic viscosi$ is, cm

2/s or Stoke. T

he unit most usually used in m

easurement of the kinem

atic viscosity of ~etio

leum

fuels is the centistoke (cSt) w

hich is Stoke.

Dynam

ic viscosity, also known as absolute viscosity, is the ratio of applied shear stress to

rate of shear and thus a measure of the resistance of a fluid to flow

. The unit of dynam

ic viscosity is gm

1cm.s or Poise. D

ynamic viscosity m

ay be obtained from kinem

atic viscosity by I

multiplying it by the density of the fluid at the tem

perature at which m

easurement w

as made.

1 K

inematic viscosity m

ay be measured as an absolute property of the fuel, or alternately

I as a conventional property th

at is'dependent on the instrument and the m

ethod used. Both

' approaches depend on the efflux tim

e of a given volume of sam

ple flowing under its ow

n head 1

through a restriction. This follow

s because the force acting the laminar (low

speed) flow of a

fluid through a restriction is approximately proportional to the dynam

ic viscosity, whereas

the force promoting the flow

is that due to gravity, and is proportional to the density of the I

fluid. Hence the tim

e taken for the gravity flow of a given volum

e of sample through a

restriction is approximately proportional to the kinem

atic viscosity. ,

The conventional m

ethods, which are generally sim

pler but less accurate, are represented by the R

edwood instrum

ent in the UK

, Saybolt in the USA

and Engler in continental E

urope. T

hey each comprise a sam

ple cup fitted with a standard-sized oriiice in the base and

I surrounded by a w

aterjacket containing a heating device. When the tem

perature reaches the test level, the orifice is unsealed and the tim

e of flow is determ

ined for the given volume of

sample. T

he result is reported as Redw

ood or Saybolt universal second or as Engler degree,

given by the efflux time ratio for the sam

ple and for water. W

hen the efflux time exceeds a

specified maxim

um-for exam

ple 2000 s-due to high viscosity, use is made of a R

edwood N

o. 2, or a Saybolt Furol (fuel and road oils) instrum

ent, incorporating a larger diameter orifice.

The absolute determ

ination of kinematic viscosity'generally em

ploys a glass U-tube

viscometer w

ith a capillary tube built into one leg. The length-diam

eter ratio is such that end effects are negligible and the precision is therefore higher. T

he instrument is suspended

vertically in a thermostatically controlled w

ater bath, and the time is m

easured for a given volum

e of sample to flow

do

ug

h the capillary. T

his measured tim

e period is inserted into an \

equation to give a direct measure of the kinem

atic viscosity in centistokes. v

=A

t-B/t

... (4.8) w

here A

= instrum

ent calibration constant; B

= instrum

ent type constant, depending on the capillary diameter;

and t =

efflux time, s (E

ngler degree for Engler viscom

eter)

Table 4.1 gives the values of A

and B for R

edwood, Saybolt and E

ngler viscometers.

Viscosity is an im

portant characteristic of a fuel and it is used for the pump design. Pum

p clearance are aG

usted according to the viscssity and if it is out of the range, it will result in pum

p seizer. Pump operation of an engjne depends on the proper visesity of the liquid fuel.

The viscosity of liquid fuel is im

portant to its flow through pipelines, injector nozzles, and

orifices, and for atomization of fuel in the cylinder.

OU

AU

TY C

ON

TRO

L OF P

ETR

OLE

UM

PRO

DU

CTS

Tab

le 4.1 Instru

men

t Co

nstan

t Values

4.1 6 VIS

CO

SITY

IND

EX

V

iscosity index (VI) is the most w

idely used way of characterizing the effect of change of

i

temperature on the viscosity of any oil. Proposed by D

ean and Davis, viscosity index is an

empirical concept based on the behaviour of m

ineral oils. In this concept, an oil whose viscosity

,

changes rapidly with change in tem

perature has a low V

I. An oil w

ith a minim

um change in

. viscosityw

ith change in temperature has a highV

I. In this system, P

ennsylvanian (paraffinic) oils of a selected type w

hich show a desirable, relatively sm

all change of viscosity with change

in temperature, w

ere assigned a VI of 100, w

hile selected Texas C

oastal oils showing less

desirable viscosity-temperature characteristics w

ere assigned a VI of O

.VI is governed by the

type of hydrocarbons in the oil. D

ean and Davis prepared tables giving the kinem

atic viscosities at 40°C

and 100°C of the

Texas C

oastal oils (L) and the Pennsylvanian oils (H

I. The values of kinem

atic viscosities of L

and H are given in T

able 4.2. The V

I of an oil can be calculated from the equation

v1

=L

-Ux

10

0

L-H

where

U =

kinematic viscosity at 40°C

of the oil whose V

I is to calculated

L =

kinematic viscosity at 40°C

of an oil of 0 VI

H =

kinematic viscosity at 40°C

of an oil of 100 VI

.17 PE

NE

TRA

TION

TES

TS

Several standard grades of bitumen are com

lqercially available, which are norm

ally ssified into different grades by p

en

etr

atio

np

e sam

ple of bitumen is plzced in a

. , suitable container and brought to a tem

perature of 25OC in a w

ater bath. The w

eighted needle is brought to the surface.and at the end of 5 seconds interval, the penetration

the needle into the bitum

en, in units of UlO

mm

is te

~v

on

'

ofthe b$

The penetration at 25O

C and the softening point, or penetrations at tw

o di erent tem

pera- tures (for exam

ple, 25OC and 10°C

) can be used to define the extent to which the consistency

of a bitumen changes w

ith temperature. T

his an important characteristics for bitupens, and

determines th

e type of bitumen used for a particular application. V

arious factors have beexi 1

Page 33: Petroleum Refining Technology

used

to

defin

e te

mpe

ratu

re 'd

epen

denc

e. T

he m

ost

com

mon

l~ us

ed f

acto

r,.h

owev

er, i

s th

e Pe

netr

atio

n In

dex

(PI)

, whi

ch is

def

ined

as f

ollo

ws :

Tab

le 4

.2 V

alu

es o

f H. L

and D

for

Kin

emat

ic V

isco

sity

at

100

OC

(H =

Kin

emat

ic v

isco

sity

at 4

0°C

of

an o

il o

f 10

0 V

I, cS

t,

, .

L =

Kin

emat

ic v

isco

sity

at 4

0 OC

of

an

oil

of

0 V

I, cS

t)

QU

AU

TYC

ON

TRO

L OF

PETR

OLE

UM P

RODU

CTS

55

Page 34: Petroleum Refining Technology

56 P

ETR

OLE

UM

REFIN

ING

TEFH

NO

LQG

Y

QU

ALITY

CO

NTR

OL O

F PE

TRO

LEU

M P

RO

DU

CTS

57

Page 35: Petroleum Refining Technology

log

(800

) - log

(PE

N 25

°C) -

20 - P

I 1

TR

B - 2

5 - [

i?G

x] [SO

] w

here

TR

B is

the

rin

g an

d ba

ll so

ften

ing

poin

t of

the

bit

umen

in

"C.

etra

tion

of

a -?

I

bitu

men

at t

he s

ofte

ning

poi

nt te

mpe

ratu

re is

abo

ut 8

00. B

itum

ens l

ess

n fe

cted

by

tem

pera

- '

I

ture

cha

nge h

ave

posi

tive v

alue

s of P

I and

thos

e ?o

re a

ffec

ted

by te

mpe

ratu

re ch

ange

neg

ativ

'e

4'@

valu

es.

I

4.18

FR

EE

ZIN

G P

OlN

T F

reez

ing

poin

t is

the

tem

pera

ture

at w

hich

cry

stal

s of

hyd

roca

rbon

s fo

rmed

on

cool

ing

disa

ppea

r w

hen

tem

pera

ture

of f

uel i

s al

low

ed to

rise

. T

his m

etho

d co

vers

a p

roce

dure

for t

he

dete

ctio

n of

sepa

rate

d so

lids i

n av

iati

on re

cipr

ocat

- in

g en

gine

and

turb

ine

engi

ne fu

els a

t any

tem

pera

ture

like

ly to

be

enco

unte

red

duri

ng fl

ight

r

or o

n th

e gr

ound

.

4.19

CLO

UD

PO

lNT

AN

D P

OU

R P

OlN

T --

Clo

ud p

oint

of

petr

oleu

m p

rodu

cts

is th

e te

mpe

ratu

re a

t w

hich

a c

loud

or

haze

of

wax

cr

ysta

ls a

ppea

rs a

t the

bot

tom

of t

he te

st ja

r w

hen

the

oil i

s coo

led

unde

r pre

scri

bed c

ondi

tions

. It

is g

ener

ally

det

erm

ined

for p

rodu

cts

that

are

tran

spar

ent

in a

43-

mm

thic

k la

yer a

nd h

ave

clou

d po

ints

bel

ow 4

9°C

. T

he c

old

filt

er p

lugg

ing

poin

t tes

t is

used

to d

eter

min

e th

e ex

tent

to w

hich

die

sel f

uel o

r ga

s oi

l will f

low

, eve

n th

ough

the

tem

pera

ture

is b

elow

th

at a

t whi

ch w

ax c

ryst

als

norm

ally

ap

pear

, i.e

. cl

oud

poin

t. C

loud

poi

nt g

ives

a ro

ugh

idea

of th

e te

mpe

ratu

re ab

ove w

hich

the

oil c

an be

saf

ely h

andl

ed

wit

hout

any

fear

of c

onge

alin

g or

fil

ter

clog

ging

. P

our

poin

t is

the

low

est

tem

pera

ture

exp

ress

ed in

mul

tipl

e of

3°C a

t w

hich

the

oil

is

obse

rved

to fl

ow w

hen

cool

ed a

nd e

xam

ined

und

er p

resc

ribe

d co

nditi

ons.

P

our p

oint

is a

wel

l-es

tabl

ishe

d te

st to

est

imat

e th

e te

mpe

ratu

re a

t whi

ch a

sam

ple

of o

il be

com

es s

uffi

cien

tly

solid

to p

reve

nt i

ts m

ovem

ent b

y pu

mpi

ng. T

he p

our p

oint

tem

pera

ture

de

pend

s to

a la

rge

exte

nt o

n th

e th

erm

al h

isto

ry of

the

sam

ple.

Als

o, th

e po

ur p

oint

indi

cate

s th

e w

axy

natu

re o

f the

oils

.

4.20

DR

OP

PO

lNT

OF

GR

EA

SE

T

he s

tand

ard

drop

poi

nt te

sts

ind

ikte

that

the

tem

pera

ture

at w

hich

the

thic

kene

r is

so

solu

ble

in t

he b

ase

oil t

hat

th

e gr

ease

bec

omes

sub

stan

tial

ly f

luid

. Cla

y an

d dy

e th

icke

ned

grea

ses h

ave

no m

easu

rabl

e dr

op p

oint

s.

The

dro

p po

int

can

be u

sed

to a

sses

s w

heth

er a

gre

ase

of kn

own

form

ulat

ion

has

been

pr

oper

ly m

ade

or t

o ob

tain

an

indi

cati

on o

f the

type

of

thic

kene

r w

hich

has

bee

n us

ed i

n a

grea

se' o

f an

hk

no

wn

for

mul

atio

n. I

t ca

nnot

be

used

to

mea

sure

the

upp

er o

pera

ting

te

mpe

ratu

re li

mit

for a

gre

ase.

42

1 M

ELT

ING

AN

D S

Ell

lNG

PO

lNT

OF

WA

X T

he c

oolin

g cu

rve

met

hod

is u

sed

to d

eter

min

e th

e se

ttin

g po

int o

f wax

es. M

olte

n w

ax is

al

low

ed to

cool

in a

spe

cifi

ed a

ppar

atus

and

the

tem

pera

ture

is re

cord

ed a

t fre

quen

t int

erva

ls

The

poi

nt a

t whi

ch th

e te

mpe

ratu

re r

emai

ns w

ithi

n a

rang

e of

O.l°

C f

or o

ne m

inut

e is

take

n as

the

sett

ing

poin

t. T

his

met

hod

is n

ot s

uita

ble

for m

icro

crys

tall

ine o

r in

term

edia

te w

axes

, or

ble

nds

of p

araf

fin

wax

es w

ith

thes

e or

any

add

itiv

es.

The

con

geal

ing

poin

t of

a pe

trol

eum

wax

or p

etro

latu

m i

s de

term

ined

by

appl

ying

a d

rop

of m

olte

n w

ax to

a th

erm

omet

er b

ulb,

and

not

ing

the

tem

pera

ture

at w

hich

it c

onge

als w

hen

the

ther

mom

eter

is ro

tate

d un

der s

tand

ardi

sed

cool

ing

cond

itio

ns. T

his

met

hod

is su

itab

le fo

r al

l wax

es.

The

dro

p m

elti

ng p

oint

of w

ax o

r pet

rola

tum

is

dete

rmin

ed b

y re

cord

ing

the

tem

pera

ture

at

whi

ch a

dro

p of

the

sam

ple f

alls

from

the

bulb

of a

ther

mom

eter

whe

n he

ated

und

er s

tand

ard

cond

ition

s.

The

se a

re c

onsi

dere

d to

be

suit

able

for

che

ckin

g th

e co

nsta

nt q

uali

ty o

f w

ax o

utpu

t in

re

fine

ries

.

4.22

SO

FTE

NIN

G P

OlN

T O

F B

ITU

ME

N

Bit

umin

ous m

ater

ials

do

not c

hang

e fr

om th

e so

lid s

tate

to th

e li

quid

sta

te a

t any

def

init

e te

mpe

ratu

re, b

ut g

radu

ally

bec

ome

soft

er a

nd le

ss v

isco

us a

s th

e te

mpe

ratu

re ri

ses.

For

this

re

ason

, the

det

erm

inat

ion

of th

e so

fbni

ng p

oint

mus

t be

mad

e by

a fi

xed

arbi

trar

y, a

nd c

lose

ly

poin

t is d

efm

ed a

s the

tem

pera

ture

at w

hich

a s

ubst

ance

att

ains

a p

arti

cula

r un

der

spec

ifie

d co

nditi

ons o

f tes

A

ste

el b

all o

f spe

cifi

ed w

eigh

t is

plac

ed

upon

a d

isc

of s

ampl

e co

ntai

ned

wit

hin

a m

etal

d

ng o

f spe

cifi

ed d

imen

sion

s. T

he a

ssem

bly

is

heat

ed a

t a c

onst

ant r

ate

anct

the

tem

pera

ture

at w

hich

the

sam

ple

beco

mes

sof

t eno

ugh

to

allo

w th

e ba

ll, e

nvel

oped

in a

bit

umen

, to

fall

-d di

stan

ce is

take

n as

the

soft

enin

g

-2 T

he r

ing

and

ball

test

for

sof

teni

ng p

oint

mea

sure

s th

e te

mpe

ratu

re i

n OC

at

whi

ch a

st

anda

rd d

isc

of b

itum

en c

onfi

ned

in a

met

al ri

ng s

ofte

ns to

such

an

exte

nt, w

hen

heat

ed a

t a

rkte

if 5

"~/m

inut

e, th

at it

def

orm

s und

er th

e lo

adin

g im

pose

d by

a s

mal

l ste

el b

all w

hich

fall

s a

dist

ance

of 2

.54

cm.

The

det

erm

inat

ion

of th

e so

ften

ing

poin

t of b

itum

en is

rega

rded

by

som

e as

an

indi

catio

n of

visc

osity

, alt

houg

h fr

om th

e po

int o

f vie

w o

f th

e ap

plic

atio

n of

bit

umen

its

use

is li

mit

ed to

th

at o

f its

titl

e. T

he s

ofte

ning

poin

t is

used

in th

e de

sign

atio

n of

har

d bi

tum

ens

and

oxid

ized

bi

tum

ens.

4.23

IN

DU

CTI

ON

PE

RIO

D O

F G

AS

OLI

NE

In

duct

ion

peri

od o

f ga

solin

e is

the

tim

e el

apse

d be

twee

n th

e pl

acin

g of

the

bom

b in

the

bath

and

bre

ak p

oint

at

100°

C. B

reak

poi

nt i

s th

e po

int i

n th

e pr

essu

re-t

ime

CUN

e th

at is

pr

eced

ed b

y a

pres

sure

dro

p of

exa

ctly

2 p

si w

ithi

n 15

min

ute

and

succ

eede

d by

a d

rop

of n

ot

less

than

2 p

si in

the

next

15

min

ute.

F

ifty

mil

lili

tre

of t

he sa

mpl

e is

encl

osed

in a

bom

b w

ith

oxyg

en a

t 100

psi

and

hea

ted

in a

w

ater

bat

h at

100

°C. T

he p

ress

ure

is th

en re

cord

ed e

ithe

r on

a ch

art o

r rea

d ev

ery

15 m

inut

es

Page 36: Petroleum Refining Technology

60 PETR

OLEU

M REFIN

ING

~TECH

NO

LOG

Y

The test is continued until th

e break point is reached. The test result is reported as induction

period in minute.

This test is conducted to assess the stability of gasoline in storage. T

his test indicates the presence,of unsaturated hydrocarbons in the fuel and hence its gum

forming tendency. H

igher the induction period, better is the storage stability of the fuel. A

n induction period of 360 m

inute under laboratory conditions ensures storage stability of at least six month. H

owever,

this correlation may vary w

ith different gasolines under different conditions.

4.24 THE

RM

AL S

TAB

ILITY O

F JET FU

ELS

Jet fuel therm

al oxidation tester (JFT

OT

) is used to measure the high tem

perature stability of gas turbine fuels. T

his subjects the test fuel to conditions which can be related to

those occumng in gas turbine engine fuel system

s. The fuel is pum

ped at a fixed volumetric

flow rate through a heater after w

hichit enters thestainless steel filter whert! fuel degradation

products may becom

e trapped. The apparatus requires 600 m

l of test fuel for a 2.5 hour test. T

he essential data derived are the amount of deposits on an alum

inium heater tube, and the

rate of plugging of filter located just downstream

of the heater tube. In the JF

TO

T a charge is placed in a reservoir and the w

hole system is pressurized to 3.45

MPa w

ith nitrogen. This ensures a single-phase reaction in the heated section. T

he fuel passes from

the reservoir through a 0.45 micron filter, to rem

ove trace particulate matter, and into

the reactor section, where it passes upw

ards in an annular space over iy

aluminium

tube and out via a 17 m

icron stainless steel filter through a heat exchanger, to cool it, and back to the top of the reservoir. T

he used and unused fuel in the reservoir are separated by a floating piston. T

he fuel is rated by a visual tube rating or by placing the tube in a Tube D

eposit Rater.

In this the tube is rotated at a constant speed and its surface scanned by two light sources

reflecting off the tube on to a photocell. The photocell gives a signal to a m

eter. Also, the

differential pressure across the 17 micron filter is m

easured. T

he test results are indicative of fuel performance during gas turbine operation and can

be used to assess the level of deposits that can form w

hen liquid fuel contacts a heated surface.

4.25 GU

M C

ON

TEN

T T

he gum com

pounds which can be present or produced in the fuel are classified into tw

o types for test evaluation. E

xistent gum m

ay be already formed in the fuel and can be deposited

from solution as the fuel evaporates. P

otential gum m

ay be formed under extended storage

conditions during which unstable hydrocarbons are thereby polym

erized and oxidized to form

gums. E

xistent gum is the am

ount of nonvolatile heptane insoluble residue left when the sam

ple is evaporated in a jet of hot air at 160°C

. For jet fuels, the evaporation is camed

out in a jet of superheated steam

at 232OC

. P

otential gum is the am

ount of gum form

ed afier the sample is aged in an oxidation

stability bath and evaporated under specified conditions. G

um is alw

ays troublesome in any fuel and it m

ay cause piston ring sticking and deposits on engines. T

he amount of gum

points to the presence of olefins which have very poor storage

stability. The existent gum

test is claimed to m

easure the amount of gum

or gum-form

ing com

pounds existing in the fuel, while the potential gum

test attempts to predict the tendency

to form gum

on storage and use. These gum

tests are usually used as refinery control methods.

1 Q

UA

LITY CO

NTR

OLO

F PETRO

LEUM

PRO

DU

CTS

g1

4.26 TOTA

L SU

LPH

UR

.:

. T

his is determined by lam

p method or w

ickbold procedure for volatile petroleum P

roducts and by bom

b method for heavier products. S

ulphur in the sample is oxidized by com

bustion ,

and is estimated volum

etrically after absorption in Hz02 or by gravim

etric methods after

converting into barium sulphate.

Sulphur com

pounds pose a dual problem: they not only cause environm

ental pollution from

their combustion products, but these products are also naturally corrosive and cause

1 severe physical problem

s to engine parts. A know

ledge of the sulphur content of petroleum

" products is therefore of im

portance to both refiner and user. I 1

dc

lD

IT

Y AN

D A

LK

AL

iNln

I I

New

and used petroleum products m

ay contain acidic constituents present as additives or 1

as degradation products, such as oxidation products, formed during service. T

otal acidity is a I I

measure of the com

bined organic and inorganic acidity. T

he acids in the sample are extracted in neutral alcohol andthen titrated against standard

alcoholic potassium hydroxide under hot conditions.

Total acidity is an

indication of the corrosive properties of the product. Inorganic acidity is a m

easureof the m

ineral acid present. Organic acidity is obtained by deducting th

e inorganic acidity from

the total acidity.

ER

-STR

IP C

OR

RO

SIO

N TE

ST

products contain sulphur compounds, m

ost of which are rem

oved during I

refining; Of th

e sulphbr compounds rem

aining in the petroleum product, how

ever, some can

have a corroding effect on various metals. T

his corrosivity is not necessarily directly related to the total sulphur content. T

he effect can vary according to other chemicals and types of

sulphur compounds present.

A cleaned and sm

oothly ~o

li$h

ed copper strip is irnm

erse&&

hsm@

&

which is then

mam

tained at the specified tem

perature for the specified length of time. T

his strip is removed

1 L

am

pl

e,

washed w

ith aromatic and sulphur free petfoleum

spirit and examined for

evidence of etching, pitting or discolouration. It is then compared w

ith FT

M copper-strip

corrosion stand

kd

colour code. Th_e class%cation cbde indkates th

at the num

bers 1,2

,3 and

4 designate slight tarnish,'moderate tarnish, dark tarnish m

d corrosion,kespectively. S

ub-- scripts-a-e describe a standard colour reproduction'in th

e standard chart. For exam

ple, the classification code la

indicates slight tarnish with a light orange colour.

C~

his

test serves as a m

easure of possible difficulties with copper, brass, or bronze parts of

the fuel systems. 7

4.29 SILV

ER

-STR

IP C

OR

RO

SIO

N TE

ST FO

R A

VIA

TION

TUR

BIN

E FU

ELS

A

Polished silver strip is completely im

mersed in A

viation Turbine F

uel at 45 f 1°C

for a period of 16 hour. A

t the enctof this period, the silver strip is removed from

the sam

ple, washed

and evaluated for corrosion against the set of standard. S

ince some parts of the fuel pum

ps in aircraft are made of silver, th

e corrosive tendency of the h

e1 for silver assum

es special significance. The cum

ulative effect of corrosion on such a vital com

ponent in the aircraft is hazardous.

Page 37: Petroleum Refining Technology

_? 4.

30 A

SH

-h

~ji{

:!:*

;:~ :p

>5

~z

:~

y~

~;

c~

~~

~~

~

.b,,:

;.7!t$

; j

!;,;: .,:

,.t;.3

: ...

<..

, :, ..

. ..

. .

.,&h.

@n!

~es

ult f

r0.p

oi1

,wat

er-s

olpb

le m

etal

lic

cqp

ou

nd

s, o

r ex

tran

eous

sol

ids,

suc

h as

di

&qj

&+s

$,~.

:~~:

~.

. ,

. ..

'A k

qo

m'p

~,o

gn

$:.

qf

3ai

ble

is

igni

ted

and

the

ca

rbo

na

~io

~s

resi

due

I&€

ib

. he

ated

..

to

I

800°

C i

n a

muf

fle h

rnac

e, co

oled

and

wei

ghed

as

ash.

A

b~

wle

dg

e, of t

he

amou

nt o

f a

prod

uct's

ash

for

min

g m

ater

ial

can

prov

ide

info

rmat

ion

on

whe

them

the-

prod

uct i

s su

itab

le fo

r use

in

a gi

ven

appl

icat

ion.

wr

bo

n

resi

due

can

be d

efin

ed a

s th

e am

ount

of c

arbo

n re

sidu

e le

ft a

fter

eva

pora

tion

and

I

pyro

lysi

s of a

n oi

l and

is in

tend

ed to

pro

vide

som

e in

dica

tion

of re

lati

ve c

oke

form

ing

tend

ency

. E

ithe

r C

orir

adso

n m

etho

d or

Ram

sbot

tom

met

hod

can

be u

sed

to d

eter

min

e th

e ca

rbon

re

sidu

e of

pet

role

um p

rodu

cts.

onra

dson

Met

hod

quan

tity

of s

ampl

e is

pla

ced

in a

cru

cibl

e an

d su

bjec

ted

to d

estr

ucti

ve d

isti

ll$-

ti

on.

The

res

idue

und

ergo

es c

rack

ing

and

coki

ng r

eact

ions

dur

ing'

fixe

d pe

riod

of

seve

re

heat

ing.

At t

he

end

of t

he

spec

ifie

d he

atin

g pe

riod

, the

cru

cibl

e co

ntai

ning

the

carb

onac

eous

re

sidu

e is

, coo

led

in a

des

icca

tor

and

wei

ghed

. T

he r

esid

ue r

emai

ning

is

calc

ulat

ed a

s th

e 'p

erce

ntag

e of

th

e or

igin

al s

ampl

e an

d re

port

ed a

s co

nrad

son

carb

orl r

esid

u 3

Met

hod

e sa

mpl

e S

ter

bein

g w

eigh

ed i

nto

a sp

ecia

l gla

ss b

ulb

havi

ng a

cap

illa

ry o

peni

ng i

s 'p

lack

d. in

"& m

etd

furn

ace

mai

ntai

hed

at 5

50°C

for 2

0 i I'

min

ute.

The

sam

plei

e th

us

quic

kly

'1 hea

tedy

to th

e po

int,

atw

hic

h a

ll v

olat

ile

Mat

ter i

~ev

apo

rate

d ou

t of t

he

bulb

wit

h or

wit

hout

de

com

posi

tion

whi

le th

e he

avie

r res

idue

rem

aini

ng in

the

bulb

und

ergo

es c

rack

ing

and

cqki

ng

reac

tion

s. A

ftek

a sp

ecif

ied 2

0 m

inat

e he

atin

gper

iod,

the

bulb

is re

mov

ed fr

om th

e ba

th, c

oole

d in

a d

esic

cato

r an

d ag

ain

wei

ghed

. The

resi

due

rem

aini

ng is

cal

cula

ted

as th

e pe

rcen

tage

of

the

orig

inal

em

pie

and

repo

rted

as

ram

sbot

tom

car

bon

resi

du

C?+

on

;&du

e gi

ves

a m

easu

re o

f of

a f

uel

oil w

hen

h$at

ed i

n a

buI6

und

er p

resc

ribe

d co

ndit

ions

. W

hile

not

dir

ectl

y co

rrel

atin

g w

ith

engi

ne

depo

sits

, *s

prop

erty

is c

onsi

dere

d as

an

app

roxi

mat

ion.

For

exa

mpl

e, c

arbo

n re

sidu

e va

lue

of d

ie&

h

e1

cori

elat

es w

ith

the

amo

un

t of

carb

onac

eous

dep

mit

s th

e fu

el w

ill f

orm

.& t

he

com

bust

ion

cham

ber

of t

he

engi

ne. T

he e

xpec

ted

carb

on d

epos

its

in th

e co

mbu

stio

n ch

ambe

r is

gre

ater

for

hig

her

valu

e of

th

e ca

rbon

res

idue

. C

arbo

n re

sidu

e is

als

o us

ed i

n de

sign

ca

lcul

atio

n of

ves

sels

.

4.32

CO

LOU

R

Col

ouri

s an

indi

cati

on o

f the

deg

ree

of r

efin

ing

of th

e pr

oduc

ts. V

ario

us te

st m

etho

ds u

sed

for t

he

mea

sure

men

t of

col

our o

f pet

role

um p

rodu

cts

alon

g w

ith

thei

r m

ain

item

s eq

uipm

ent

and

prod

uct

appl

icat

ion

rang

e ar

e gi

ven

in T

able

4.3

.

4.33

DE

NS

ITY

AN

D S

PE

ClF

lC G

RA

VIT

Y

Den

sity

of a

flui

d is

its m

ass

per

unit

vol

ume.

It i

s m

easu

red

over

a ra

nge

of t

empe

ratu

res.

us

uall

y fo

r con

veni

ence

at t

he te

mpe

ratu

re a

t whi

ch th

e fu

el is

to b

e st

ored

.

Tab

le 4

.3 C

olou

rMea

sure

men

t met

hod

s,

,,. .

. ,

<, ,;

,,il

5

..;.,,

:<,<

%

*,(

...(,

....

-,

.rll..-..

.~..

. I I.

-. :.-;

i

.!l:.,

,.:.

... , , : .

- .

' . I

. . ' .

. .

.

.,

.

Spe

cifi

c gra

vity

is th

e ra

tio

ofth

eden

sity

ofa

flu

idto

that

ofw

ater

at th

e sa

me t

empe

ratu

re.

The

tem

pera

ture

usu

ally

spe

cifi

ed is

15.

56O

C. I

n th

e U

SA, s

peci

fic

grav

ity

of a

n o

il is

oft

en

-e,~

~e

ss

ed

as

deg

rees

kP1. A

PI g

ravi

ty is

an

arbi

trar

y fi

gure

rel

ated

to

the

spec

ific

gra

vity

of

jytr

oleu

m p

rodu

cts

in a

ccor

danc

e w

ith

the

form

ula:

Nam

e Sa

ybol

t chr

omom

eter

ASTM C

olou

r .

Col

our o

f dye

d av

iatio

n ga

solin

e C

olou

r by

the

Lovi

bond

tin

tom

eter

?, .

? ,

Deg

rees

API

=

141.

5 -

131.

5 Sp

ecif

ic G

ravi

ty a

t 15

.56°

C11

5.56

0C

. .(4.11)

The

spe

cifi

c.gr

avit

y is

an

indi

cati

on o

f th

ety

pe

of h

ydro

carb

on p

rese

nt,

bein

g hi

ghes

t for

ar

omat

ics

and

low

est f

or p

araf

fins

. The

API

gra

vity

rev

erse

s th

is r

elat

ions

hip.

-

The

mos

t acc

urat

e m

etho

d of

det

erm

inin

g th

e sp

ecif

ic gr

avit

y of

an

oil

is to

wei

gh a

kno

wn

volu

me

in a

spe

cifi

c-gr

avit

y bo

ttle

at

15.5

6OC

. A c

orre

ctio

n m

ay b

e ap

plie

d by

mea

suri

ng th

e 's

peci

fic

grav

ity

at s

ome

conv

enti

onal

tem

pera

ture

nea

r 15

OC

and

addi

ng o

r su

btra

ctin

g 0.

0006

3 pe

r OC ab

ove

or b

elow

15O

C.

' A

noth

er m

etho

d fo

r de

term

inin

g th

e sp

ecif

ic g

ravi

ty o

f th

e oi

l is

by

mea

ns o

f a

set

of hy

drbm

eter

s. A

hyd

rom

eter

is p

lace

d in

the

6il

sam

ple

at 1

5.56

OC

and

all

owed

to c

ome

to re

st.

The

spe

cifi

c gra

vity

is s

how

n on

the

sca

le a

t the

poi

nt c

oinc

iden

t wit

h th

e su

rfac

e of

the

oil.

A

ccur

ate

dete

rmin

atio

ns o

f th

e de

nsit

y, s

peci

fic

grav

ity

and

AP

I gr

alii

ty-o

f pe

trol

eum

pr

oduc

ts a

re n

eces

sary

for

th

e co

nver

sion

of

mea

sure

d vo

lum

es t

o vo

lum

es a

t st

anda

rd

tem

pera

ture

of

lb.5

6OC

. Whe

n th

e vo

lum

e of

oil

is k

now

n, i

ts m

ass

can

be c

alcu

late

d. T

hese

fa

ctor

s go

vern

the

qua

lity

of

cmde

pet

role

um.

The

se p

rope

rtie

s, h

owev

er,

are

unce

rtai

n

Mai

n eq

ucpm

ent

Chr

omom

eter

Cal

orim

eter

Col

our c

ompa

rato

r

Lovi

bond

tint

omet

er

indi

cati

ons o

f fue

l qua

lity

, unl

ess

corr

elat

ed w

ith

othe

r A

corr

elat

ion

of fu

el d

ensi

ty

wit

h pa

rtic

ulat

e em

issi

ons

indi

cate

s inc

reas

ing

part

icul

ate

emis

sion

s wit

h in

crea

sihg

dens

ity.

4.34

GA

S C

HR

OM

ATO

GR

AP

HY

OF

PE

TRO

LEU

M G

AS

ES

AN

D L

IQU

IDS

fi

mea

sure

d vo

lum

e of

the

gas

sam

ple

is in

trod

uced

into

a c

hrom

atog

raph

ic c

olum

n an

d tr

ansp

orte

d th

roug

h th

e co

lum

n, t

he s

ampl

e is

spl

it i

nto

vari

ous

com

pone

nts,

eit

her

by

adso

rpti

on o

r pa

rtit

ion,

dep

endi

ng o

n th

e co

lum

n pa

ckin

g. T

he c

ompo

siti

on o

f th

e sa

mpl

e is

de

term

ined

from

the

chro

mat

ogra

ms b

y m

easu

ring

the

area

und

er th

e pe

aks.

An

iden

tifi

cati

on

of t

he

com

pone

nts

is d

one

by n

otin

g th

e el

utio

n ti

me.

-

.

Col

our s

cale

I +3

0 to

- 16

Oto

8

Perm

anen

t col

our g

lass

di

sc

Col

our s

tand

ards

of d

if-

fere

nt ra

ting

for r

ed, y

el-

low

, blu

e an

d ne

utra

l tin

t

I 4.

35 R

EF

RA

CTI

VE

IND

EX

OF

HY

DR

OC

AR

BO

N L

IQU

IDS

R

efra

ctiv

e in

dex

is d

efin

ed a

s th

e ra

tio

of t

he

velo

city

of

ligh

t (of

spe

cifi

ed w

avel

ent$

) in

t ai

r to

its

velo

city

in th

e su

bsta

nce

unde

r ex

amin

atio

n. I

t may

als

o be

def

ined

as

the

sine

of t

he

-

-

App

lt'ca

tlon

-

Whi

te

prod

ucts

pe

trole

um

Hea

vy p

etro

leum

pr

oduc

ts, l

ubri

catin

g oi

ls D

yed

avia

tion

gaso

line

A11

petro

leum

pro

duct

s ex

cept

bla

ck o

ils a

nd

bitu

men

s -J

Page 38: Petroleum Refining Technology

64 P

ETR

OLE

UM

RE

FININ

G TE

CH

NO

LOG

Y

angle of incidence divided by sine of the angle of refradion, as light passes from air into the

substance. The refractive index of liquids varies inversely w

ith both wavelength and tem

pera- ture. R

efractive intercept is calculated by

Refractive intercept

= n - ' 2

... (4.12) w

here ri is the refractive index at 20°C and p is the density at 20°C, gm

/cm3.

' ~

i~h

the

ne

content in naphthas can be easily calculated by know

ing the refractive index

and density of the saturates fractions as determined by the refractive intercept m

ethod. There

is a relation between the m

olecular weight, arom

atics and refractive index of hydrocarbons and hence the determ

ination of refractive index gives an indication of the content of aromatics

in the hydrocarbon fractions.

4.36 LEA

D IN

GA

SO

LINE

T

he lead alkyl is converted to lead chloride and extracted from the gasoline by refluxing

with concentrated hydrochloric acid. T

he acid extract is evaporated to dryness. Any organic

material present is rem

oved by oxidation w

ith nitric acid and the lead is determined

gravimetrically as lead chrom

ate. The m

ethod covers the gravim

etric determination of th

e total lead content of gasoline and other volatile distillates blended w

ith lead alkyls (tetraethyl lead or tetram

ethyl lead, etc.). !

Tetraethyl lead is added in gasoline to im

prove the octane number but it is highly

poisonous. Hence, its concentration in gasoline is restricted and its handling is done w

ith utm

ost precaution.

4.37 WA

TER S

EP

AR

OM

ETE

R IN

DE

X (M

OD

IFIED

) (WS

IM)

This is carried out w

ith a water separom

eter. It~m

easures the water separation charac-

teristics of fuels expressed in terms of W

SIM.

An em

ulsion of water and fuel is prepared and passed through a cell containing a

standardized 'fibreglass' coalescer.~The effluent from

the cell is examined for entrained w

ater by light transm

ission. A num

erical scale (0-100) rates the case with w

hich the fuel releases gxpu!sified w

ater. :,,W

SIM

is a measure of fuel cleanliness relative to its freedom

from surfactant m

aterials. I

A higher W

SIM rating indicates th

at the fuel is cleaner relative to surfactant materials.

4.38 DU

CT

lLlP

l -7

Bitum

inous surfaces exposed to varying temperature conditions undergo a great deal of

elrpansion and contraction. Therefore an im

portant characteristic of the Kinder is its ductility

and the degree of ductility h

as an effect on the cracking of bituminous surfaces caused by traffic

stress. The ductility of bitum

en is expressed as the distance in centimeter to w

fich a standard briquette can be elongated before the thread form

ed breaks under the specified conditions. A

molten bitum

en sample is poured into a standard m

ould, allowed to coal to

room

temperature and then placed in a w

ater bath so that the briquette can be brought to test

temperature before m

ounting in the testing machine. D

uctility testing machine consists of a

moving carriage m

oving over a lead screw. A

n electricmotor driven reduction gear unit ensures

smooth constant speed and continuous operation. T

he temperature is controlled therm

o- statically.

Bitum

en having high ductility may be m

ore temperature susceptible.

. :&

,tfYiiii iiFY

B,'C!'C!E Td'(jr:&,M6i;.4*c$i

. .'" ";"i;

:.,< '.,

, .,;ii>.5 $

,~

'., +: ,! :..1<.<7 <

. .,:,,, ;!!,:,:l:.ji:.: .

.,

., I,.'

L!

tgffl,. bj2~?y8> .:sj...tis:

,(, j+

xp

,..d, )&

.,JA

~~

~. u::.

*,:a,

...... %+;*:: ig

~jk

::~~

'Y$<.T, t:F* 1

% ,

,~

ri

t&

~~

~:

3 : , , .

he

fi+

. p7$~c5$~+5~~9~@~~$l~~.tPo . +

.

;; z., .ji .!,_

_ f g&$rakf

it.. - ' &&&!

li&t, K

p$$&Pi.

ons denved from. fieirol'eum

wh

l~h

mi? : .,$>,..

t6mp

&f&

@

..... :;.:.I $

d&

T~

$~

h~

~<

,~

~

bu

t condensed to th

e Iiquidtitst.eatnmbievt

,

by aP$ffclAbhfsprri:da@

&O

$!!

B'&B&~~&Kxh~~~~@&~~~~<$&&t~&&4&eY

are .,. Ir4:.

! , :,$tored :

~d

tfa

na

p6

~d

&

liiji$duids.bnder prasw

e. p hey are sold .a pm

pane or butane or undr :i~~f;'e'~~ideTame~sU~~~~S.~n~~ne,

~b

~~

t:

~~

~,

.H

p.

.~

~~

i~

J~

di

~.

,

. . .

..

.., .,

' ' ?"

\.... -:,<,.-; .

;. . ...;....

:.>,:

,?..! i!.

..

..

..

.

., ,.. 6;:$.i'embairt2bn%

it I;~pG

:. ; ... :

, .

..

.

. .-

, ,

. .,.I>'!>

,

,, , , ~

,~

~,

~,

,u

s~

al

l~

m

iihk

s of saturated and unsaturated hydrocar-

.!bdtS

gl$ be:cy

and

~r~

~&

-f,p~-~

h'sis~

af.o*?r rn0fe of fie foll&

ghydrocarbons: - ..

ho

pb

e(C3

Hsj

, ...L

.,

' * Propylene (C

3H6)

..... ......... .........

0' . n-butane &

!jH$) '.

..,. 1~0-6uta" gq10j

. :

..

.

. ,i

. ~

Butylene (C

4Hs)

~races'to

smnli auantiti&

s of one or more of th

e follow&

g hydrocarbons may. also be presen..

Ethane (C

zH6)

Ethylene (C

zH4)

I

- - P

enbane (c5H12)

Pentene (C

sHlo) )

ii\)

. ,i) ~

PG

separated from

heavier hydrocarbons by r straight distillation process contains only

the saturated hydrocarbons wliereas Z

PGaobtained from

conversion processes such as tht m

acatalytic cracking,

,:< ., ;'

reforming ,c: . and

~ hydm

cracking contains unsaturated hy

dro

cmtio

~

. . as

@li+.

I : Bulleau of Tndian811Standarde-4BIS) have categoised L

PG

as under: , . (A

) C

omm

ercid bu

tme

k a-hydm

carbon-product -

.

composed re dom

inantly of butane i-

butyleneb or th

eir mixtures.

(I%)' C

om

me~

ciak butaneapropane m

ixture - a hydrocarbon ~

rod

uc

t composr '

predominantly of a

mixture of butanes andlor butylenes w

ith propane and

J~1 propylene.

' (C) C

omm

ercial propane- a hydqocarbon product com

posed predorninandflfproph- . propylene or their m

ixture. > T

he requirements of L

PG are ev

en in T

able 5.1. LPG produced at Indian refinen

conforms to grade B

.

Page 39: Petroleum Refining Technology
Page 40: Petroleum Refining Technology

1d'fldi~~Mtkl~ie~h8'c~fig1(~~~)

uiifir the Yeed~&

sfi&\ffb$W

"hi'&xddp

&-fed C

Q~

~~

~U

OU

B\

~

to the reactor tower, fm

m w

hich, at thetsamet&

e,kk8alyhtia k&5&

jw1@h&

nf to a regenerator w

here coke deposited on the catalys6is burnt &~

~h

'&n

tka

dffl~

$o

h~

the

reactor is fractionated in m

ain fractionating column into so called light en

dq

;mf~

dk

b&

t~late

and heavy fraction#. Uncondensed overhead gases and catalytically crao

k&

iqg

~el~

e are

routed for LPG recovery. The uncondensed gases are com

pressed, moledaq~pha&

$&uqces-

sively to two absorbers w

hich employ cracked gasoline and light cycle oil respectively as

absorbents to increase hgbt ~?

~r

~~

~v

ew

~,

~~

hg

as

ol

ip

e

fmm

absmber is45tfi8p&

,d, off its

lighter ends in a stripperjl'he stripped g~sol$ne

kfed

to a debpta?iger ~

~l

~~

,~

~b

,&

~i

ac

ke

d

LPG

is taken as overhead producp. LP

qq

4:yerhead product from debptahipfr ,$oJu+n is

treated further to conform to required specikations.

. t

f,"

-.

Coker gases are com

pressed in two stage com

pressor and routed to the bloi~&$$&

k~~orber ~

$@

df

?~

~;

$?

~~

~

is used, as absorbing medium

. Gases from

ap$tha a sorber to

are P

er a sqrbe y coker'kerpsi$,

~L%

"kerosifib kord kerdsine a!sor~&

% d

~~

~R

~k

'&

the

;&a

i,

t<

\2

a

, , ,,,

mw$$a$tidnating,k71mnnb,!the ,ckkii;~*li8?%

ighte'rrehds (C

1 and-cijkre s,thr&qdff G

od

' ?,'

/ '

rich nab

hk

a in a $lp

$y

r ?ndtc$&et'riom

stri$eP$re

??<kd back. to naih

t& &

$?$erfto

recover back QqC

4s. St$&r

&dfd&

~"&n~&

$'n ,,) .,.,,,,! j

g "' ~39

~1

~a

@l.$

~~

h$

~,$

9

V"t

P$

2v

th~

~a

in

1 debutanise; w

liCrbiW

G is iuihii?iw

n %om

bp an&

't"hb"lfi&d c6ke'r liaphthd

6&d&

. 1

bPG

tmatm

ent. M

ost of straigh

tan L

PG produced from

Gulf cm

des reguires only caustic w

8s)rasthb mercaptaii le*elik below

-5q ppm. C

austic wash alb&

doeanat bring down

I the percaptan content-of L

PG in respect of,A

ghajari ?rude and-he-e M

erox treatment

(extractive type) is nwessary. S

traight-run LPG

produced fro~&$&

...d& is B

enGraily

sweet but requires m

ildpcaustic wash. ,

-

Likew

ise cracEed LJ'G

produced from pro&

ssing of Indian cFdeL idj;' lres -- caustic -

wash.

Cracked L

PG from

F~

C'

unit processing feedstock from ~

ul

f

nuddk'irei$Ares am

ine wash for,

H2S rem

oval follwed by M

erox treatment. T

he Mem

x process is one of oxidation of the m

edaptans with ail. in ~kaIjne'r+

$$m

in tffe pre$& of~~el~t6d1i~&n'&&$d~fi&

i$t&

&.

r,

n'

'

The m

ercaptans are converted to di~

~lp

hk

des w

hidi ire &&

ively odod~

1dd~ddn~

ko~&

'ive com

pounds. A sm

all amount m

ay remain in the treated L

PG but the bulk is transferred w

ith the caustic to a'regeneratorw

here sodium

m$rcaptanine ik'conveited B

diluphide oil and N

aOH

is regenerated. The insoluble disulphide oil is rem

oved thereby reducing the total s~

@tiu

r. Q

dourisation. Since LPG

is used as domestic fuel the chances of fire in confined locations

Ii b

ec

oi ,?rgein the case 0Ia:cidental

leakage. Beingagas this sh?uld betm

ost easily detectable by sm

ell alone. Since constituents of LPG

do not have any characteristic o&ur,'it;s

cimb;on

practice to deliberately mix highly odoriferous additives in LP

G to ilnpart a distinct odour.

Most com

monly used substances are low

molervlar w

eight organif thfols (mtb$ahlf&

':d; have an pbnoxous odour in concentrated form

and serve as-effective 40

ur m

arkersin dilutqt form

(ppm levels). Som

e compounds of this type are ethyl and $tbb$l m

ercaptans. ~~

~$

8$

ts

t

made-D

octor negative and then ethyl mercaptan (about 50 ppm

) is usually added.

i -5J.4

Uses of L

PG

I

.&pG

isbwed aq

a domestic fuel, 8

fuel for internal copbustion engine anQa feydstopk for

themanufacture of various chem

icals and olefins (by pyrolysis.). LPG

supplied for,dbmestic

PU

YY

~S

~~

is ysually, a m

ixture of propane and butane, butanes predominating in w

armer

countries and propane being in greater proportion in colder countries. LPG

' has many

industrial applications. It is used for portable blow-lam

ps, soldering, brazing, welding, anneal-

SU-+& jfl r-

;

vv

h

hg

and hardening, steel;utting e

tc

h f

ue

for in

com

bus$on .<

ed&es,

it is e&em

ely .

- good, but it has yet ta leco

mep

op

ul~

. I

I A

1 I

\." -

, ik

5,2 NA

PH

THA

S

, N

aphtha is a nam

e give? td light hydrocarbons bgilin&$he:ge.gasoline range. It is

at light distillate obtaine4,frop refipwg of crude:~

il. ye

bo~lingfiiages of various types of

) -,

naphthas produced include: C5 - 85OC. C

s - 11

8C

, C5 - 140°d, CS

; ~~

OO

C,

C

5 - 17

50

~

and C

5 - 200°C. In these iiitial boilink point (IB

P) is co

ns

tsn

t.~~

t~~

-bo

ilin~

ranges can be

60 - 85Oc, 85 - llo0C

, p+

llp - 140",~. w

as

are u

suall~

classified as light.hterm

e&ate

and heavy naphthas. Itthh

aph

tha fraction ~

ls

be1ovk1000($,

it ii,"c1bsified as lgh

t naphtha. H

~~~ naphgaboils above 150°C. For ..

A

interniediate naphtha ~k

b@

%$

&~

~g

<?

ies

between

Ti

)O

PC

.

'v

I - .;

4 '3

.L

*

_I__

1 3:

5.2.1 M

ethod. of ~

*a

ctm

&o

~~

a*

hth

g~

!

'' '

I ki

Naphtha is prod&

ed by atm~

sfiheric distillation of cmds bil?&

s./s &

e+straight-run

naphtha. Several c~

nversion processes such ad visdre&jng$?uid

c tal* c

rnf~

ng

, hydm

cracling, cokingalso ? roduce llqp

hth

j. TE

ssb @ b

d2d

crgcked 'pa!hth&.

The im

portant chatacterjstics of t%aphthi?ractions 6

~ d

ae

ren

tl@b

~a

re gv

en

h Table

5.3. The proper qualitypf naphtha f

o~

the petrochem

ic$ an

d

fe&lher inapm

can be -

achieved by dearomatising the naphtha w

ith or without reform

ing openh;ams

~g

or

to extrac-

tion Of arom

atics. Higharom

ptic naphtha is not gly.s;auisapce @ k

sp

mndsbies, but also consum

es &a

en

erfl in thd cracking operafions$ithout P

ing

my

useful ~rd

uc

ts. S

O, it

produces more coke and increases the dow

ntime in both the patm

ehemica1 p

d fertilizer

industries. On the other h

aid, the eyiracted arom

atic fraction can:be used in thq

aou

facture

of synthetic fibres.

,&&2 C

omposition of N

aph

thas

$pbl"" is a complex m

ixture of hydrocarbons. Its mm

positiopdep&ds

o&+e

crude oil .

proce sed and the conversion.proce~g employed. For the com

position oq

ba

ph

v, tw

o types of analyses aie usually carried out. T

hese are: ~

vd

rocarb

on

type analysis Individual com

ponent wise analysis 1

he hydrocarbontype~alysis de

term~n~~thepercenta~~of

~~

@m

s,

olefi&

naphthenes .

and aromatics. G

fferent tj$es of c

o~

po

~n

da

found inpaphtba fracti~

nsfm

vv

uses are

' given in T

able 5.b The approxim

at& cdrbon dum

ber range of the pr

dd

u~

is slap 8

ven

in the sam

e table. In Table 5.5, a sum

man, of quality+

of the naphtha-fiqctions porn various ,

' indigenous and certain im

p~

rted and w

orldWidqyailable cm

de);&h

respecQ9 the para!-

' '

fidnaphthendar~m

atic c~n

tents ofq

eir na$hth@fracG

ons $re given. The v

qu

e indicated 1s ,

for the full ranggnaphthd (C5 - 140°C

). ~h

~h

yd

rocarb

on

type com

position of naphthas fionl --

Indian crudes is @en

in Table 5.6 for boiling ranges of 60 - 85O

C, 110 - l2O

0C, 120 - 130"~

' and 130 - 14o0C

:

2 3

Uses of N

aph

thas

J.

The m

ajor end-uses of naphthas are listed in T

able 5.7. The use of naphthas in fefl-

and petrochemical industries and as gasoline is discussed below

.

Page 41: Petroleum Refining Technology

i

I. a:: 5 :

Page 42: Petroleum Refining Technology

Table 5.6 Hydrocarbon Type Composition of ~ a ~ h t h a s from Some Indian Crudes

a b l e 5.7 Mqjor End-Use* of Naphthas

1~ Toluene - Solvent, high-octaneasol~ne component, chemical i n t e r m c d i a t e , e - , r

Xylenees - ~ r - o l i n e component, lacquer and enameis, chemical inteimediate

v m 2 0

- C

- . . .

2 E Zc

. .

. ~ e i v y n&ht;kab. :

. - .'

. ,, . - . . . . . . . ;.

Type of naphtha Light riaphthas

~ntehediatenaphth&- '

., . , , . (h) Olefins -and'$iole&s .. '

. . - . . . . . . . . . ., *. . . . . . . . . . . . . ( i j~mm(inia probuc&n . . . . .- . . . . . . . . - ..,

:.

p . , . .

:, . . . . . -. . . . . . -' , t.

.~. -..> . .

>. - -- - (a) V h f & ~ ( ~ a r n i s h &;nuf&ture:and pi$&inaphtha : ~:- r:. . . . . . . . . . : .: . . . . r . . . . . - .: , .. ,.. , .,,. ~. . . . . . . . . . . (6 ~ h i n n e r for paint& va&ishes,jacquPs ... ' i, :. . . . . . ' . . . . . .

. ., . . > . > . . . . . . . . (=) s toddad ~ulvefit?&ecib &l&&&foi\:dijc& m$ng'*idk::. ' . . . . . , .- . .<- . .* . . , ,

.. . - . . . (d) Mineral ~ p i r i t s - ~ G n n & foF~8ifitg- c d ? ~ ~ j ~ ~ ~ ~ ~ t i < e s&.itu@ 'I.. ::

End'uses . . . . . . (a) Gas making;gasoline

(6) Special ias&:ne ? . . . . ..- .,.. i:

(6) &ation g&lineji. . ,.. - . . . i b ) hiotor &asoliie :6 *,. .-: . . ~ 6 . -. . fd ) ~omm&ia@olv~nts-~ubber, lacquer &id pesticide diluents -

. . . . . . . . . .

lie) ~ e n z e n e - ~i%h-o&ne'gasoliee cbmjmnhnt; solver$, petrochemical manufacture; . '

?z

. . ,L :.

Page 43: Petroleum Refining Technology
Page 44: Petroleum Refining Technology

.,-

~:~

@0

0m

bu

6tio

n~

qlix

alb

&~

s$i~

:~~

@

~~

ai

~y

~h

~:

sp

&i

gn

it

i~

~@

gj

n~

&m&

mw

,

On en&

nd

des&

ad

~~~4~~lihr~~,~~idBa1iCbnilitMn.8~~e~'~in~dfRdra.~xCf;;g~~~ p~~g~p~~~dklpa~o&h~~~bii.&i~~~~,

"nfi~a1~khe:gasP1i~a&ii&bs8;.~~&;r~e .Y

er

ef

js&

i~te

~p

a~

r~

o

au

ge

&b

~~

h6

~r

d~

g~

fthB

fl~~

,&&

U1

~s

&,a

$~

~~

~~

&ih

: '

grmssurc

in the end gas zone, w

hich is thatpart:of the p

solin

sair mix

turew

her~

the flam

e h@ m

tye

t reached. T

h@lscmoseh~PLpe~~~~p~~$u~a~~tb~~~&~~~.~n~~~~~~~th6~~&sbli~e~t0

undergoprc+m

e reactions: A

mongst-them

yn preflamepriducts are the:highly tem

perature ,\',,:.:,.xTl. .,;: ,i:

~

e~

~~

t~

ve

~~

~"

d~

~~

~d

'~

f~

~~

~&

~~

$~

&~

~$

,rtain

c.itical t~&

b~

~:e

~fi~

~h

tratio

n,

the end:gas w

in';pontaneo";,$ ;ini&

:.y2i;;k

..t:ii >.:"

,.,: ";.:'. e arrival pf the flam

e fr~n

teman

atin~

from

.the sparking

plug: this causes detonation or' knocking. If, on the other hand, th

e flame fm

nt

end sasE

one before the @

$d U

P of th$@

$&fi,

t&reshold:per6~ideconcentrati~n,~~ co@

JJ&ion

of the gasoline-air m

~x

ture \?fiI.k-be.w

~t&jut kbock.

;;. .:!,

, ::,~

s:5

,,:<L

3

- .

..

,. ,

.t .:;.,,

, ,'<

::!%:-,..I;

! :<,,

. .

..

..

..

.

..

..

..

..

,

.,

,

..

..

...

.

. .

. "

:

. .

~ig

bre

5.1 i

~h'dia~~~ii:6f~~.dt~~ir!a~1~dj~~il1,ati~n

CU

rye ffp ga890na 6nd.itagw

jR~anC

e "ark-W

ition engine perfor&

&i.

Thy fiont-end (0 to2

0 perbent e

~a

~o

ra

fa

dj

~~

~~

~e

'~

~~

~1

d

stb

ing

and& bl)trQ~l.$as9&-p~,~k,qr~~~r~sti~s

ofn

f"ll-bbili,ngg9$~~~$,.$&$f~&b the k

id

range (2O'toso'p&

ic$nt eva

p~

ate

a)i$

~ic

&~

~v

e

orddve&,ifity

a$:&,,+;$;f&;h.. .

':: : :,

:-. ;

.-: ,

:. ..;. .:;:: :,4

! .:

. . .

%,~

Y~

~R

oT

@@

~

Fig. 5.1 Typical distillation curve for gasoline.

The phenom

enon of preignition is encountered in gasoline engines. The deposits in the

combustion cham

ber are supposed to be resppnsible far hot spots which are responsible for

preignition. Som

e of these deposits arise from tail ends of fuel and lube oil aaum

ulating,in the com

bustion chamber. T

hese form carbonaceous deposits w

hich may trap lead salts also.

The build u

p of such deposits affects th

e octane requirement of the engine. W

hen lead halides or sulphates get deposited on the spark plug they cause low

shu

nt resistance (short circuiting).

1 (H

eavy ends contamination

1 ...

...... Preform

ed gum i~

pu

rities ' . I

.... .

. ,,

Pobr cold starting Im

proper volathiti coir&b%

r ; . , r:

' .: l" '

i:. ,

Water contam

ination i

..

-~

.~

~:

.~

;i

:~

~.

f~

..

: :

Hot fuel problem

s .Im

proper-volotilityeontro1.-- ~

e~

~~

~d

~.

~~

~,

~~

~~

~~

~~

~

: ; ::

Carburetor1

High

Pcrformqi:,&

g ~

!$.$

~~

fco!$

$~

~

impurities

,; :, , i. &.: .,.: :

inauction system fouling

-----I

- .~

- .

.

.,.. Soluble m

etal :

cpetaminants

&wr.m

ntdminatiU

I'i . " ..

..

..

..

.

Filter plugging ;

.. ,

. @ifi,:(~!$P

m)iC

,o~ta&nation ,.,,..,,

...._..... ,.:,

-I

2,. . ., ,

~,fg

h,~

~o

~i$

ic

content Spark plug fouling

XV

;~

.

~i

J

. . ,,

.

. . /v

olatility

ch

aracteristice The volatility of gasoline affectsth

a Q~

&~

~$

~

af the ecengine is

a number of w

ays, which ~

rea

ey

$~

,o~

-,~g

r~n

g,

r$p:;!f w

arm;yf3

vapour lock, . .

carburetor icing and crankcase dil~

tion

r(~,&

,~~

,~$

i~n

of t

he,.~~p~.e.~Iub~.~.a~~~~g.~.oil

with the

higher boiling constituents of the gasoline): The fuel m

ust be sufficiently volatilc to give easy starting, rapid w

arm-up, and a

~e

q~

gte

~g

ap

ori~

tion

fo

r pro

qr ,d.E

$.ribution bctyeen* the

cylinders; Conversely, it m

ust n~

t

b:b'&'"ol&

ti~&tli~t ',kipour losses fibm

the'fud @hk are

!,

.exccssivear that-vapouris forme&

i-t@ ffibf%

fic causing vapouf'#&k'rnich

dj%&

&d

the '

'.

flow of fuel to th

e carburetor. To som

&&

kf'6fil%hcse co

nflic

ti~@

ii~l~

~&

cn

ts can;6?ibet by

usin

ga nibre volatile gasoline in w

intcr than in summ

er, bu

t some dcgrce of com

pfomise is

,, .

..

.

.<'i. :...

.... .

- .... '.

/:.:..l.:. ......

'

ob

vi~

usl~

~~

ec

essa

r~.

J o

xid

ation

Sta

bilit~

or gasolines. ~hi~d~pg~d~stori\ge!g~s:o!irlps

undf.pg~~

&a)y. but

pro

gressiv

e oxidatibn dcterioration. Thc rcsult of' this is form

ation of n~

n-v

da

t~!~

~~

,mm

y

residues. If present in the gasolincs, th

c gumm

y residucs can causc multiplc G

ouble, such as deposit form

ation in thc carburctor parts,p&pPr&~,~ifA1d~o.f$~~t~jpluIji$~p&~p-+i~

the s.m

A~

~p

iwyh

$r.. ~

y~

~~

~l

~~

~c

ci

fi

L~

~l

~~

~~

,r

p~

c~

it

i~

~~

~b

~~

~~

i,

~~

i~

,y

f~

~~

~j

$~

~~

~~

~~

~~

~~

~~

tian&

&p

:q~

qq

~"

r~.;o

&g

~?

.pp

cscnt.

jn.;;tk f4&lj(erjst~nt

gum);. ~8fi$a~EFia!bFF:y~~r:$~~~~$:"t

proccdur* arc used to dcterm

lnc thc tendency of w

m f~r,@ati~~~~~~~~~~~~~;fpp&~f!fi\~@~~:

..il3g;(+m&

qna~ion :is! due: tp;.o~iPativ.c. #g&g@

ti~g~$$lyfqc\ j ~fi~$~#~~~$k~.fif&pf~$~~.~'~~~ ?@

;irr,d~~ +

gk

os4

datip

a 0nc.c initiate?. $Pp-941~?~~?~~9f!~4f0~73~~3~%k~~fir0$css1ve chain reaction. T

he primary products of auto-oxidation are hydibpcroxidcgl:T

,,~.~

$ecompose

+ &~

~~

~r

$,

~f

~a

~~

~f

o~

mi

~~

m~

re

free .rad

ic:?1,~

,1~

~~

i~g

, P F~,$~.'F!J:~C$?

tpP

P~

!?$

~$

~I~

&~

9

f~

~r

i~

m~

re

~h

y~

ro

p~

r~

~i

de

s~

~

a-$&~<~&lz&;:!6 guh .rm

ati1onn, ,a

~.F

B~

P[s4

~~

@&

y~~

~ti'Jr.I;:2

$~

I rpc I: ,?.j...,.....G

. e

.~

SO

~~

~<

S

... am$n&$Fgo$?by+&! aiC

!?$i$

)it :$%

"., to p

dfo

rmatio

n duridg++&

i~&.uiatea

also ui;aerpo &~

~:;x

l~t~

ori~

~~

g%

+$

$$

!..~

' ''

'.

Most petrole"?

products a& $u$ceptible to deterioration~

n ~f

~~

ft

,,

$:

~

\!dir $*pi?

composition an

&~

h2

~~

&$

2~

c&.o

f~m

21

1

. . am

aun

ts of nitrogen, sulphbr, organla hld

S-%

d%

~g

~~

. ,

.c

. .

;, :. ,,;: : :

Page 45: Petroleum Refining Technology

. .

,:j:

~~

06

&~

s~

~~

~

uvqq

ant

qvlu

alls

a!m

ouoa

a pu

s ~v

a!qa

e~d ai

om B

slua

sa~d

'~an

amoq

'sa~

g!pp

v

JO

.aq3

4 su

p! 3

0 io

~q

uo

~

.mar

, 4 B

UE

~q

a~

nq

~e

a

103

Laua

~uaq

aw

uo v

ag

a p

qm

w

s..

sp

4~

p~

1~

~

au!p

ssD

.d

n-u

~~

sfi au

gua

Su

~~

np

L

[~s[

na!w

d SU

!~[B

~S

uana

pus

Sy

uu

~

au@

pa~q

snol

q,o)

lnsa

r s!

q& .

~oqu

nqrB

a ag)

u!q

$+

aZ

aq

UV

J 1!

8 q

a~

y

aqq mq em

qs\o

w

1un3

~id

maq

lua!

qms

do1 L

la~

!l~

lal

pus

4!p!

m"'

( @

!qJ9

sUo!

q!pU

oa '

pu

n '~

0!$d

LLm

s00~

la

y

assa

nu! P

UB

O~

UJ

la

y/l!

B qa

sdn u

sa si

qa

mq

~ea

U!

Uo!

$BzI

uoJ

msp

rm

oQ

mo

~S

up

pg

~

, .ap

ap!1

La!p

qp~o

san!

qsnu

ap a

u!uq

p a

ua

~d

o~

d

pus

au!a

rslp

ava

~&qq

a aq

q a

m aq

aqq

30 U

OQ

I~U

OS

vo

w a

u .U

O~

JB

s!q3

qua

nad q p

asn

am

s~o

qq

!qu

~

ao;)

u&z~

p 1s

qar.u

pm

'sU

O!

)~

B~

uo

!~vp

!xo a

qq a*

us

a ad

doa

ss ym. sp

lam

ysp

ag

.ayl

os&

aq

l JO

&!1

enb

aBv1

qs a

w uo

rmga

snou

aqal

ap p

aaun

ouol

d v

aney

q pu

n03

uaaq

ans

q a

qlo

da

g

gtq

Lnm

qay

? pu

g be

m qe

qq q

qa

w jo

qun

oms

aavq

aqq J

O a

mos

.sa

oq

s~~

3se

p

pl

a~

?

J.

.au!

10sv

S s

he

w u!

qus

ppo-

!qus

any

mga

3603

alo

w u

age 6

\ d

qim

!~

au

al6u

eqd

aaud

iay

S!q

sq!

q!dw

ap p

us q

uauo

dmoa

Bu!

pua~

q quy

alo

Byup

3quc

a sa

q1os

&

u! qu

appa

L[m

1n3!

3led

S! s

!~J,

-1ou

aqd

1L.11

8 aq

q wv,q

qm

pyo-

!?us

an!

Vaga

slo

w s

! au

!nra

!p

aual

Luaq

d .~

sa!p

ei ap

!xoi

ad q

$!m

Su!q

asai

4 uo

!qa

~a

~

u!sq

a s!q

q $!q

!qy '

sau!

m!p

au

a~

ua

q~

ao

sl

ouaq

d 1L

yle

se q

ans

's3

usp

~o

-!q

q

.SIB

3!pB

l ap

!xor

ad s

aA

[on

~~

'Qa

!~d

o!~

Ba

~

vq

a p

pn

~

aai)

8

paaa

Cd

oq p

aAa!

laq

s! a

u!~

oss

l~o

uo

!qep

edla

p an

lyap

po a

u -suo

!qsa

gpad

s aqo

dnS

wor

n u!

qua

sa~d

ale

squa

mar

!nba

i .Q

!l!q

qs u

o!q~

p!xo

pw

arn

B'q

uq

s~g

.sq

mp

!xo-

gq ,

--- -

uoq!

ufa!

a~d pu

e uo

!l!@

'a3n

pa~

sln~

d q~

cdsj

o %u!

lnoj

sJ

aEW

m

arys

lu a

sy!u

!m OJ

, l!

da

p Ja

qnrs

v uO

!lsnq

mo3

la

ddo3

se q

ans s

uo!I

qaw

-ueW

[d

~a

!p

'~u

~d

o[

i~

~~

d~

a~

I

- ap

polq

a!p

aual

dyqa

pue

apF

orq!

p au

aldl

a se ,q

anw

s~a~

uahe

as

ql!t

~

Buo

[~pe

al.ld

qpiu

q~?a

? pu

e ,@

!a!

, [drf

)aei

la$ se

%qs

ns s[

d~

~e

pe

a?

C

. ::. .<,;:;i..?

, :

.

. .

.

. .

. .

s~an

oldu

x! uo

!qsn

qux0

3 (n

qu

a2~

aqaa

(a)

spun

odux

oa %

u!a!

-!qw

(p

) 6

"T~

WB

ap

la

^ (3)

9w

pu

r0-9

v (Q)

"p"l

od~

oa Ji

~u

y-9

W (

a)

:Mol

aq w

qu!

od m

ap

Ieu

ow

uy

mo

y pa

g!ss

e[a

aq u

s3 sa

u!lo

ss2

u! p

asn

aah!

q!pp

njo

sadLq a

q~

el

q p

a

suog

!sod

moa

pw

'suo

!puy

1!a

v 's

au

!~b

hi~

&

paen

B~

A~

IJ

PB

;

jo 6

%

mom

^ .L

am F

a!uo

,uoa

a us

u! s

uo

vu

y a

saq

vo

q ?n

o Xue

a sS

i9!p

ps a

u!ps

ss -

sau

~~

oss

g

u! p

asn

sa

~!

~!

~~

~

ia

k vrg

f

F3!P

BJ

1g~!

psi a

au

a MO

I ap

poia

do.r

pXq

l~

!q

gq

a

ag

appa

rad

.V +

H

-C

IB3!

pBl

aag

appr

olad

pa

!pvi

aaq

uo!l

v8vd

O?l

(q)

pa

!p

~

aa

g

ug

a~

o

.33

- 3"'3

UO

!V?J

!UI

(0

)

Page 46: Petroleum Refining Technology

. .

!. , ,

! i I D

etergen

ts. ..,,,.+

. . . The

,,. . control of deposit build-up in carburetor; fuel, injection equipm

ent and

,

inlet system.canbffer significant perform

ance benefits. These include:

. ,)

,

I ta?$Zd&ced exhaust:eniissions,

:,:: .

. :..,

,..!.,.- ,xi; .

. ~

.

,,

(bl !mp=$$id fuel e~

on

c&~

, I

(c) Improved-vehicle d

riv'eab

i~it~

, and

(d) R

educed maintenance costs.

i / T

he use of.;low levels of carburetor detergents typically am

ides; fatty amines and im

- idazolines can,give good control of carburetor deposits.

Co

mb

ustio

n im

prover*. A range of additives for com

bustion improvem

ent have been used. T

hese intluae: (a) ha

d ap

preciytoyi such as tertiary but$

acetate which w

ere effective at extonding th

e anti-knock effectiveness of leqd alkyls a

t high additive concentraticins. (b),;Q

epgs~,m

bdifiprs sy

ch a

s the phosphorus and, b

p~

n,co

mp

bu

nd

s extensively used to .

. increase the g1oW

:point of engine deposits. "

. , : ,

(c) 'me

catalytic approach where the ?atalyst is added to th

e fuel which ;:: ,appeaia ,

! ,. 4.,,

to

. be

increasingly considered. .

..

5k

;~

ew

Gaso1ine!Blendinggc~mpopent8 ,

,, ,

. . . , . . ..

. . . .

. .:.

; I

. : .

.

. In recent tim

es, pollution, from autom

obileexhausts: has increased toalarm

ing~li.V

elsi S

tarting from A

pril 1, 1995, new

c~

rs

~~

old

in

four metropolitan cities of India, i.e. D

clhi, M

umbai, C

alcutta, Chennai are fitted w

ith a catalytic converter on their exhaust pipes. C

atalytic ,. .~

.! , . .

converter is an anti-~

llutiori'devicetittcdto the exhaustsygtcm o

f~e

h~

d&

~It~

~c

lps

prevent em

~ssio

~o

f'no

xio

us

gasds in

t~

th

e atmosphere. ~

t.is-tu~

ul:&

in.sh

a~e

&id. c0nipA

se.a hoiit?'jico~

lj.hetallic or ccrariii'cd'i'Sc coated With 'noble m

etals like pl~

tin~

'~&

hd

ipa

llad

ium

. ~

o!k

&F

ebl~

jAiy

Be'i6

ll~o

f~atatal~

~1

in

ii:lractibn which w

ridbis exhaust;eonponents ltke. carbbfit"m

onoxide and hydro'carbons Bafrn

~ess~

by

converting. th

cmin

to carbon. dioxide 'and,

wat'e%

:Thcse inetals are spread over a Inrgb su

rfaccto proddeihbim

atc.wntact betw

een exhaust gases and catalysts.C

atalytje corivdrtcrs nie rcquirgd.::to sim

ultnne&sly

:remove

tdfg~0Eeil'pal~utants,~rc6ist.'Cahlyst:poisoning bycontam'irrants;md:~~tJlo~g~~~~Ofa.a.~two

t~e

~~

of.~

a~

~~

ytit~

co

nv

er

tcr

s. T

wo-w

ay systems using.plabinum

and

:pallad

i~,:.yhich

.remove

o~'1~'c~~b~n~m~nbxideand~hydrdcnrbons~

leavingnitrogen oxidcs unchwgd.:~he~latt'cr.,is

o%idf~

ed-th,rm&

h..air,: pum

p; Threc-w

ay catalytin

ysb

ms. O

qplpy plati~m

Gip

all~diY

$;!~ayd

rhodium to rem

ove all thrcepollu~ananb simu

ltnn

e~u

oly

.,had

-i.n-,thegawli~~:issj~ju~ious tha..honeycom

b disc of the:co

nu

~rter and poisons the noble m

eta

l.~,in

,~h

~d

~@

~~

a",r+

uc~s its potency; . . .,. ,'... .. . , .

. ..

-Bheiaquirem

ent olp

rod

~cin

g unleaded gasoline w

ill result in octane s$ortages qt m

any m

anufacturing sites.!The use of oxygenates in gasolines is m

ade for raising thc gasolinq pool

volume and its octane level, especially in

the critical front-end ran* The excellent bym

ing properties of oxygenated com

pounds result in increased op

erating

cficicncy of. the engines, thus com

pensating for the loww

calorific vrlucs of the oxygcnatw

. Simultaneously, 11.w

er

Page 47: Petroleum Refining Technology

~i

%~

:~

~&

~~

&~

~9

;9

f+

~$

j-

i~

i~

i

p~@@

I~i$

$t1g

ey~a

$R~$

pg$i

F~~$

5f33

~e?~

$&

$fae

e ac

ti.y.

e;~~

Q&

j$jg

j gge; &.&

& , - .~p!5

' a

#@

$t

i~

c?

$~

#~

b&

~-

~~

~

&'.

- .

. , hd

k@k?

b;~ijt:

!? ,"

y?~#

?&+

~@

~~

.a

(~

i~

~~

e~

~i

~~

if

~~

~~

5p

.i

!!

gi

~p

jn

ta

i~

~~

~q

~~

:s

uc

h~

~~

~~

~~

~$

~~

~~

~~

~~

;~

~~

~$

~~

~~

~~

~~

~1

~.

~~

Rk

flfi

;&@

i~'@

&~

~&

~~

l et&

~

w~

~~

h~

~p

l~

~~

~a

~f

"B

PO

:m

~t

~y

l~

et

~e

ii

l~

~~

~'

, . .

... .. . .

. (,.

..; %, i' ,

cffe

ctiv

e~T

hesu

i(ae

k act

ive c

~~

~o

h~

~s

~f

~n

~t

i,

~~

by

fo~

ming

&fi~

MB~~

~i~~

&j&o

ver,

~bk~

Fata

l su

rfac

es&

the

carb

uret

or a

nd p

rcve

ntih

jj M

heri

ne to

them

. ~~h

~ c

h~

~~

~~

jc~

~~

$o

un

~;'

;~n

be

as

surf

ace

a~

t~

~"

Q~

!f

jn

~b

$~

~~

~u

@,d

~

+@,th

qp..c

$ten

incl

ude

the

com

poun

ds

~s

ed

a?

.car

bure

tor d

eter

gent

s or

engi

nec~

eanl

ines

s addi

tive

s whi

ch a

re di

scus

sed

belo

w.

Det

e?$$

~t).

"P

co

ntro

l of d

epos

it b

uild

-UP i

n ca

rbur

etor

, fke

kinj

ecti

oneg

uipm

enta

nd

inle

,bSy

st.eb

$?hX

Fb:ff

er S

@if

ican

t.pe

rfor

man

~ 6k

n&fi

ts. T

hese

inc

lude

: :

:. :.

:.\ l.,,

. >

&$'~ed~dd~e~ha"~t:

, .

(:,

. &

h5ki

ions

, ...

,. ,,.

..,.

!

. .

it

::; ($

1 !:m

pr{+

df~e

l ec

ono&

y,

(c) I

mpr

oved

veh

icle

dri

veab

ility

, an

d (d

l Red

uced

mai

nten

ance

cos

ts.

The

use

of,

-bw

leve

ls o

f ca

rbur

etor

det

erge

nts

typi

cally

am

ides

, fat

ty a

min

es a

nd i

m-

idaz

olin

es c

an g

ive

good

con

trol

of c

arbu

reto

r dep

osits

. C

om

bu

stio

n im

prov

ers.

A r

ange

of

addi

tive

s fo

r com

bust

ion

impr

ovem

ent h

ave

been

us

ed. T

hese

incl

ude:

(a) cad

~@~~&i~~~s.~~c~:asterti~ry

bbti

l-&

tiit

it@

w

hich

wer

e eB

ertiv

e at

exte

ndin

g th

e.

anti-

knoc

k e&

?~+v

enes

s ofl

ead

alky

ls a

t hig

h ad

diti

ve c

oqoe

nhat

ivns

i (~

@~

.~?

$,m

?~

ifi,

ys

s.$+

aq

.the

ph

os

ph

o~

~

and

boio

n,co

mpa

unds

ext

ensi

vely

use

d to

i

.:..

. in

crea

se th

e gl

ow: p

oint

of engine

depo

iib.

,:

,. . .

. . .,

..

-

.,

.:

.

d?

~~

i~.~

pp

r?,a

ch

w

here

. the

cata

lyst

in a

ddid

b, t

he f

uel

whi

ch a

pp

ea

r~to

be

,.

. in

crea

sing

ly co

nstd

efid

. ..

, '",.:"

. .

.

*. . .

.

5h

~e

w

Gas

olin

e B

len

din

gC

om

no

nen

ta

-

- .

. .

.- ,

, .

In recen't:times,:pul.lutian: from

aut

pmob

ile.le

xhau

sts!

.has

incr

S

tart

ing

from

Apr

il 1,

199

5, n

ew c

&+

+"i

ld-?

~

fo0.

f m

etre

pdit

an c

i$cs

of

:Iod

ia, i

.e.

Dcl

hi,

Mum

bai,

Cal

cutt

a, C

henn

ai a

re f

itte

d w

ith

a ca

taly

tic

conv

crte

r on

the

ir e

xhau

st p

ipes

. C

at&

l@id

eonw

rter

is a

n s"

ti:p6

llutib

i d&

ice

fift

diJ.

td th

e ei

h.au

st s

y~

~c

~o

f&e

~.~

~.~

~~

t.!~

c]P

S

$&&df

&~

i~&

n~

ofn

o~

iou

s'~

ak

~s &

'dp

he

r&,

ig, a

hla$

in

,sha

pL , ',

,,.

: ,

.,!:

: *.and :

'~m

.p&

ae:a

. h

df

i~

~b

~b

.h

~l

i~

or

ce

~am

ic d%

+& co

atcd

wit

tnob

le m

et&

hk

e pl

&tj

fil&

.~nd

i~&

l]&

jum

: hl

ibbe

kal$

'$&

f B

i&?&

;d$c

atal

y+tib

a:

rea&

i&n .

whi

ch rendcf;i!exh~~bcomponM~9'1ijke

&&

~&

!j

&,&

~~

if

~

hydr

~ar

ij&

s n.

h&m

ta*r

jay

wnv

hDin

L zith

rm:..

into

J c'~

rbon

::.d

i~xi

de,-

.and

$&~@~r",r&ehe5fiet;a1~.

a*C

s

. re

ad i

ver;

-a la

rge

sgif

ac@

;-to

.pro

vide

&tim

qtct

con.

tact

bet

wen

e*

ust

gase

s an

d catl

~sts

iCat

alyt

icco

nver

b~s are

ruqu

ir~d

':~t!

sim

uhne

bUsl

y :r

emou

e t.

pgh

t'~a

wh

~ nts,~cxsf~t,Ida~l~st~poisoning~~by.eon~ami~.~

' .

ati

+la

~tJ

o~

~~

$e

l..a

.~tw

o

t~6~,6~h~~ik~c~n~brt'dr~.~~o+wap

~jr

btem

susi

ngpl

dinu

m n

n~

all

ad

iyn

j~~

~c

,h.~

mo

v~

@

r~

~~

ox

ido

~a

.d;

~h

yd

rd

~a

rW

n~

lc

avin

bn

ibm

n o

iidc

a h,

nchq

$.::

T.h

e !l$

t$.;ib

BY?d?i!~d"'$h~iiQgh-oir.

pum

p;:T

hr&

woy

.c

atil@

c sy

stem

s, cr

nplu

y ,@

&in

.mJp

dla

di,

p~

an

d rh

odiu

m t

o re

mov

e il

l, th

re6p

ollu

tdnt

s ~ir

nnlt

aneu

usly

; laa

d:i

nth

~.g

@ig

~ia

.ir\

ju~

iou

~t'

o,

. ..

.

kh

0n

ev-b

di

scof

the:

con

xoct

er, g

ndpo

irm

a ,&

he no

ble

mat

nls

.ifi

3~

hy

~d

~v

j~~

,

. ap

dre$

uces

it

s p

obn

py,

;.. :.-!.!;.:

:..,

. .

..

.,

,

. .

- i"

he&

quir

emnt

tor

p.rod~cing:un'loaded~asolioe

will

re"$

, in

&tq

o s&

~.a@

ceqt

man

y "

e~fa

etia

tin

~;si

tes:

~Th

e us

e of

.ixy

gcnn

tcs i

n ga

solin

cs i

s m

ade

for r

ai$.

i.ng.

ihc g

aio~

ind.

. joo]

.

. vo

lum

eand

its o

ctan

e ,le

vel,

cspe

cial

b in

. tho

cri

tica

l fro

nt-e

nd ra

nge.

The

r.&

ell&

bU

rohg

. .

Pro

pert

ie?

of o

xygc

natc

d co

mpo

unds

res

ult i

n in

crea

sed

oper

atin

g, cf

fici

cney

of

thc

'on$

nes,

.

thus

com

pens

atin

g fo

r th

e lo

wer

eal

oriti

r va

lucs

of

tho

oxyp

cnat

es.

~i~

uit

~n

eo

us

l~,

lbw

cr

. uf

~ct

urqd

by,f

epen

tqt@

n,9f

,i!@

fg:,

tvra

12~m

duc,

@.

. . :: ., ,.

>,.:

~''

~$

s$

&>

~.

::;

*5gj

hflp

ltJ$&

;mm

.\,

.,,.,?

, ,.,

, i

L '<.

r.

,'

.:: .,

I:

t;..

,iofiw

@ng

5

+.reen

; et

hano

l by

volu

me

are

sold

in S

dhth

kih

xic

a 9. W

~!>,%;

RF~:.

. ,&

J:~"

. .th

- p

pr

tiq

su

ch. a

s be

tter

wa

M @

$?et

$ .:.

~.

i~

$~

~?

O.

$f$&$J&$,~*e~it'

;; 14bia

hi=

gid

sponen

t . .2

kyz:

55

. 'p

itho

ut

iov

mm

&

subs

idie

s it

s pr

ice

is c

urre

ntly

un

attr

ac~

ve /n m

*~,~

$*tn

es-:,

;; .

;. !,:

, r:: ..:

. p#3

B.,L

pia

pro,

du!e

$,b~

,a sim

p! ,

~~

~~

y~

,~

~a

~~

r$

~~

~~

c~

~~

~~

~~

$:

~

,,

- re

pre?

nts

a w

ay, to

use

met

banp

l rn Ft

qr:

gF

olm

? *

i~P'AfiI

;hoi:~lt

sbbutjli

'ene is a

vaila

ble

eltb

er fr

om FCC (f

luid

eiit&

lpialy

tis cra

ckyg

) o&

-gpl

es ar

stea

m cr

acke

rs.

~~t

the

amou

nt o

f is

obut

ylen

e av

aila

ble

fmm

thes

e so

urce

s Is v

ery

'lrn

lted'

3

;

The

isob

ut.le

ne c

onte

nt in

the c4

fract

ions

from

ste

am c

rack

er v

arie

s fr

om 4

' to 4

5.P

rcent

P~

Page 48: Petroleum Refining Technology

PETRO

LEUM

R,

-M

~~

. -

1

.-.- ".

% .:, L >

tpr - ,?

' s. *

T~

l,l:; 1

1)

' ,,', .IT

?I< ,'

~~

~~

f$

if

h~

~&

h~

b

c%h

e blehthig tom

pb

bn

t~7

1tg

!nohitmid ~

snd

:n~

n~

~&

lIdt&

k~

j z$ifills

ex

~e

l~~

tf

(t

~$

d~

~~

ba

at

~e

rid

W

taiVdh &

th no ~o

dp

atibilit~

fpm

b]em

x

It ean;bc blehded

at 'tEP

f~d

We

~~

aa

dh

e

liiixhire can\ be handledy &$pod dist)ibukd via e$jtabli&

e&

ch~~el~~~U$th~~dhbtion~necsrsa~

with

1&

~th

~1

no

l~~

~?

,~~

l is eipeaialiy,atfractiue for

b~

~~

~e

shortage and insufficient reform

ing ra

pa

~it~

;~~

e(

liof

~o

~i~

~

oflMfJB

E(in cases appears fav

om

ble w

hen compared w

ith other octane enhancers. M

TBE blending

no

rm

~~

~r

f~

~~

~~

~~

~e

~~

r~

ui

~~

~l

.~

~

~b

~~

er

.s~

ce

~u

~tp

$~

&Q

N

gasoline can be pm

duced by catnh.hc reforming, w

ith relatively less yield loss. MTB

E to the extent of 11 vol.%

is-beingble~de$in Am

erican and Eum

pean gmo]inea.

TW

=-T

~$%

~

S%

%$&

~P

S &

b?dk WLG

TBE: pr&c&

by additsel ye&&\ O

f tertiary am

ylede%4~&

~k%&

6E, q prg$kiice of acid

ic~r~

i4ctio

T

~E

,I(

asta

- slightly

fighera*g $

ihh

~so

me

ivh

at l~

we

r octane val&

~M

TB

E.

~

AM

~,

i~

fu

&~

~~

~~

~$

j~

\~

W

ith ~!

io

f"

hx

zl

r~

~e

pd

s.

@l#

$k

, iitasi&

[email protected]

as ati-h

otk

eLbrq

mndntb

as2h

hp

~lih

i~~

~;

- 48 m

u gcbrrgd

some refm

eries ab a mem

s b cbem

i&al

ad

db

$,h

bu

~p

l ,>-

11

t~

o&

&b

~:-lifit

sh

ine

fr

aa

.

?,,

2'

IC4'

*l

ti

, P

1.. I

, - -

- -

2

<.(

I I

-. ,

1 t

-,

5

-~

~e

ma

ti

~e

ih

l~

a~

&d

1~

I

>

, ,

,I

~,

Th

emo

3t+

tenti@

a~tiv

e gdaoline fuels for spark ignition engines, b

ot

h~

fi

o~

l~

di

~

slnte*and w

orld enerWscenari0, areliquefied petkleum

gas (LPG

), co

m~

re

sq

e$

pp

~$

~~

~

(CN

G),p@

ue18 and glyh$ls. -

r.

.

LPG

. me

Me of LPG

ad hlel for spark-@ition

inbines has already &ehvsk&

&k$h~'

,fd'm:

advantages of fiPG over liquid fuels include the follow

ing: I

I i

pr

i,

, 4

x1

3.jr

(a) LPG

mixes.m

ore readily *i$X air.

(b) ' It

be used at somew

hat leaner~air/fuel ratios. '

(c) fi @

ves lower em

isSi0ns ofpollutants ?carbon monoxide and unburnt hy&

wapbo&

). (d

) . It reduces cqybustion chamber dehsits.

k) It had excellent ;in'ti-hoi~+iforriizince, providid unsaturates are

excessive proportians. $

,!* ,.. s..,

(f) It is resistant to preignition.

I ,

ti

&?)

It gives excellent cold-start and wa

h-u

p p&

-fJn;iance. , ,

.>

fie use O

T~

PG

as a fuel for ?E

tr$-ignition en

6s

Khg 2 h+ber of d$hanM

&i:heS

e include tde follbw

ing: I -

'I

-

, , (a)

LPG

,muat be stored and trans&

rted in tanka cap.ble &

fyithstat;@d, hu& hjgh,

pressure. r

c>

\

,,b, -

(6) LPG

tank is quite bulky. (c)

The perform

ance O~

LP

G

in tenns ~f em

isyions, d ecoriim

Y myis depe*degt on

(7 its com

position. The W

C.4 ratio

and the level of Lnsatw

ates strbngly Y$jlence

edgines i~c

tud

f~ .

*, . , .. ,-. <.

, (4 cN

q ii lightyeigl$

gas with a hi$h @

ition te

mp

.; .. ii&

&pe&

pb ~

t ~um&kerbp~f~tu~e;~&~r:waui:a,fi~GVG; ~

kl

ll

l.

*?

+,

,, ,

,r.pidly* dispew~

@?~

ntO

,,b,~

,,~,atm

~s&

p~

g i...

, ,,i,,-~;o

%%

'i "dJ 7..

4fl.fiI 'idk , .,*rlr-~

. bi,,: L:J~.

- LJ.'d

't" '

. o

be

r

&8N

G +

idiahqi.@~B

D.

rz;Ie"nc@ iC

SG

ineeds no. additive& jo

t

& ~

,,,~ti;~~C~~~gen~;.suQ~~~~~bf~~,tl$~~~;~

fl<UdW

h.'+,SxX. 1 11.4

i I. ;t

,. Y

dl<

*''

~..,:,y.r(@

M~~~mjPb1lu~an~&missi$h~~ctl~r~t~re'i9.fi~6ip;lifii:~t redubtion: of@

o' and :gh kl+;

3ug~~m~~d&&&~onR1~~f~firiO~~~~ '1 $

7>

dc

!1

'iz .x(%o':? L

z .L

l'll "

, )rl'

'

IF, y;@p &

&ib(i&

a&,qd'm

drgfggtlltzp:>~:~~ $9 9

" t"

~~

74

""8w

~.:)ii " [

b;v .':cd

"1

1flf4

' '

Abi&

;'&x~e~@

Q$b

~e~@&of&~~~~@ad~rf$tj~~l@@~&trbI',

g~

s'db

~sn

otr~

iWh

we

~?

@;~

~t~

~i@

+&

b~

g~

&.~

dy

Sg

g

.~i&j$%

&kii<e@

i4 ij61~1&$@

f I 8@6&t+&4)5j

61

2 2iY

+%al

* +

v a - S

ngineshave allong Me. ~

~~

da

ea

na

tc

~o

&~

rk

~u

~@

~~

&f

~~

~

l,x)fs

v,,, *ne: tL

1,. !zL

v

:I!;~C

I ~,~;;x

x

d $%!6"

ii TA

ST

Q~

~~

I

sift no yi91 t r*

tr y

~'i

%~

j&!

9 m&

hs6 br ,d~~~i~f~$$~b~~~~i~t~~a1~+$%t:3'~2~

ij#

~h

~i?

~~

EY

dh

&J

&s

t~

~

f :gad :id? b&u#1$~&$~1,&j

"&&

&~i,i1\; f@

&S@

~&~.ei~~

l~'@k%

i&'b$~ fii?

F'i'

';l ~(l~.il.f;30"P!B&le'B1~iig6YY~! *i';"i[j"'

.,lJ

.-., d

U

17'4'; '0

7' YU

dfi~

!&

l!~

'''5

'

! '

t

station costa of CN

G are very high.

Bgn

fuel~. Synthetic fuels (synfuels) can be produced from

coal, cil shale and tar sands. A

co'pmy,

sasol, in south &a

is producing synfuels froid ctgltWgfnatr@

is th%

+kQrA

p1ete ~

bh

&o

&~

~~

~~

B~

am

-a

nd

dO

xy

@~

.

mbr @

urifikhtlbn-d;th'e gas: s

pth

es

Yd

&d

ts

~e

OB

~~

~~

fi

~f

a~

~Y

~~

&~

~~

~~

~n

nm

~~

~d

~e

'm

d:$&m

e:methm

&l~einextr

d%

i?=

$e~l

~l

~f

ig

~#

ij

fh

~d

t&

&f

~~

ff

ii

ni

kEe h

~~

og

eh.a

~id

~a

ti,b1

rno

nd

rid&

ua

ram

im8

~~

~~

' 1t1 givesil l@

d r@

gd of&~

yd~oc,atb'bn~

of dif%

mtid&

I~d

@&

~Q

h~

gi~

~~

&&

bG

(&~

s(aa&

b'#~ tif ffox&

eh&ert SLID

?&' BS ia

l~~

fi~

l~'

~d

fi:k~

f6D

L~

88

81

*

&Q

~&a&

$w&

@&

~&&

&ei&

P

~~

~t

s

--_.._

frbnt;th&

htct6~

---- tail gab &

ehp

&&

en&

;

@qu

jh&

b@W

ed ~

~~

oa

ue

p~

h'

~~

ef

u~

e~

~

pt~

esse

s such a3 iaam

erkatibn~ ~~

la.tiA

nl

b p

~~

$t

~m

~~

~~

I[

~.

lI

~~

~~

Bu

ki

~s

se

ri

es

~f

~~

~~

.

,x~

i;. .

tl

s.

i~

~b

:!

.~

;.

~~

'

i~ii~~&ri'~~~~~b~~~h~r~&hno~and~thand11h2t~Ibee,n~~opp~ds~kd~~

fue

~~

fdrs

~~

k~

i~n

ition

engines. ethanol and ethanol differ m

ykra&~~mgh~b~b~&~~

! ~

ba

dti~

ticsith

aJ;,w

e

imporkant to th

eifid

istrib~

ti~~

rnd

uselas a &

el-fon w=k+i&

on &

$-&Pf.,Q

l2 &~$a~<ie&fiiijfih~

%m

ost ~~f

i~~

t~c

ha

rq

cte

ris

tiq. .'"m

b~

:.

7 @&

we

d to

typkalpsolioe, metha1ial~

~uiretr44%

as m

u~

la-

air

~f

o1

1(

10

mb

-~

~&

~~

~

&@

~asnh

acii -BF& and .equirbs3!7 tim

esas much heat fo

rv

~~

or

iz~

ti~n

~~

~h

eiw

~e

s~n

~)*

%~

I

comparisons fop ethanol are: 6lY

'aamuch air, 66%

as much energy, and-2.6tim

ea thbh~etld. vaporization. T

he ratios of heat of vaporization to heat of combw

tion show that fn. a

Weh

Page 49: Petroleum Refining Technology

.sa!q

s!~a

qaem

qa B

yn

q u!

quaw

aaod

w!

ue B

u!an

po~d

Lqa.

raq3

'sau

eqq

gd

~u

,oq

~

pa)n

nuor

~ sq

ma

=!qe

wol

e ?m

!per

) au

!soa

ay sp q

ua

wsa

q~

~p

Lq

La

.(

.~sq

j ipw

Q.m

nq-

se) W

!+*nb

su

!mq

PW

qPI

O3

'-0 9

wu

bm

nq

d1

as U!

~u

wa

~o

ad

u~

.)JW

a R

IQW

BA

~

6-qa.

~ u!

a~

ga

e~

qe

41

ppad

spsf

sau!

so~

ay~

o Bqn

y~$6

H

-Bm

uy~

.rpa

-s!r

sapm

mbs

rri

qPa&

r a

aq

p u

t~

sa

u!so

aq

b8a.

q q

t w9304d qqq~m

4, I

t , 1

I -

, ,

CL

,

, ; .sa

u!sa

raq

~n

qd

ms qsg

q~

p;f

a

Br

nn

~w

mp

sm

~i

q1

'6

a~

po

~~

~n

n~

eq

aq

e

"spu

podm

b~ ua%

qp

pas

t4pm

0@

03

~bplseP~~~lo~wa~spe~w~m~~~ns

- uuaq

qq

~~

up

~

~n

y~

~=

d

aqq

mq

app

orp

~~

'~

@E

~~

FA

w

m~~~.469~@1~~1~ptrocl~~~~p~q~~~n~~l~un

PW

.J

~B

~I

O~

.~

D~

~

- 1

~$

~~

ft

r~

f#

~g

~~

$~

-@

~e

41

~~

L

ww

mcI

:nm

arap

pm II

MO

~ osp

s~

*?

ud

qp

~.p

'

~W

WW

i~

~~

%~

m~

~W

3~

P~

~4

~p

?x

o@

m

qd1n

8 wb

fl w

wp

aq

,~q

~a

yr

wq

u

aM

g~

~~

~6

*r

nfh

#p

ur

9p

t~!a

q

aMU

.pq

B~

nd

gs B y

$$i m

qy

er

qa

gi

ia

qs

qp

W

!t33n

@@

'35

iiW

~W

:k~

~If

B

tp IJ

epiro

1ap "e

trrpu iq

diu

k~

w ~1

%

~m

nq

~a

qs

ma

~~

~~

~s

!

$tW

ds

~'~

itt@

d~

a2

~~

d'.8

'8e"

@dp

$p U

ptU

1eq$

, ~q

w~

$u

o3

~~

~7

1!w

m

'sq

~p

emea

aq &s&

ti ~

~~

f*

~7

f~

~~

~~

~~

~~

~~

~~

~6

@~

~~

-9-

bay p

slly

9q@

qm

~!s

ola

q m

qg

~q

~~

,t.

jf)q,

,: 2

cur,

:r

. <,,,%

'" , . -, , .,

7

1\,

' sau!s6.1aa;~o aatqr~~ut?~

'1'6.~

p>J5tflr;4';:

ti

,,

-

!

fr

c,

I * ;,

%

1 )(

..I L

""

'/' '

' '.'

I&

g#

& u$ . e 1 u

ndas

k . n

p&

d$Q

fd&

@h~

.i$qw

Kip

!d~~

%!in

4w

aq

u! da

SAko

aq$ 1 s

a(qe

u8os

p .u

o!qs

nqnr

oa

n..

1f

I~

f~

~~

~@

3f

rh

6a

~%

~

4$ii

aIqe

ua #~

~k

Ii

nn

~~

n~

.~

am

Y'

+&d~&it@&~~Wk~~i@$5#~

l{ilihlYiiij &

5&8

4tifp

hj%

fi$&

i1+pi&

$

eYiik

YSn

qd@

@ftj

* 'r

,-l{

tc

r :p I

*I,

.I '

rtj+

Sq

:,q

;~j*

rCc,

~

v :, ., :.

; +

,+

* ,l

c .h

6g&F

oar;x

F

~$'

+bJ

d 02

UO

~B

~J

~'

L

1sno

nquo

a 2-q

au

!so~

ay~

o raL

e1 ~

op

qs

X

~A

m L

Ia3 sa

d4

Jaw

.I

a&'i

i@ i5

8~iff

ffn#n

Pltf&

dtla

tto5 5

~5

~&

dh

~P

d&

~t$

4'd

kdd

b'~

6t.

d %q$

sa'$

$t~~

d hu

nq

a&

tq%

a!~

~~

, ~~l~~'hpiw~wft~ql~.sw~*~P~~~ti

aqi+

$&S

asd6

~%

iq&

@ri

~kr

i1~

~q

~u

au

t+%

3&

5

3! qu

apg)

ns B

qaq

aq

so~

aq

30

41J

9810

~ qu

a~aq

tf!

aq

uo b

1a~

sr

au

od

~~

I

$1

~

,n'.

~u

C"

!~e~

~fi

rrprri;

p!c

i. a

zais

: .r

i;o..-

..*:-t

i.~i .-;*;.i

.g

i~

zl

~~

$~

&w

~&

A

Jag!

. 6

rd

fi&

k~

1)

$~

%~

~~

'~~

&~

fs

5p

a~

qjd

%

~U

~b

k$

a@;a

~k

t$~

!tad

mq

q! B

@se

a~aq

PU

B fii

f@f fi

@%

@36

%&

'Q'd

8$ks

'wf~

q&~q

.!

&i@

~fb

#' h

o,~

pz

~fi

&'+

\~~

+q

~e

JO s&U6~~fi~@f

~C&5'4k1r%b!$~'~ode~a

aqq

ase

ao

q q h

ssa

aa

u s!

qf'n

rwm

q ag

sam

op

u! p*da~~$g0~~4~tl4atd%!~;t~u~~ps

anap

pe o

& .L

1aro

ls u

oo

l sqs

rode

na a

qs

o~

a~

~

nq

'sal~~~a~sp~~~~q~~~w~~~~~~d1~!d85~~al~~4dma~~ugo~~{~p~eaq

wp

~o

a

Wj!

aw

mq

L

pa

~m

m~

bg

ex

~~

#~

wU

atr

~q

dsw

~p

qq

oq

paao

dxa

uaqm

qua

pa a

utos

oq a

zo

dsa

aupo

fay

s+

ha

ol~

rn m

a1

0~

1~

d

iw! 'a

mu

r. a

rqav

qu

rqu

wo

pq

o!a

r qa

a.um

ew q zp a

qq

u

aa

o aq

~x

7p

Qa

qw

p

m an

od

wo

~0

3

aqq u! aq

4 ss

q 31

-aqs

w p!

nbg

aqq q q

uanq

aq

qortu

sa

au!s

o~ax

?p

g0

9b

r~

~~

R

aB

a~~

-%v

!l!o

qt~

w~

~~

!o

qp

go

u~!q

ae,g

aqe~

~qs!

l(an

r ssau

pos@

, .

*t

i 1

. -

2-

. ,

A -

- >

r< ,'ti +

I ,,.

: -

3f

ils

~j

~~

e~

*,

: .'

i~lf

!q,

Page 50: Petroleum Refining Technology

uth

er extra t' Q

ce qes for the sep atipn of arom

atics ad

on

-

o atics use solvents

with m

uch highBr'?fk'B

$$biiie$ ~H&"~%B~~$'~I~~W&~BQ&S#~~'~~G"&Q~~~

very in that rafthates

with very low

, as well as extracts w

ith very high arpm

atics contentr can be - -

. . - -.

made, O

f the processes ayaJpRIe? th

e Shell%.ulfi&

e extra<$i<<

pG

e&

i. w

ide$ u

bd

, especial1y.for the extractionbf..~ arom

atics from hydrocarbon m

irtlires hu

or

e piqduc-

tion of low-arom

atic!solvents. . - +irrq

;:ltnz.~-t, -

.-

%

- ,

4 : 1

L,,

5.5 AV

IATIO

N TU

RB

INE

FUE

LSA

A

potentialfuel for'the gas turbine engines usedin alcr~Fe~tlir~s8highl~~mdstabi1itY, high heat content, low

vapour pressure, good combustion charakt+

ris$di zodd kis-ty- tem

perature relationship, hi&, density, high specific heat, a

u#

Jo

~t

~7

#y

~g

~+

~q

dl

in

g

charac$ngtics. T

he combustion properties of aviation turbine fiiet (A

gJilfi~

yti~

ela

fi controlled using several of the follow

ing five tests: smoke point, lu

mid

~m

eta

~u

~b

er.

aromatics content, aniline point.and m

avitv. ,.

I lr

7

- -

$.

, T

he heat of combustion ishorm

ally ,calculated f~~~-,-@j9aP~t~ad@g~tYYY

&)ely

hvb basic types ofAT

Fs, the k~

msin

e type and Ue

wide-cut$;

,$jnek&,a$hgm

ira\18ed w

orldwide+ T

he kerosine typ

~

"of AT

F is a much m

odikC&f@

R@+;&

l&iTR~gpr

kernsin; oeginally used in gas fY

rbine engines, whilst th

e mde-cdF

ap m

y ~JJ

AT

is a w

ider bGiling range fuel in

cl~d

ibd

somegasoline fraction. h

$8&&

:idird$e+ r eeia'Ij?ed

fuel grades are required for limited m

ilitary use, as irl su~db!oriid aFr$r'affv ' tk ?'-;' '"'

The properties that control A

TF quality are listed in T

able 5.14. ~o

hb

&fi$

g'*

&alit~

relates those properties w

hich directly affect the ability of a fuel to ignite properly. With g

~s

turbine engines, the volatility factor assures delivery of fuel~ta~b~e+tb~bi~e~~hb;bpIe~~ith satisfacto

~ig

nitio

n and flam

e propagation characteristics. Ioturbin&engines, the L

iishd

uld

m

t allow deposit. to form

in fuel nozzles, fuel control systems, turbine blades, cpatings and

wale, all of w

hich will degrade perform

ance.

Page 51: Petroleum Refining Technology

. .

.

i 2

,> +

:,.i

. , .;,;

. c t

~i

,~

~~

~~

~~

~

tbsq

an

$~

fi~

j-~

~

:&&

~~

5~

~~

~~

g;A

$(q

:a3

u8

md

E'a

(1;w

ri'a

1

ay

i d[

as~

a@8~

.ua3

~55

ga

aq

pel

h"

~l

j~

~~

~;

r~

!~

~.

p~

d8

-~

~~

:~

ap

ou

f.

~~

~

au

np

i~a

d*

~

1.18.

Sass

a48

p.uw

aqqu

apun

uo b

L~

du

o~

ra:~

0$

pa

:z~

$

pa

~is

Ian

3

~A~a~~1d:'a~P~.~~~Iir4~q~~3f~~~?9;~

.

~q

~~

43

!uw

q~

~1

6:s

~p

us:

ua

~&

o

'ang

dps

'~ua

S~

~s~

Q.u

ogre

a~o

saxq

dtum

a~ui

i3~

0.

ap~

on

~u

ou

'q

q2f

iwi;

tel~

oqow

+~&

g :!

qje~

i

,~

.' .am

, daq

&'.;

rnqI

ltis y

qiqq

nuug

~,,: ,+

~~

q~

.~.:

up

~~

m

imO

i.

. .

..

..

~!

~$

~J

~~

U)

~~

WI

O~

W~

W;

3

~~

~p

S~

s.

Wfl:

uf p

aw'q

ap &i~~p&~pr~ge~$~o!p~aa~eaif5~

U? L

ru!e

lu W

JJO

~u

no

dw

o~

u

asO

q!~

'pm

porq

u! u

aeq

wq

qsa?

uo)

souo

~ dg

s-ra

n~

s a 'sd

mnd

p

nj a

lubs

u! ju

asai

d '<

$ped

ia

~~

s

uo uo*o-

$+k,

ji$$ l~

cles

e cYbj

a)cl

d :b

.- :q

gsi

uO!sO

uOa

d%s-

~ad

doJ a

nq

~al

iu!l

s

pu

no

d~

ro

~.g

~~

q~

o~

~x

a~

dw

~a

ia

q$o)

oro@

w ~

de

aj

a~

',%

TW

O asl

sIa1

4 m

~d

s~

law

~o

~

no

m

aq%

j;~

suo

!)~

~g

!aad

s a

u .in

opo

alqe

aase

s!p

Sq!

103

pw

run!

olpe

3 pu

s ia

dd0J

OT

ss

au

a~

~s

oa

~~

si

i tifi

j. dfls

agya

ds p

a1lo

l)ooa

s! m

qd

~r

r~

~.

ll

l02

i.?

lb ,>

*:-

*.c:?.:e

'o O

q Pa

?!uY

s!

~~

qu

~

J~

Y~

IP

1

~0

%

"A .:

~.@

?q2r

3~@

a~ox

d aq

pw

.UO

R!S

O~

WO

~

aqzf

t0.s

p p

i^ p

bq

$!i

~~

pa

lIoJ1

uoa

s! q

u?

ed

ua8

3i$i

h p&

;inq

dlns

3o

im

ours

iu .uas

bo

, , . .. .

. .

u~3o

aq!u

'~nq

d[nr

ilqm

~?u

oa ~

~~

~d

~o

~

~~

.j

~~

~~

:u

~~

ua

&~

~~

u~

q~

~a

ar

pX

Y~

~o

u

a~

. -

.uo

gs

nq

uo

~~

o,I

~~

S

@J&

~JS

B

p,& i

uyls

*d

oa

a~

aq

a

?a

~a

ou

a~

~ s

a~

wn

b. s~mn

&-p:

~.9?

~?ie

~iEa

~;~,

.;&s

r;@;

~$~~

, qj

IV&

ilw

:,

asp*

pa

b+

~Jv

a

cJ?m

?'lJ

'~!

IF

~w

~T

l

!a

~~

~~

~9

~~

~

ud

pb

.[o

~~

o

qp

~~

~u

aa

ms

ay

ar~

..

-,

.

-.

.

. .

~

-7

,2rr

tsci

-rut

.Ti-:

: . i11

;7,c::

" .~

kp

.W

P$W

~

.~

~w

~~

.~

~~

~J

~~

~~

~~

~,

~~

~~

$~

~

' ''

YaI

y .4

.!au

qn[-

.~op

u@un

r -

. ,

, .

s! .~

~o

ldd

~,~

q~

po

ma

a

""

arlr

. P

@uo a

l(l

n?

la@

aQ

.3 ,p

@@

roliq

nlm

uoI

S0-

pa

~~

~d

d~

"B

P (W

dd er

or) d

lgw

nb

pu

rs y ;a

pg q! s

.~q

$$

ii@

?'p

~~

~d

' aw

rnd d

~;;n

',a-~

&;og

~b;

sPua

7 sm

'p

a?e3

uqn[

pn

~

.(~al

!qua

s! q

ax

h d

~-

&~

~~

~~

~~

~~

+,

~;

j

6i'X

ii&d$

i 4.G

3i;L

. , I?

Tr;r

9fl~

BtX

OV

Od P

JP

p YS

OW

a% -

sa!q

eyoa

s ci

qnp,

?~,w

+pu%

sd

Avl

o B

vqL

&,$

zPL

tt.,a

m ..

. .

. .

. . .

.

. . . . ,

. .

,

Page 52: Petroleum Refining Technology

.. .

. ,.,

.

The volatilityaf ATPa is contfdled to m

inimize the]oS8 off&

f&$

&$$&

uri;id

ed.&

,.raR

tanks due to boiling-off at high i1ditude8. Fop this

the

"&&

i&$ '#k;$Ji$he

.tn, ATF is desirable. D

istillatioq apeiifirntjon regu

ire~

at lest 20 vol,c r

&d

J$

e'&

~$

.~~

,&jt+

~T

he

20 prcen

t point control8 hvnt-e~d.w

]ati]ity, and ensures ~~

k&

:f~

&~

gjjj~

+~

a~

i~y

:$

~w

&

i ,i 001d atadbg and lim

it evaparaWon losses st high altitudes,,

I .

..

6

.,'

i .)

*uh-igniti?n of ATF can happen w

ith a algh

t leak of fu&'from

the engine .h&

&: ifter

~h~f!b~!A!::"~.f?p a h

e1 line fracture during aperation. T

~:

~~

&~

re

,f

W

BU$ .&i%

n ~

~c

~e

a~

~~

w

~ain

crease in vapour proe?U

n, &.the atm

Ospherii ~~eB

B,u

iB;i-a~'d

<~e.2fb-~yam

\1i ~rew

",""duel increa-

a,ldao tho ~u

t~-,g

njtio

n

tempe&

"&j

in;&&&, "",

'. ,

.

Therm

al prop

erties. Jet engines require the use of fuels which ha*L

owfreezin~poinh

, and m

aintain their flow properties. A

high degree of thermal stability of fuels is nqbirea t.a

Page 53: Petroleum Refining Technology
Page 54: Petroleum Refining Technology

94 PETR

OLEU

M lil&

PN

MN

Bk

OQ

W '

A~

ty

pi

ca

la

~i

~i

~n

0*

b~

~~

li

~W

0~

~~

~i

;P

.4

~,

,

known

as conductivity unit @U). %

he .c.onduetivity of a fuel in a tank

~.b

emeagu

re4directly by

portable (.m&

te~

~:

~~

~~

r+

~fiifu

re

d~

' by.. M

aibak or Em

cee ~l

ec

t~

r.

~,

~~

~.

;:

~?

~~

.~

~$

~{

~~

~,

dem

ink' rdi~e~wa~~i~~~&&k~iNEysf'.~~~:

CU; T~

US

AT

E.

ha9:$~~w:10:~.~&td&bhvi$;,~he e

od

~~

tl~th

t4.&

e~

:~ffe

tttthe

:ra

tt khi&rthe!~habgedi~nv,are-

re~avedifibm~tli'e;fue1,'

that..is the-charge.relaxation. The tim

e taken

f~?lttl&.~cH

&if&

?ik~he .itel. $0. Qll from

.,a given valud~&

lh&h2I&

fl&iue~~(6he:.dud1'sS

half-walue.&

im'e.=

,tI/y =12/con~ctivity'~(C

U);.sec)i@

ves an

in

di~

~tio~

E.w

Beth

er.static charges.are.likely to..be'l$i~

iddy~$i??fibt;

Chargeq.:c,a.n.ac~um

ulat.e .

..

..

.

tola

~a

pp

,~ci~

bl,~

:eext~

rit:.~n

ly

if.thct. re1,mation: tim

~an

d.:~

he~

h.alf~

~aIu

e tim

e. aIe

...

..

..

..

..

.

higlxi,. r.;;r: l.; i;

.,,, mg. ~gefi~ation~~o~~static:electrical:~rges,in~handling,oE~~Fs

. ,

has.Iong:beenirecopnized a

s#~

~d

ti'all&

t;ph

~zd

~d

.~~

A

n~

mb

ero~

m~

~~

verig

g~

pu

rnp

jng

~.a

tes, line velocities, bottom

loading-(no .splash filling) and settling tifiidi'-~tiv8: b&

fi$g2!~'e'1?:ii~1y. adoptedby. the m

ajqr. oil cofhyl&

~le~

.iii:stahdaid; ptactid&

dor safe: handlin&.:df~thesq.pxod~ts.

:4s aw

additipna1;safety prg@

,ution a static dissipator g;rldit~ve.~a'~~beti'dd~d~.~~~~~~~~~~.ad$itiv~.

per_

mit~

A,f9

r,.u.~

~.

in ..:@@lD1.2494. specification :is. -~alledi;@~&~~an~~-~,@~~~addi~on?rate to -tharjfiiel~

B:Z

ippm

(rnaxilnuml..:T

he !amou?t o

fadd

iti~e ~r

ree~ui~~,de~e~~g~R~~~tk~16,&d~,~~{r

f<&p..ybi?h ..the

fuel was produced, since th

e additive ie$Giise'is' affeit5dX

y tFC vahatfoii hi th

6 th6m

ical ~

~,~

p.,i

o~

~~

f,t

R~

~M

1~

It i%

lts;yfd t4.q.djilpte 8,stati~ $

jq

~i

~a

t$

y'.$h,,@

$l.be,fol;q ,mq+

ing pltfi4dM

w& tqp!4+,fud..Thie,,k

done.(o ens~~e.,g@gw

$e .~~j~~~[~fl~fi~~~$q~~i~eeit,,3~eIfrleJi .

.::::S&qtjc dis?iea,Wr, d4iti~iti~~ln+the-~~~~~~t~~tio~;~~qf#)~~~~~

'p$p;:pJfi~$Ay&

hf b$ereaL

U~

bili$

91 ~*$.akive fitabili%~,of~t)sfupl.or it@

~w

by

gt

~~

~q

y~

~t

z~

~~

~~

~~

~~

&~

&

&t

in th

e additive

may

re4pc.e .tlle,kater seeqrom

kkr :ir!

~-

(~

p$

li~~

q~

~(

W.

......... 4

' 1:bx;&6<4t:;5 .

.. .

..

.

,: ,,>

,. - ..

.

P.?~!I~.s. ,. .

..

I

.,

.

i .,.,

,,? I.

,

; >,,;'?

,: .,:.i.<. . .

. .

. ,:.

i; ! ,.i 7

.

, . ...

. .

:,

, ', ",

, ;:, ,;

, ..:.>,,;

.,

,,

O,

>

~.

,

.. :

: ."

... . , ,^.

.'

. ,

-

!DIESEL FU

ELS . .-

..

..

..

..

.

.I

<

! .:

:::~l,~

,:'a.+

::, <

,>

;.,, . ;

:~

i.

?,.

$, ?, ......

,f:

2,

.,,: .-.. ,,

kig

h speed d

ie~el toil (H

SJW

and, ligh~diesel;oil(ZW)~tiretpro~ur~:~~~~.Ogr .cow

tw.~ H~D

is:Wldely usedindiesel:engine f

~ra.uto~otjrr;e;.~.~~o~eS.,,a~~p~~~es;~o~~~~~~j~~~~~~~~ptjves.

Statjlonary. anti m

arine! diese1:engisas:as:. hsfa!J.ed

;iq n?;hips,or

.ugg$.f~r:;dec@yi$y ge,neratiqn

ompared ...b

:th

eIr~et,q

frwo

r~d

,. !~dia's,~eq~d[.~~;di~~~~f~~ls,is.

*, A

",..

rowhly sijr

gasqline. .~irlce s&rak

hk

ru~

~#

e:sel fj-$ctlpfiifo5;p, @~&

:5~.%!dq,?il;~.ifiW

Sd, 'varying am

duots.. @f selected: cracke,dddij;sti!l.akp : from

iconvqcsipn;. p$c@pee .'s~

c~

,,g~

,flqid

d

rata!@k crackipgV

.h~dr~cr,8cking, cykiqg areiw

d, t.o:incpqp$ t+e.y@

u.me ay.qjlabl.e:'for meeting

the growing dem

and of diesel fuels. .

. .:.: iT

k, P~

WX

!

~+

i~

,f

?~

t$

~~

pf

%

?$ern! f~f;..~?vp~;e.9,sio?~i,~tip,n~e&$~~~f aqy;qpl.ustion,

volatility .and.~ieanli,~~~fi.~$:b?~hi~ r~;@n~~!~d.,t~:ir~~~id~i~~~~

qq~,e:d

ef $'$y2,yl

th~(Bt

p~

tr

d

PF

~~

c,&

~

U@

Y a~c.li?@d:i~;~91)~~.~t{8,,$?~&~p9E~l$e.pd;,p.19

relates those properties which directly affect the abilitjr'dhi.~fud to

$;properly. ieiil f&

ls m

ust be suitable for handling by the injection equipment. T

he handlingialid storage charac- teristic is a function of volatility, fluidity, contam

i?a,ti,qn ddfin: yfinem

ent and product s

hi~

9~

t ?r!qovem

ent. The characteristic,of cl&

"filihebs du~n~liki~sk633f&.t~d~&&i~tikition. .

..

ti[ace:contam

lnation,dfid kh&&

gre$ :of +~

$i:$

n~

~~

tab;ili~

j;of

th

I;di-ti~ar;I'~

:fi~l:. ' .

: !::.: . . :

!~

ie

~~

l~

u;

~'

fo

~

automot+ (I&& begded

gbo;d igniti;niiuali+, o ensufe .. '... .$ d&

y staitirig aha

~u

l~liu

r co

nteit m

ust bk c;iti&

liy c6~&bll&'~6.iiii;ii&h&.eiivit~~~~fit~l

Poll,ution,C

ombsion, wear and

, .

.

Fig. 5.2. Typical oscilloscope traces forcompression ignition

Page 55: Petroleum Refining Technology
Page 56: Petroleum Refining Technology

PETRO

LEUM

RfflN

lNa TEC

HN

OLO

QY

.... .-

. .,

.<.

and ' i!

.': !! .

!i ; r.: ;.: ,?

r,:fhtr'$

' <,

,

,:, .......

3,

. :,

,$

<.

. ,

,, , .

. .

.

, . !

., .

. ...

..

..

..

..

..

..

.

..

..

.

. . .

(d) Nkdedin the es/tikation of &

ane index :

' .

! (:<

.. .

. .

, 'I

"' '

'

,&a; S

~@

cgravity (o) for t6e w

.nvira& ~

f~

e&

~~

ol

.d;

-

bv

~li,&

&,&

.

- .t

..!I.

temperature of 15'C

%i !

..?'!:;..

. .j

(b) Greater carbon depaits expected for higher values of m

'bn reeidue

11. Particulate (a

) Indicates the potential of emission of particulate m

atter m

atter I (b) C

o~taine prim

arily carbon particla (c) h

uh

na

oy

wt@h

te9

finned lu

ph

ase

&qg&

) 'pprtidm

: 'ab

f~~

rb

md

c~

9

pg

em

c m

at

ed

iq? en%

nme$t

u e

Ld

om

4-

cawe an ill e

ffa on hum

an health Exeasslve soot W

de

a m

wt clog the ex-

haust valves (

,

::-. 'r

72

. Aeh

(a') Resulte from

oil. water-s01"ble P

e~

rc

om

~~

or

-w

loG

&, such w

dirt and mat.

(6) Can be uaed to decide product's suitability fdr a given application 13. Sulphur

(a) Controlled to

. ' '

cornion, wear and tear

I1

(b) C

aueee environmental pollution from

their combustion p

du

ete I.. -

I

I I

~(c, ccirrosive in nature and causes p

hp

id problem

to en&e

parta 1

Particulate m

atter con* prim

arily carbonpartic1es. Carbonaceous prticuIa?s

that

fom

hm

gas-phase proceaaea are

generally referred to a. smt, an

d those th

at develop fmm

p

~m

lysia of liquid hydrocarbon fuels are generally referred to aa coke. B

ecause mo

t particu-

Page 57: Petroleum Refining Technology

u~

pq

mj?

e@

ua Sq

pw

eu

.@@

~~

ae

ge

3,4

%p

~*

$q

=*I!#

dmpp OJ

3 1

s)a~w

qd

vu 'a@~&

"3?y? 41araua 1~

~4

9%

mu inow

!fi -3.i wF a

z~

~~

sh

-d

!~

~y

vm

q

uo Supuidap %

mo

m n! L

-A prn V

-!P I

F~

4~

~f

lf

i

, I

< I

~~

.z

$~

~M

PI

ap-d

au

.a[qpeod tn3 ~B

PW

~I

W~

~~

uIIO

Q@

@-l?%

,1W" @

!tl %

qP

@q

@@

..!~m

lw

p1x0.31~ a~

r.

.UO

PU-J

mppoled l~

jq

~~

~+

Q~

~~

p~

~~

%#

~$

W!

W#

l&

o k

$

9~

~098p*p

49

p do *xge ,

e~

~~

.?

~

LW

qw

,,, ~

od

ap

h~

jtij'iiak!'p4 'Bespn~s 'erm

r%:[~n~ JO

UO

!.~B

~~

PJ>

Q!I~

-P

WW

&~++P

WF

~R&

??L.I~;,

" gl

.qld c 4 z e

n ezw

8s!wep m

am

p $am

1 .h.o

p p~

!dQ, *sw

am aaw

o pm

add

m

Lq eIaj lasap 30 uo

gs~

ou

~a

p

pus UQ

g!80dTpp3ap 7r?bW~3 %

q!p a

Vh

IWP

P.v

I%L

y!,

>., .ti .

r'>:' '

t

- -L

-!t !

I , r-

@q&

~p-

saqr.baa lmu pue uo!eorro3

moq rn

a@w

.~~

y~

o

mo

17

."a

?a

rd

-ay

)~e

nL

rp

aa

,y?

~

~~

fi~

;uo

~~

.qo

xi

~s sa3u)rm

ma

w aarqlldw

8m &

~1

~1

0j

a~

Pu

fl

pd

~

WJIW

t$Ysbp

939" @now

s3qpdyI pa7qd 0

) .pm

p.ru ~QA

Y!PPB

~w!g~~prP~~~0.J@9WgS9~nh~

, .

T . ~n

d:~

z

og o~

L~

Q

psg

ec

;lp$

u~

Iasag 4

pq

qs u

ag

~

w~

nb

ps

apyold ~

wa

dv

n

-map

raluou UO

~

pw

szaqm

~q3 uo!prlqmoa

aq

go sajsp

s aq daaq pm

Bq!lL6dap, am$%

qua~e&

WJ

~!

%W

&~

s 0

p~

~a

.p

m

sa3sj~

m qw

em

qao

pq

wp

s~e

;~iX

~q

vC

a'fj+

?p

~.~

n,e

;a@

d~qy-

.LI!SE? uom az!m

oqs pus dn T

azq q

w~

dq

I?v,apl ayyr. sap!P!FW

v!€!us @

yYI?@

&J

1sap!m8Llod

su. qans saA~

:pps,,a?~;~

m

lwsadalp 'd

o~

al a

as

~s

s,Ian3

Pv

efioi

L~I cauo!auar

S.I~

Y aw

a?wy ~

m?

aq

.~d

~ja

q

q:e~t-6:ap7 w,~

at

:'+?F+@l@

~t~ ;s7pudap P

UB

~~$~~P,W

Q.Q

WJ~W

?~ 1ra,2R

?~~?

:v-c t i:itG

ul

:sI~anr,a3~.x?.~Jre.u~m~~p~!q1~

ol) $~

~.B

&~

~~

BI

B;

I~

Yv

,*.: h

i ruj

6s

a~

~~

s

s!~qam~quo!sara;pw~Sp~d~~uabe~

ig Jwl!q!w

yo

po

~X

~,

el

s

fx ~+

p

j.

r-t:tqm

Jap aaqT

mJ7paqqcL

p&za~

~<

, ~1:)

1.

~

up

q appold pus uolsuaq a3

~)m

s anp'al 4q

ag

dq

,~

dn w

~q

4 @

szada(i ~

dn~lm

ir~rnodap

7~

1

q7wp.'alal eBPn1S

'QV

a U

OW

~P

~ CJSJIP!

q??.,&pw papm p

mn e

q m

ag qgauaq ~!m

ou

m w

qy

. ~

?P

~P

P~

!~

~~

w

5 :o!@

F&

pb

€b

uo

~m

gp

ads aaam

q 4

pn

b ~

(ISB

epsrsdn . i

I ' -

-.-.- - -

L~U

T, 'W

q b

p ol ~

[SP

8 uo 4

~q

-u p

~o

gq

~o

n

b~

~.

P~

~~

am

~a

A!

V?

p

.p!r~

?~P

~d

~q

n

8. q

)p sap

- apuw

d a;i&dm

em

&B

- -

, 3

!,I

*

., 5

\ -

r-.,, -

, - 1. i

~a

md

qa

~

(d

) Slw~

py30i sm

WE *q:

9%

~

-&o

aw=

w

o .qsq!u I~JO

-OS! apr q

yi .apm

nu 0-a

?'- pb

u?*% q

+y

aAm

dq

""4~

bA

W

qO

4 01q!98Od

8! )! '

~E

Z

3Sw

aA

F1?PPB P~

Z~

P~

~Q

W*

b

1p

q am

q aw uo gqpuadaa -

qsq

p

Xp

pm

aa u

uo

ld

~

sin

.hiO

b*i~

~

,~OF)P%

la

&o

ii anq) ,pm

qa

q 3d uoguppo

ww

>pm

mv@

fi)@@

;B.i".g 9 ~

~P

WP

XIFPwaJ p

ya .p

mo

dm

m am

aaaold

q am

)aa "4f!J!q8???P;~94?

':

~~

ok

d~

~~

Iaq

'mo!s.)m

a m

qx

a 6aahibd 'a

s~

u

ld

o-

~y

2q.m

p W

QrSslPra e-90&?-

~~s Plm

ap

qq

q3

9a 8apadard pq~1a.x w~

~tlllo

~&

)O

aqm

Pa! T

p! pyi

uO

~@

! Uo!s8a!dm

m

~W

~a

pm

l!

wyi am

a ayq qq

ar

1qq ,g

8 p

~

m5

~~

9'

3

.~

s~

.F

PP

~

~&

@~

~~

J~

Ao

- -

I..&I,. rw

uanP -__, _

. i8'+ni

la'ig 9ald&iii'gnm

aA

qaIdmm

~u

an

~k

~~

~'

?%

~~

?~

~h

@[

?~

V

O-

~!

~,I

~W

lav~m

&ag :ilw

la uo;

wq

7gB

rnm Pw

WW

md

mS93-Pa'E3W

.T9 A

I. .I1

siJ

tr, L, f"9

u '~018sazdm

03 d

k6

~s

.it4~

+&

~ aapun K

l!pwa~ q!@

3Bq@

*SdmgM

l?89P+Jo aqma+W

jQj??

%4!&

&q,q, pgyn a,w

dWw

'aA

~s*

lsm

u%

"m

PvL&

?rnb IaF

L?

.?~

~V

s~~

pm

~

a~

g?

~~

r~

aq

laaa~

(~

3

!,-#-?,rY

11

.4

1

-- e

~a

r?g

~aw

a

40

~

*=q

a~pp

w

, '

I I.

< .

Page 58: Petroleum Refining Technology
Page 59: Petroleum Refining Technology
Page 60: Petroleum Refining Technology
Page 61: Petroleum Refining Technology
Page 62: Petroleum Refining Technology
Page 63: Petroleum Refining Technology
Page 64: Petroleum Refining Technology
Page 65: Petroleum Refining Technology
Page 66: Petroleum Refining Technology
Page 67: Petroleum Refining Technology
Page 68: Petroleum Refining Technology
Page 69: Petroleum Refining Technology
Page 70: Petroleum Refining Technology
Page 71: Petroleum Refining Technology
Page 72: Petroleum Refining Technology
Page 73: Petroleum Refining Technology
Page 74: Petroleum Refining Technology
Page 75: Petroleum Refining Technology
Page 76: Petroleum Refining Technology
Page 77: Petroleum Refining Technology
Page 78: Petroleum Refining Technology
Page 79: Petroleum Refining Technology
Page 80: Petroleum Refining Technology
Page 81: Petroleum Refining Technology
Page 82: Petroleum Refining Technology
Page 83: Petroleum Refining Technology
Page 84: Petroleum Refining Technology
Page 85: Petroleum Refining Technology
Page 86: Petroleum Refining Technology
Page 87: Petroleum Refining Technology
Page 88: Petroleum Refining Technology
Page 89: Petroleum Refining Technology
Page 90: Petroleum Refining Technology
Page 91: Petroleum Refining Technology
Page 92: Petroleum Refining Technology
Page 93: Petroleum Refining Technology
Page 94: Petroleum Refining Technology
Page 95: Petroleum Refining Technology
Page 96: Petroleum Refining Technology
Page 97: Petroleum Refining Technology
Page 98: Petroleum Refining Technology
Page 99: Petroleum Refining Technology
Page 100: Petroleum Refining Technology
Page 101: Petroleum Refining Technology
Page 102: Petroleum Refining Technology
Page 103: Petroleum Refining Technology
Page 104: Petroleum Refining Technology
Page 105: Petroleum Refining Technology
Page 106: Petroleum Refining Technology
Page 107: Petroleum Refining Technology
Page 108: Petroleum Refining Technology
Page 109: Petroleum Refining Technology
Page 110: Petroleum Refining Technology
Page 111: Petroleum Refining Technology
Page 112: Petroleum Refining Technology
Page 113: Petroleum Refining Technology
Page 114: Petroleum Refining Technology
Page 115: Petroleum Refining Technology
Page 116: Petroleum Refining Technology
Page 117: Petroleum Refining Technology
Page 118: Petroleum Refining Technology
Page 119: Petroleum Refining Technology
Page 120: Petroleum Refining Technology
Page 121: Petroleum Refining Technology
Page 122: Petroleum Refining Technology
Page 123: Petroleum Refining Technology
Page 124: Petroleum Refining Technology
Page 125: Petroleum Refining Technology
Page 126: Petroleum Refining Technology
Page 127: Petroleum Refining Technology
Page 128: Petroleum Refining Technology
Page 129: Petroleum Refining Technology
Page 130: Petroleum Refining Technology
Page 131: Petroleum Refining Technology
Page 132: Petroleum Refining Technology
Page 133: Petroleum Refining Technology
Page 134: Petroleum Refining Technology
Page 135: Petroleum Refining Technology
Page 136: Petroleum Refining Technology
Page 137: Petroleum Refining Technology
Page 138: Petroleum Refining Technology
Page 139: Petroleum Refining Technology
Page 140: Petroleum Refining Technology
Page 141: Petroleum Refining Technology
Page 142: Petroleum Refining Technology
Page 143: Petroleum Refining Technology
Page 144: Petroleum Refining Technology
Page 145: Petroleum Refining Technology
Page 146: Petroleum Refining Technology
Page 147: Petroleum Refining Technology
Page 148: Petroleum Refining Technology
Page 149: Petroleum Refining Technology
Page 150: Petroleum Refining Technology
Page 151: Petroleum Refining Technology
Page 152: Petroleum Refining Technology
Page 153: Petroleum Refining Technology
Page 154: Petroleum Refining Technology
Page 155: Petroleum Refining Technology
Page 156: Petroleum Refining Technology
Page 157: Petroleum Refining Technology
Page 158: Petroleum Refining Technology
Page 159: Petroleum Refining Technology
Page 160: Petroleum Refining Technology
Page 161: Petroleum Refining Technology
Page 162: Petroleum Refining Technology
Page 163: Petroleum Refining Technology
Page 164: Petroleum Refining Technology
Page 165: Petroleum Refining Technology
Page 166: Petroleum Refining Technology
Page 167: Petroleum Refining Technology
Page 168: Petroleum Refining Technology
Page 169: Petroleum Refining Technology
Page 170: Petroleum Refining Technology
Page 171: Petroleum Refining Technology
Page 172: Petroleum Refining Technology
Page 173: Petroleum Refining Technology
Page 174: Petroleum Refining Technology
Page 175: Petroleum Refining Technology
Page 176: Petroleum Refining Technology
Page 177: Petroleum Refining Technology
Page 178: Petroleum Refining Technology
Page 179: Petroleum Refining Technology
Page 180: Petroleum Refining Technology
Page 181: Petroleum Refining Technology
Page 182: Petroleum Refining Technology
Page 183: Petroleum Refining Technology
Page 184: Petroleum Refining Technology
Page 185: Petroleum Refining Technology
Page 186: Petroleum Refining Technology
Page 187: Petroleum Refining Technology
Page 188: Petroleum Refining Technology
Page 189: Petroleum Refining Technology
Page 190: Petroleum Refining Technology
Page 191: Petroleum Refining Technology
Page 192: Petroleum Refining Technology
Page 193: Petroleum Refining Technology
Page 194: Petroleum Refining Technology
Page 195: Petroleum Refining Technology
Page 196: Petroleum Refining Technology
Page 197: Petroleum Refining Technology
Page 198: Petroleum Refining Technology
Page 199: Petroleum Refining Technology
Page 200: Petroleum Refining Technology
Page 201: Petroleum Refining Technology
Page 202: Petroleum Refining Technology
Page 203: Petroleum Refining Technology
Page 204: Petroleum Refining Technology
Page 205: Petroleum Refining Technology
Page 206: Petroleum Refining Technology
Page 207: Petroleum Refining Technology
Page 208: Petroleum Refining Technology

Recommended