+ All Categories
Home > Documents > PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE...

PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE...

Date post: 31-Dec-2019
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
38
887 The Canadian Mineralogist Vol. 48, pp. 887-923 (2010) DOI : 10.3749/canmin.48.4.887 PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE CHUGWATER ANORTHOSITE, LARAMIE ANORTHOSITE COMPLEX, SOUTHEASTERN WYOMING Donald H. LINDSLEY § Department of Geosciences and Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100, USA B. Ronald FROST and Carol D. FROST Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA James S. SCOATES Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Abstract The Chugwater Anorthosite is one of several 1.43 Ga intrusions that make up the Laramie Anorthosite Complex in the Laramie Mountains, Wyoming, USA. The southwestern portion of the Chugwater Anorthosite has a mappable magmatic stratigraphy totaling at least 8000 meters, and probably 10,000 m or more. It consists of three major units, each of which comprises a lower, dominantly anorthosite portion (>90 vol.% plagioclase) and an upper, dominantly gabbroic anorthosite section (80–90 vol.% plagioclase). Each anorthosite portion contains layers of gabbroic anorthosite and vice versa, on a variety of scales ranging down to centimeters. Plagioclase is dominantly An 50–55 , although higher and lower values are also found. This “main series” of the Chugwater Anorthosite mainly lacks modal and normative olivine. Oxygen fugacity ranged from FMQ to FMQ + 0.5. We interpret that the “main series” was produced by at least three major injections of mildly hyperfeldspathic magma containing approximately 40% entrained plagioclase megacrysts (tabular crystals at least 5 cm across). The Ti contents of the megacrysts (0.3–0.4 wt% TiO 2 ) suggest that these had crystallized at pressures near 10 kbar, consistent with initial formation in a magma chamber at or near the base of the crust. Emplacement pressure is poorly constrained, but appears to have been near 3.5–4 kbar. However, before the main series had completely solidified, it was repeatedly intruded by at least two (and probably more) leucotroctolitic magmas. Contacts of leucotroctolite are sharp against anorthosite, but commonly are diffuse against gabbroic anorthosite, suggesting that sufficient residual melt remained in the latter to permit local mixing with leucotroctolite. We estimate that 80–85% of the Chugwater Anorthosite is main-series, 10–15% is mixed rock, and 5% is leucotroctolite. Prior to final solidification, the entire Chugwater Anorthosite was domed, probably as a result of gravitational instability of the relatively buoyant plagioclase-rich material. The emplacement of the Chugwater Anorthosite as a series of crystal-rich magmas, followed by continued fractionation in a magma chamber at a mid-crustal level and subsequent doming, are characteristics that make the Chugwater Anorthosite intermediate between the Poe Mountain Anorthosite to the north (in situ fractionation in a magma chamber) and the classic diapiric emplacement of a crystal-rich mush. Keywords: anorthosite, gabbroic anorthosite, leucotroctolite, plagioclase, layering, magmatic stratigraphy, magma mixing, filter pressing, Chugwater pluton, Wyoming. Sommaire L’anorthosite de Chugwater est un des nombreux massifs intrusifs qui constituent le complexe anorthositique de Laramie, au Wyoming, mis en place il y a 1.43 milliard d’années. La partie du complexe de Chugwater se trouvant au sud-ouest du pluton contient une stratigraphie magmatique cartographiable sur une épaisseur d’environ au moins 8,000 mètres, et probablement même jusqu’à 10,000 m ou plus. Nous définissons trois unités majeures, chacune comprenant une portion inférieure à dominance anorthositique (>90% plagioclase par volume) et une unité supérieure surtout à anorthosite gabbroïque (80–90% plagioclase). Chaque portion anorthositique contient des couches d’anorthosite gabbroïque et vice versa, dont l’échelle s’étend jusqu’au centimètre. Le plagioclase se rapproche de An 50–55 , quoique des valeurs plus élevées et plus faibles sont aussi présentes. Cette “série principale” du massif de Chugwater est en général dépourvue d’olivine modale et normative. La fugacité de l’oxygène a varié entre le tampon FMQ et FMQ + 0.5. Nous interprétons cette “série principale” comme résultat de trois venues majeures § E-mail address: [email protected]
Transcript
Page 1: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

887

The Canadian MineralogistVol.48,pp.887-923(2010)DOI:10.3749/canmin.48.4.887

PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE CHUGWATER ANORTHOSITE, LARAMIE ANORTHOSITE COMPLEX, SOUTHEASTERN WYOMING

DonaldH.LINDSLEY§

Department of Geosciences and Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794-2100, USA

B.RonaldFROSTandCarolD.FROST

Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA

JamesS.SCOATES

Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Abstract

TheChugwaterAnorthosite is oneof several 1.43Ga intrusions thatmakeup theLaramieAnorthositeComplex in theLaramieMountains,Wyoming,USA.The southwestern portion of theChugwaterAnorthosite has amappablemagmaticstratigraphy totaling at least 8000meters, andprobably 10,000mormore. It consists of threemajor units, eachofwhichcomprisesalower,dominantlyanorthositeportion(>90vol.%plagioclase)andanupper,dominantlygabbroicanorthositesection(80–90vol.%plagioclase).Eachanorthositeportioncontainslayersofgabbroicanorthositeandvice versa,onavarietyofscalesrangingdowntocentimeters.PlagioclaseisdominantlyAn50–55,althoughhigherandlowervaluesarealsofound.This“mainseries”oftheChugwaterAnorthositemainlylacksmodalandnormativeolivine.OxygenfugacityrangedfromFMQtoFMQ+0.5.Weinterpretthatthe“mainseries”wasproducedbyatleastthreemajorinjectionsofmildlyhyperfeldspathicmagmacontainingapproximately40%entrainedplagioclasemegacrysts(tabularcrystalsatleast5cmacross).TheTicontentsofthemegacrysts(0.3–0.4wt%TiO2)suggestthatthesehadcrystallizedatpressuresnear10kbar,consistentwithinitialformationinamagmachamberatornearthebaseofthecrust.Emplacementpressureispoorlyconstrained,butappearstohavebeennear3.5–4kbar.However,beforethemainserieshadcompletelysolidified,itwasrepeatedlyintrudedbyatleasttwo(andprobablymore) leucotroctoliticmagmas.Contacts of leucotroctolite are sharp against anorthosite, but commonly are diffuse againstgabbroicanorthosite,suggestingthatsufficientresidualmeltremainedinthelattertopermitlocalmixingwithleucotroctolite.Weestimatethat80–85%oftheChugwaterAnorthositeismain-series,10–15%ismixedrock,and5%isleucotroctolite.Priortofinalsolidification,theentireChugwaterAnorthositewasdomed,probablyasaresultofgravitationalinstabilityoftherelativelybuoyantplagioclase-richmaterial.TheemplacementoftheChugwaterAnorthositeasaseriesofcrystal-richmagmas,followedbycontinuedfractionation inamagmachamberatamid-crustal levelandsubsequentdoming,arecharacteristics thatmaketheChugwaterAnorthositeintermediatebetweenthePoeMountainAnorthositetothenorth(in situfractionationinamagmachamber)andtheclassicdiapiricemplacementofacrystal-richmush.

Keywords:anorthosite,gabbroicanorthosite,leucotroctolite,plagioclase,layering,magmaticstratigraphy,magmamixing,filterpressing,Chugwaterpluton,Wyoming.

Sommaire

L’anorthositedeChugwaterestundesnombreuxmassifsintrusifsquiconstituentlecomplexeanorthositiquedeLaramie,auWyoming,misenplaceilya1.43milliardd’années.LapartieducomplexedeChugwatersetrouvantausud-ouestduplutoncontientune stratigraphiemagmatiquecartographiable suruneépaisseurd’environaumoins8,000mètres, etprobablementmêmejusqu’à10,000mouplus.Nousdéfinissonstroisunitésmajeures,chacunecomprenantuneportioninférieureàdominanceanorthositique(>90%plagioclaseparvolume)etuneunitésupérieuresurtoutàanorthositegabbroïque(80–90%plagioclase).Chaqueportion anorthositique contient des couches d’anorthosite gabbroïque etvice versa, dont l’échelle s’étend jusqu’aucentimètre.LeplagioclaseserapprochedeAn50–55,quoiquedesvaleursplusélevéesetplusfaiblessontaussiprésentes.Cette“sérieprincipale”dumassifdeChugwaterestengénéraldépourvued’olivinemodaleetnormative.Lafugacitédel’oxygèneavariéentreletamponFMQetFMQ+0.5.Nousinterprétonscette“sérieprincipale”commerésultatdetroisvenuesmajeures

§ E-mail address:[email protected]

Page 2: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

888 thecanadianmineralogist

demagmalégèrementhyperfeldspathiquecontenantenviron40%demégacristauxdeplagioclaseapportés(cristauxtabulairesmesurantaumoins5cm).LeurteneurenTi(0.3–0.4%TiO2,poids)faitpenserquecesmégacristauxsesontformésàunepressionvoisinede10kbar,cequiconcorderaitavecuneformationprécocedansunechambremagmatiquesituéeprèsdelabasedelacroûte.Lapressiondelamiseenplacen’estpasbiencontrôlée,maissembleavoirétévoisinede3.5–4kbar.Toutefois,avantquelasérieprincipaleaiteulachancedesesolidifiercomplètement,elleaétérecoupéeparaumoinsdeuxvenuesdemagmaleucotroctolitique.Lescontactsdel’anorthositeaveclaleucotroctolitesontfrancs,maisdiffusaveclegabbroanothositique,cequifaitpenserqu’ilexistaitunefractionsuffisantedeliquiderésiduelpourpermettreunmélangelocalaveclaleucotroctolite.Nouscroyonsque80–85%del’anorthositedeChugwaterestfaitedecettesérieprincipale,10–15%estunerochemixte,et5%estuneleucotroctolite.Avantquesoitterminéelasolidificationfinale,lecomplexeaucompletaétédomé,probablementsuiteàl’instabilitégravitationnelledesrochesrichesenplagioclase,àdensitéplutôtfaible.L’anorthositedeChugwaterseseraitmiseenplacedesousformedevenuesdemagmasrichesencristaux,sujettesàunfractionnementcontinudansunechambremagmatiqueauniveaudelacroûtemoyenneetàunemontéeendome.Cescaractéristiquesseraientintermédiairesentrelecasdel’anorthositedePoeMountainaunord(fractionnementin situdansunechambremagmatique)etlamiseenplacediapiriqueclassiqued’unesuspensionmagmatiquericheencristaux.

(TraduitparlaRédaction)

Mots-clés: anorthosite, anorthosite gabbroïque, leucotroctolite, plagioclase, litage, stratificationmagmatique,mélange demagmas,effetdefiltrepresse,plutondeChugwater,Wyoming.

thatbehavedas“drop-stones”ontheunderlyingsemi-consolidatedcumulates,ofhaving formed inanopenmagmachamber.Assuch,itappearstobeintermediatebetweenthelayered-intrusionnatureofthePoeMoun-tainAnorthositeandthediapiricoriginofmanyothermassif anorthosites (e.g.,Barnichonet al. 1999).Assuggested byWiebe (1992, p. 225), there appears tobeacontinuumofemplacementmodesforProterozoicanorthosites.

GeologicalSettingandPreviousWork

The ChugwaterAnorthosite is one of severalplagioclase-rich intrusions in the southern LaramieMountainsthat,togetherwithanumberofgraniticandmonzoniticbodies,makeuptheyoungestPrecambrianrocks of southeasternWyoming. These intrusionsstraddle theCheyenneBelt, cuttingArchean rocks tothenorthandnorthwest(Fig.1)andProterozoicrocksto the south. Elsewhere, their contacts aremainlycoveredbyPhanerozoicsediments.Dartonet al.(1910)were thefirst to report anorthositic rocks in the area,althoughthepresenceof thecloselyassociatedFe–Tioxideoredepositshadbeenknownsince theHaydenSurveyof1871.Fowler(1930a,1930b)madethefirstdetailedstudyoftheanorthosites.Newhouse&Hagner(1957)mapped the area at a scaleofonemile to theinch(1:63,360)andidentifiedanorthernandasmallersouthern anorthositicmass.They suggested that thenorthern anorthosite forms a doubly-plunging anti-cline,withan“anticlinalaxis”orientedapproximatelynorth–south.Theyreportedthatmostofthemajoroxidedepositsoccuronornearthisaxis.ThenameLaramieAnorthositeComplex (LAC)wasfirst applied to theentire area byHodge et al. (1973).WhereasFowler(1930a, 1930b) recognized themagmatic nature ofthese rocks, some laterworkers argued that they aremetasomatic (Newhouse&Hagner 1957).Klugman

Introduction

Proterozoicmassifanorthositeshavelongintriguedpetrologists, both for the enigmas posed by theirplagioclase-richnatureandforthedistinctivesuitesofrocksthatalmostinvariablyaccompanythem.Clearlytheyformedbyigneousprocesses,but,aspointedoutbyBowen (1917), they cannot have formed from amagmaof theirownbulkcomposition.Somemecha-nismmustconcentratehugevolumesofplagioclasetomakeanorthositespossible.During thepast40years,aremarkableconsensushasdevelopedonatwo-stagemodel for their origin (Morse 1968, Emslie 1985,Longhi&Ashwal1985,Emslieet al.1994):magma,probably basaltic, ponds anddifferentiates at or nearthebaseofthecrust,crystallizingolivineandpyroxene.Theseferromagnesianphasessink,leavingtheresidualmagmaenrichedinplagioclasecomponentsandinironrelativetomagnesium.Plagioclaseeventuallycrystal-lizesandfloatstothetopofthemagmachamber;thebuoyant plagioclasewith some trapped liquid thenascends diapirically into the crust. Finally,much ofthetrappedliquidisexpelledthroughavagueprocessknownas“filter-pressing”,andtheresultisanorthosite,anigneousrockcontainingmorethan90%plagioclase.

Although theMorse–Emslie–Longhi–Ashwalmodel described above successfully explainsmanymassifanorthosites,thereareexceptions.Scoates(1994,2000, Scoateset al. 2010) has shownunequivocallythat the PoeMountainAnorthosite of the LaramieAnorthositecomplexinsoutheasternWyomingcrystal-lizedmainlyin situwithinamid-crustal-levelmagmachamber.WedescribeheretheChugwaterAnorthosite,whichoutcropssouthofthePoeMountainAnorthosite,andwhichalsoshowsmagmaticlayeringandmagmaticstratigraphy. However, the ChugwaterAnorthositeshows abundant evidence of solid-state deformationand lacks clear evidence, such as scours or blocks

Page 3: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 889

Fig. 1. Simplifiedgeologicalmapof theLaramieAnorthositeComplex, southeasternWyoming, showing the position of theChugwaterAnorthosite.Abbreviations:CR:Archean (north)andProterozoic (south)country rock,RMP:RedMountainPluton,Phan:Phanerozoic sediments, SnCA:SnowCreekAnorthosite, SCC:StrongCreekcomplex,GI:GreaserIntrusion,Ltr:leucotroctolite(olivineanorthositeofNewhouse&Hagner1957),CFA:CoyoteFlatsAnorthosite,MRP:MaloinRanchPluton.MajorLaramide faults are indicated.Dotted lines showmajor roads.Not labeled:ButtesGranite(immediatelywestofGI)andtwosmallbodiesofmonzosyenite(inSnCAandwestofChugwaterAnorthosite),withsimilaritiestotheSybillePluton.

Page 4: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

890 thecanadianmineralogist

(1969)restatedthecaseformagmaticorigin,andwiththe exceptionofDeVore (1975),whoargued that theanorthositesarerefractoryresiduesafterpartialmeltingofmetasediments, subsequentworkers have acceptedtheir igneousnature.Subbarayudu(1975)andSubba-rayuduet al.(1975)conductedthefirstRb–Srisotopicstudies of theLAC,whereas Fountain et al. (1981)andGoldberg(1984)presentedgeochemicalresultsformonzoniticandanorthositicrocksinthenorthernpartoftheplutonicsuite.

Wehavebeenstudying theLACsince1981,withmostofourearliereffortsconcentratingonthegraniticandmonzoniticrocksofthearea(seereferencesinFrostet al.1993).Scoates(1994)conductedadetailedstudyof northernmost body of anorthosite (the “northerndome”ofFrostet al.1993),whichhenamedthePoeMountainAnorthosite.HeshowedthatthePoeMoun-tainAnorthositehasadistinctivemagmaticstratigraphyandconcludedthatithadmainlycrystallizedin situinamid-crustal-levelmagmachamber (Scoates&Frost1996, Scoates 2000, Scoates et al. 2010).This is incontrasttothewidelyacceptednotionthatmassifanor-thositesareemplacedasdiapiriccrystalmushes(e.g.,Emslie 1985,Longhi&Ashwal 1985,Ashwal 1993,Barnichonet al.1999).Scoates&Chamberlain(1995,1997) usedU–Pb ages from zircon and baddeleyiteto show that the southern anorthosite (the “southerndome”ofFrostet al.1993)isdistinctlyolderthanthenorthernanorthosites(1756Macomparedto1434–1436Ma).Accordingly,theynamedtheolderbodytheHorseCreekAnorthosite (see also Frost et al. 2000), andsuggestedthatthetermLaramieAnorthositeComplexberestrictedtotheyoungerrockstothenorth(seealsoFrostet al.2000).

ArealExtentandRelationshiptoOtherUnits

TheChugwaterAnorthositeisnamedforitsexpo-surealongthebanksofMiddleandSouthChugwatercreeks.Approximately 160 km2 in areal extent, itoutcropsinpartsoftheBaldyMountain,KingMoun-tain, GoatMountain, and Ragged TopMountain1:24,000USGSquadrangles. Itssoutherncontact liesmainlyon landclosed tous,but itappears to intrudeacomplexseriesofProterozoicsupracrustalrocksandpossiblymonzonitic rocks associatedwith theHorseCreekAnorthositetothesouth(Fig.2).Tothesoutheast,itiscutbythemonzonitesandgranitesoftheMaloinRanchPluton(Kolker&Lindsley1989). Its foliationisalsocutbythesmallCoyoteFlatsAnorthosite.Thesouthern portion of itswestmargin is cut by poorlyexposed rocks that are similar to theMaloinRanchPlutonandtheSybilleintrusion,whereasfarthernorth,alligneousrocksarecoveredbyPhanerozoicsediments.Tothenorthwest,theChugwaterAnorthositeiscutbytheSnowCreekAnorthosite(the“SnowCreekdome”ofFrostet al.1993)andbytheStrongCreekPluton.Bothcontactsarepoorlyexposed,butthereappearsto

havebeenconsiderableminglingbetweentheseunits,as indicated by abundant inclusions of ChugwaterAnorthositewithin theyoungerunits.Wesuspectbutcannotprovethattherewasalsoback-intrusionoftheyounger units into theChugwaterAnorthosite.Thenortherncontact isproblematic,asbothexposureandsampledensityarepoor;wetentativelyplaceitmainlyalongStrongCreek.The eastern contacts aremainlyLaramidefaultsalongwhichtheChugwaterAnorthositehasbeen thrustoverPhanerozoic sediments.There ispermissiveevidencefrompetrographyandPbisotopesthatatleastpartofthe“anorthositeundivided”eastofthethrustsinFigure1maybeChugwaterAnorthosite(Frostet al.2010).

Exposures, outcrop, and sampling

Outcropsof theChugwaterAnorthositearenotallone couldwish for.Although exposure is commonlyadequate for reconnaissancemapping, rarely canonetraceunitsindetailorfindclearcontacts.Weatheringhas been sufficiently intense that fresh rockoutcropsmainlyonlyinstreambeds,andthereitmaybeimpos-sibletosampleadequatelyexceptbydrilling.Mostofthesamplesreportedinthispaper,andnearlyallthoseforwhichwhole-rockcompositionsarereported,weresampled by drill.We sampled virtually every freshoutcropinthe~160km2areaoftheChugwaterAnortho-site;gapsinoursamplebasearenotforwantoftrying!

TheChugwaterAnorthosite is characterized bydistinctivelayering,bothmodalandtextural,foliationof tabularplagioclase,whichismainlyparallel to thelayering, presenceof tabular andmegacrystic plagio-clase,much ofwhich shows labradorescence and istypically deformed to varyingdegrees, and a distinc-tivemagmatic stratigraphy in itswestern portion. Itshares someof these characteristicswith eachof thenearbyPoeMountain andSnowCreek anorthosites,but isdistinctive in its totality.BothSnowCreekandChugwateranorthositeshaveabundant labradorescentplagioclase(~An52–57Or3–4);thePoeMountainAnortho-siteismainlytoosodictoshowthatfeature.BoththePoeMountain andChugwater anorthosites havebothtitaniferousmagnetiteandilmenite,whereastheSnowCreeklacksmagnetitebuthasilmenite,typicallywithinclusionsofrutile.

In this paper,we present field, petrographic, andgeochemicalevidencethatleadsustoconcludethattheChugwaterAnorthositeisalayeredfeldspathicintrusionthatwas emplaced at approximately10–12kmdepthbyinjectionofseveralmajorpulses(atleastthree)ofmagmaladenwithplagioclasecrystals(probably40%crystalsof~An52).Thesilicaactivityofthesemagmaswas high (0.7 to 1.0 relative to quartz), and thus themainChugwaterAnorthositeisolivine-free.Thismainserieswas repeatedly intrudedby, and locallymixedwith, at least two different leucotroctoliticmagmas,one having normativeAn very close to that of the

Page 5: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 891

main-seriesanorthosite,theotherdistinctlymorecalcic(normativeAn58–64).Themixedrocksshownormativeandmodalolivine.Thereisanoverallupwardincreaseof incompatible trace elements, suggesting that therewas at least some communication of residualmeltsthroughouttheintrusion.

Layering,Stratigraphy,andStructure

Layering: size and morphology of plagioclase

By definition, anorthosites contain 90%ormoremodal plagioclase.Becausemany of the features of

the ChugwaterAnorthosite to be described reflectthenatureofitsplagioclase,itisusefultoprovideanoverview,with details to follow in the petrographysection. Somewhat arbitrarily,we call tabular grainswider than approximately 5 cmmegacrysts.Typicalmegacrystsrangeupto10cminwidth,butlargeronesoccuraswell.Outcropswithabundant,orientedmega-crystsglintbrightlyinsunlight,earningthefieldname“silver-dollaranorthosite”.Weargueinalatersectionthatthemegacrystsandsomebutnotallofthesmallertabularplagioclasewerepresent in themagmaswhentheChugwaterAnorthositewasemplaced.

Fig. 2. Geologicalmap of theChugwaterAnorthosite and surrounding rocks.Thickdashedlinesshowthestrikeof layeringandfoliation.Thecentralandsouthwesternportions of theChugwaterAnorthosite havewell-constrained stratigraphic relationsandarecalledthe“StratigraphicChugwaterAnorthosite”.Thatstratigraphyhasbeenconstructed across the linesA–A’ andA’–A”; thicknesses have not beenmeasureddirectly, but are estimated fromdip and horizontal extent. East of the “structuralboundary”, the ChugwaterAnorthosite has a distinctly different foliation, andstratigraphic positions cannot be assigned.Similarly, theChugwaterAnorthosite tothenortheastiscutbynumerousfaultsofLaramideage(onlythemostprominentareshown)andbygraniticdikes;accordinglyitwasnotpossibletoassignstratigraphicpositionstothisportionaswell.Thehigh-Caanorthositesarethelargestofnumerousinclusionsofhigh-Ananorthosite thatdecorate the“structuralboundary”within theChugwaterAnorthosite, aswell as parts of its boundary betweenwith theMaloinRanchPluton.Abbreviations:GI:Greaserintrusion,SnCA:easternportionofSnowCreekAnorthosite,SCC:StrongCreekComplex,CFA:CoyoteFlatsAnorthosite,Ltr:leucotroctolite intrusions (only the largestare shown), fran: fracturedanorthositeofNewhouse&Hagner (1957),Gr: granite, including theMuleCreek lobe (northernportion) andShermanGranite (southern portion).Locations ofmajor Fe–Ti oxidedepositsaregivenbyI:IronMountain,G:GoatMountain,S:Shanton.

Page 6: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

892 thecanadianmineralogist

TheChugwaterAnorthositeislayeredonscalesthatrange fromcentimeters to kilometers.Much layeringreflects variations inmodal abundanceof plagioclaserelative to ferromagnesianminerals (Figs. 3a, b);typically the range is fromapproximately 85 to 96%plagioclase.Rarelycanlayersbetracedoverdistancesgreaterthan10–20timestheirthickness.Sometermi-nateabruptly,butmostdieoutgradually,asalong-strikevariations inmode diminish the difference betweenadjacentlayers.Inadditiontoanorthositeandgabbroicanorthosite, the ChugwaterAnorthosite containsnumerousbodiesoftroctoliteandleucotroctolite.Thelargerbodiescross-cuttheanorthositicunits,butsmallerones (dimensions from a fewmeters to several tensofmeters) typically lie parallel or subparallel to theregional layering.Boundaries tend tobe sharpwhereleucotroctolitecutsanorthosite,butmorediffuseagainstgabbroicanorthosite.

Lamination resulting from the subparallel align-mentoftabularandmegacrysticplagioclaseproducesafoliationthatisnearlyalwaysparalleltocompositionallayering.Althoughwehavenotmadeadetailedstudyin theChugwaterAnorthosite,we infer that there isno orientation of plagioclasewithin the foliation andthusnolineation,similartothefindingsofLafranceet al.(1996)forthePoeMountainAnorthosite.Texturallayeringisalsomainlyparalleltomodallayeringandplagioclase lamination, and can take several forms.Mostcommonlyit isexpressedbyvariationsingrainsize,usuallyofplagioclase,andthusmaycomplementmodal layering. But textural layering also reflectsacross-strike variations in the degree of deformationthroughgrain-boundarymigrationinplagioclase.Typi-cally,themostplagioclase-richlayersshowthegreatestdeformation,expressedby thepresenceofbent twinsandabundantneoblasticrecrystallizedplagioclase.Suchlayerstypicallyrangefromcentimeterstotensofmetersinthickness,andlikemodallayers,rarelycanbetracedfordistancesgreaterthan10–20timestheirthickness;manycontainangularrelicsofmegacrysts.

Stratigraphy

Wecallthewesternportionsthe“stratigraphicChug-waterAnorthosite”, because the largest-scale layers(Figs.2,4)defineadistinctivestratigraphyconsistingofthreedominantlyanorthositeunits(frombasetotop,An1,An2,An3)andthreeslightlymoremaficunitswith80–90%plagioclase.AccordingtoStreckeisen(1967),themoremafic units are leucogabbros.However, toemphasize their close affinitywith the true anortho-sites of theChugwaterAnorthosite,we here followBuddington(1939)andcallthemgabbroicanorthosites,atermalsoacceptedbyStreckeisen(1976).Anadvan-tage of this usage is that “anorthositic” can then beusedasageneraltermfortheentireseries.Wecallthemoremaficunitsthelower,middle,anduppergabbroicanorthosites (Gan1,Gan2,Gan3), respectively.Eachpair(e.g.,An1+Gan1)isconsideredamagmaticunit,so thethreepairscompriseUnits1,2,and3.CriticalsamplelocalitiesaregiveninFigure4.Weemphasizethateachof thesestratigraphicunitscontainscompo-sitionallayeringonsuccessivelyfinerscales,sothatitiscommontofindtrueanorthositewithineachof thegabbroicanorthositeunitsandvice versa.Acompositesection(A–A’andA’A’’inFig.2)totalsjustover10,000m (Fig. 5).We are confident regarding the top 8000mofsection; theneedtocorrelatenearly5kmalongstrike across possible offsets byLaramide-age faults,combinedwith gentler dips,make the lower 2000mofthesectionsomewhatlesscertain.Furthermore,thebaseforthesectionisarbitrarilychosennearthetraceofprominentLaramidefaults;moreanorthositeoutcropsto the east (i.e., below thebase chosen for the strati-graphicChugwaterAnorthosite),butacombinationof

Fig. 3. Photographs showing compositional layering intheChugwaterAnorthosite.a.Thin layersofanorthosite(weathersinrelief)ingabbroicanorthosite.Thegeologistis1.8m tall.b.Layersofgabbroicanorthosite (dark) inanorthosite(light).Thelowestdarklayerisapproximately15cmthick.

Page 7: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 893

poorexposure,late-magmaticalteration,andextensiveLaramide faulting in that area preclude stratigraphicassignmentinthisregion(Fig.2),soweexcludeitfromthestratigraphicChugwaterAnorthosite.Weemphasizethat the stratigraphic section has not beenmeasureddirectly,buthasbeenconstructedusingmapdistancesandaveragedipsineacharea.

UnitAn1(0–4750m;Fig.2)isthethickestandleastwelldefinedoftheunits.Inadditiontotheuncertaintiesincorrelationmentionedabove,itiscutbyseverallargeleucotroctolitebodies(Fig.6).UnitGan1(4750–5590m) locally contains the bestmodal layering on the10–100cmscale,butitsgenerallysubduedtopographyyields fewgood outcrops.UnitAn2 (5590–6240m)is the thinnestof themainunits; it standsoutclearlyon satellite imagesandas localhighson topographicmaps.Italsocontainsadistinctiveseriesofleucotroc-tolitepods,2to20macross,thatoccurthroughoutitsexposedlengthofnearly10km.Gan2(6240–8300m)is the thickest of the gabbroic anorthosite units.An3(8300–9520m),theuppermostanorthosite,isthemostdistinctiveof the sixunits: it consists almost entirelyofextremelywell-laminatedmedium-grained(typically

2–3 cmacross, 2–3mm thick) tabular anorthosite. Itranges in thickness from700meters in the southeastto 1220m in the vicinity ofKingMountain (section3,T17N,R72W).Megacrysts, although present, aremuchrarerthaninlowerunits.Similarmedium-grainedtabular anorthosite alsooccurs locally4000m lower,nearthetopofAn1,buttypicalthicknessesthereare1–5meters,andtheselayerscannotbetracedmorethan100malongstrike.Thetopmostunit,Gan3(9520–10,400m),isirregularinthickness,endingagainstcountryrockto thesouthandbeing truncatedbyapoorlyexposedmonzosyenite unit to the southwest.The sequencedescribedherestandsincontrasttothelayeredunitsofMichikamauIntrusion,Labrador(Emslie1970),whereanorthositeoverliesmoremaficlayers,arelationshiptobeexpectedifbuoyancyalonecontrolledtheformationoflayering.JohnLonghi(writtencommun.,2009)hassuggested the possibility that ourGan1mightmorelogically be pairedwithAn2, andGan2withAn3.Unfortunately, none of our data, field, petrographic,orgeochemical,permitsustotestthatidea.Weretainour field-based pairings in part by analogywith thenearbyPoeMountainAnorthosite,wheremoremafic

Fig.4. Sample-locationmapfortheChugwaterAnorthositeandnearbyrocks.Samplelocations not shownon thismap are indicated inFigures 1 and 6.To save space,quadrangle designators are abbreviated:B:BM (BaldyMountain),G:GM (GoatMountain),K:KM(KingMountain),R:RTM(RaggedTopMountain).

Page 8: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

894 thecanadianmineralogist

layersclearlyoverliemoreanorthositicunitsdespitetheexpectationthatplagioclasewouldbebuoyant.Scoates(2000,2002)hasaddressedthis“plagioclase–magmadensityparadox”forthePoeMountainAnorthosite.

Structure

Thewell-developed layering and foliation of theChugwaterAnorthositemake it possible to defineseveralstructuralfeatures.ThestratigraphicChugwaterAnorthositeconsistentlydipstothewestandsouthwest,

withdipsgenerallyincreasingup-section;itcorrespondstothesouthwesternportionofthe“anticline”proposedbyNewhouse&Hagner(1957).Intheeasternportionsof the stratigraphic ChugwaterAnorthosite, we doin fact see somehintsof an “anticlinal axis” (centralportionofFig. 2).However, thedetails are consider-ablymore complicated.To thewest andnorth of theMaloinRanchPluton(thusclosetothe“anticlinalaxis”ofNewhouse&Hagner),thereareabruptdiscontinui-ties in structure between the stratigraphicChugwaterAnorthositeandverysimilaranorthosites lyingto theeastandsoutheast(Fig.2).Thediscontinuitiesinstrikeare evident on themap, but the dips are discordantaswell:most of the dips in the nearby stratigraphicChugwaterAnorthositeare30°orless,whereasthoseofthenorth–southstrikinganorthositestotheeastareall greater,withmost being at least 70°.We definetheregionofabruptstructuralchangeasa“structuralboundary”. In a number of places, this boundary isdecoratedbyinclusionsofhighlydeformedanorthositethatismuchmorecalcic(An67–75)thantheChugwaterAnorthosite.MostoftheseinclusionsaretoosmalltoappearonFigures2and6,buttwolargerinclusionsareshown.InthesoutheasternChugwaterAnorthosite,the“structuralboundary”separatesrocksonthewestthathavedistinct,consistentlayeringandlaminationfromonesontheeastwheresuchfeaturesareeitherlackingorchaotic.Petrographicallyandcompositionally,therearenodifferencesbetweentherocksoneithersideofthe“structuralboundary”, soweconsider themall tobepartsoftheChugwaterAnorthosite.Evidently,theyhave experienced distinctly different deformationalhistories.Itisnoteworthythatwiththeexceptionoftheinclusionsnotedabove,noneof theChugwaterAnor-thositeshowsthehighlydeformedandgranulatedrocksseenatthebordersoftheEgersund–Ognaanorthosite,Norway (Barnichonet al. 1999), and similar plutonsbelievedtohavebeenemplaceddiapirically.

Laramide faulting. TheChugwaterAnorthosite,in commonwithmost of theLAC, has been cut bynumerousfaultsandshearzonesofpresumedLaramideage.Ingeneral,theseincreaseinabundancefromwestto east, and, indeed, the northeasternmost portion oftheChugwaterAnorthosite has been thrust eastwardoverPhanerozoiclimestones,someofwhichhavebeenlocallyoverturned.Inmostplaceswithintheanortho-site,itisimpossibletodetermineeitherthedirectionorextentofdisplacementalongtheotherfaults.Protero-zoic granite dikes showing little or no offset suggestthatmanyofthesefeaturesmayhavebeenshearzoneswith little displacement. In any event, theymake itextremelydifficulttotracelayersandotherstructuresinthenortheasternportionoftheChugwaterAnorthosite.This is themajor reason thatwe arbitrarily start thebaseofthe“stratigraphicChugwaterAnorthosite”westoftheregionofabundantfaults.JusttotheeastoftheregionofFigure6(seeFig.4),somanyofthesefeaturesintersect that the anorthositewas highly comminuted

Fig. 5. Stratigraphic column for the southwesternportionsof theChugwaterAnorthosite,constructedusingprofilesalongA–A’ andA’–A” in Figure 2. Some key samplenumbers are shown. Light grey: units dominated byanorthosite; dark grey: units dominated by gabbroicanorthositeandmixedrocks.Verticallines:intrusionsandinclusions of leucotroctolite and troctolite.Dot pattern:monzosyenite.

Page 9: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 895

andhasbeenpreferentiallyweatheredanderoded.WehaveretainedthetermofNewhouse&Hagner(1957)“fracturedanorthosite”(fran)forthisarea.

Possibility of a detachment thrust beneath the Chug-water Anorthosite.Geophysicalmeasurements, bothgravity(Hodgeet al.1970,1973,Smithet al.1970)andseismicreflection(Allmendingeret al.1982,Breweret al.1982),consistentlyshowthattheanorthositebodiesin the LAC at present are quite thin (1.6 to 4 km)comparedtotheirarealextent(~650km2)andinferredstratigraphicthickness.Thisismostsurprisinginviewofthefactthatstratigraphicthicknessesof6000–10,000m have been documented in both the northern (PoeMountainAnorthosite: Scoates 1994, Scoates et al.2010)andsouthern(ChugwaterAnorthosite;thispaper)portionsoftheLAC.OnepossibleexplanationisthatthepresentexposuresoftheLAClieaboveaLaramidedetachmentthrust.Besidesthegeophysicalstudies,theonly evidence for this interpretation is a report thata diamond-drill hole at IronMountain (I in Fig. 2)

penetratedPaleozoic limestone (pers. commun. fromDonaldL.BlackstonetoB.R.Frost).

Significance of the “anticlinal axis” of Newhouse & Hagner.OurmappingintheChugwaterAnorthositeshows that the “anticlinal axis” reported in the areabyNewhouse&Hagner (1957) actually reflects thecombinationoftwoandpossiblythreedistinctfeatures:(1)theveryrealandregularwesterlytosouthwesterlydipofthestratigraphicChugwaterAnorthosite,togetherwithlocalcurvatureinthesouthernandcentralportionsof Figure 4, and (2) the abrupt change tomainlynorth–south-striking,nearlyvertical fabric to theeastand south of the “structural boundary”. In addition,there is the very real possibility, especially near theeasternboundary thrust, thatdisparateportionsof theChugwaterAnorthositemay have been juxtaposedbyLaramide-age faulting, and that any appearanceof an antiform theremaybe accidental and thereforemisleading.

Fig.6. DetailedgeologicalmapofthelowerportionsofthestratigraphicChugwaterAnorthosite(shownasrectangleinFig.4).Locationsofsamplesareindicatedbysamplenumbers;theprefixBMhasbeenomitted.SamplelocationsshownhereareomittedfromFigure4.FDi:ferrodiorite,Mdi:monzodiorite(seealsoMitchellet al.1996,Fig.2).Dipandstrikesymbolsshowtheorientationofcompositionallayeringandofplagioclaseorientation.DashedlineshowsthepositionofprofileA–A’(Fig.2).Horizontalandverticaldot-dashlinesaresectionboundaries;sectionnumbersareshownwithincircles.TownshipandrangedataarefromtheU.S.GeologicalSurveyBaldyMountainQuadrangletopographicmap,7.5minuteseries,1955,photorevised1981.

Page 10: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

896 thecanadianmineralogist

Granites and other dikes

TheChugwaterAnorthosite is cut by a variety ofgraniticdikes,noneofwhichislargeenoughtoshowon the scale of Figures 1 and 2.Their thickness isvariable,rangingfrom1to15m.MostofthesedikesstrikeN–StoNW–SE,althoughallotherorientationsoccur.Ingeneral,boththesizeandabundanceofthesedikes increase fromwest to east. Some dikes havenegligible effects on the host anorthosite andwereprobably relatively dry.Other dikes, probablywithhighH2Ocontents,pervasivelyalteredtheanorthositethroughwhichtheypassed:theplagioclaseisbleachedwhite,whereastheferromagnesianmineralshavebeenconvertedtohornblendeoractinolite.Somedikesaltertheanorthositetodistancestentimestheirownthick-ness.TheconcentrationofsuchalterationintheeasternportionsoftheChugwaterAnorthositeaddsgreatlytothe difficulty in recognizing and tracing stratigraphicvariationsinthatarea.TogetherwiththegreatereffectsofLaramidefaultingintheeast,thisledustoconcen-trateoureffortsinthemoretractablewesternpartsoftheChugwaterAnorthosite (“stratigraphicChugwaterAnorthosite”).A composite ferrodiorite–monzodioritedike(Mitchell1993)cutspartoftheChugwaterAnor-thosite(Fig.6).Smallerdikesofferrodioritealsooccur.

Fe–Ti oxide bodies

TheChugwaterAnorthositeishosttofourdepositsofmassive Fe–Ti oxides; from northeast to south-west,thesearethewell-knownIronMountaindeposit(Hayden1871,Ball1907,Singewald1913,Frey1946a,Eberle1983),theGoatMountainprospect,theShantondeposit (Hild 1953, Frey 1946b), and an unnamedprospectinsection6,T17N,R71W(I,G,S,and“6”inFig.2).Newhouse&Hagner(1957)notedthatthesealllieonoradjacent to their“anticlinalaxis”.Ourmoredetailedmapping raises serious doubts regarding thisapparentcorrelation.

PetrographyandMineralCompositions

Analytical

Mineralcompositionsweredeterminedbyelectron-probemicroanalysis.Most analysesweremade ontheStonyBrookCameca“Camebax”probe,usinganacceleratingpotentialof15kVandsamplecurrentsof15nAforplagioclaseand20nAforotherphases.Weused, as standards for plagioclase,microcline forK,albiteforNa,anorthiteforCa,Al,andSi,ilmeniteforTi,andfayaliteforFe.Forferromagnesianphases,weusedenstatiteforMgandSi,anorthiteforCaandAl,ilmeniteforTi,fayaliteforFe,excepthematiteforFeinFe–Tioxides,andrhodoniteforMn.Someferromagne-sianandoxidemineralsweremeasuredattheUniversity

ofWyomingusing15kVand20nAandthefollowingstandards: for augite, Si,Al,Ti,Mg,Fe,Na, andCaonaugite,Cronchromite,NionsyntheticNi-olivine,Mnonmagnesianfayalite.Fororthopyroxene,weusedSi,Mg,Feonferroanenstatite,Al,Ti,Ca,andNaonaugite,Cronchromite,NionsyntheticNi-olivine,Mnonmagnesianfayalite.Forolivine,weusedSi,Fe,andMn onmagnesian fayalite,Mg on ferroan enstatite,Al,Ti,andCaonhornblende,Cronchromite,NionsyntheticNi-olivine.Forilmenite,weusedFe,Ti,andOonilmenite,Mnonmagnesianfayalite,Mg,Al,andCronachromium-richulvöspinel,andZnongahnite.

Textures

The dominant feature of almost all samples ofanorthositeandgabbroicanorthositeintheChugwaterAnorthositeisthepresenceofplagioclasemegacrysts.Inpreparingsamplesforthin-sectioning,onemustbecareful to ensure that phases other than plagioclaseare present on the surface chosen.One result of thisselection process is that point-countedmodes arenearlymeaningless,as they tend tounderestimate thetrue volumeof plagioclase in the sample. In thePoeMountainAnorthosite,poikilitictextures(withaugite,orthopyroxene, olivine, and even Fe–Ti oxides allservingasoikocrysts)arecommon,suggestingsimul-taneouscrystallizationofthosephasesandplagioclase(Scoates 1994, Scoates et al. 2010). In contrast, apoikilitic texture is extremely rare in theChugwaterAnorthosite; all ferromagnesianphases are interstitialtoplagioclase, suggesting that they formedonlyafterthemajorityofplagioclasehadalreadycrystallized.TheChugwaterAnorthositetexturesareconsistentwiththebody having been emplaced as amagma ladenwithplagioclase crystals. InTable 1,we list themineralspresentandtherangeofplagioclasecompositionsforkey samplesof theChugwaterAnorthosite.Availableaverage compositions of plagioclase, clinopyroxene,orthopyroxene,andolivinearegiveninTables2a–2d.

Overview of mineralogy

Plagioclase.The singlemost distinctive featureof theChugwaterAnorthosite is its abundant coarse,tabularplagioclase,muchofwhichshowslabradores-cence.The tabular face is [010],with the larger axessubequal,andthethicknessdistinctlylessthanthatoftheotherdimensions.Rarelyarefacesotherthan[010]preserved.Typicallytabulargrainsupto~5cmacrosshavethicknessesof0.5cmorless.Megacrysts(tabularplagioclasewithwidths greater than 5 cm) typicallyhaveproportionallygreaterthicknesses,oftheorderof0.2 thewidth.Plagioclase compositions inmost oftheChugwaterAnorthositeandsomeoftheleucotroc-tolitesaretypicallyAn50toAn56;whereastherangeofcompositionsinagivensampleincreasestowardthetop

Page 11: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 897

ofthestratigraphicsection,overallthereappearstobea1–2%upwarddecreaseinAncontent(Figs.7a,b,c).ThemostcommoncompositionisAn52–54Or3–4,whichleads to iridescence in the blue to blue-green range.Many anorthosite samples contain a fewplagioclasegrainsthataredistinctlymorecalcicthantherest.Weinterpret theseasxenocrysts,probablyfromtheoldercalcicanorthositesthatarefoundasinclusionswithinpartsoftheChugwaterAnorthosite.Twosetsofleuco-troctolites,atthe5960–6075mand9740mlevels,arealsodistinctlymorecalcic(Fig.7c).Somecalcicplagio-claseintheChugwaterAnorthositemayreflectmixingbetweentheseleucotroctolitesandthehostanorthositicunits(tobediscussedlater).

Deformation.Nearly all plagioclase in theChug-waterAnorthosite showsvarying extentsofdeforma-tion,mostofithigh-temperature.Intheleast-deformedrocks, megacrystic and other tabular plagioclasegrainshavesuturedgrain-boundariesandarebent,ascan be seen both in hand sample and in thin section(Figs. 8a–c).As the extent of deformation increases,the tabular grainsmay become polygonalized, andneoblasts form on their grain boundaries, a processdocumentedbyLafranceet al. (1996).Theneoblastslack the Fe–Ti oxide inclusions that give themega-crysts their distinctive black color.As the populationofneoblastsincreases,therelictmegacrystsremainasblackporphyroclastsisolatedbygraytowhiteneoblasts.

Page 12: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

898 thecanadianmineralogist

Wheremost of theoriginal plagioclasehas recrystal-lized,theresultisafine-grainedwhitetograyrockwithagranoblastictexture.Eveninthemostrecrystallizedrocks, however, onemayfind local black, iridescentfragmentsoftheoriginalmagmaticplagioclase.

Inclusions in plagioclase.Allmegacrystsandmostother tabular plagioclase grains in the ChugwaterAnorthosite are dark grey to black as the result ofnumerousinclusions(Fig.8a).Therearetwomaintypesof inclusions,bothofwhichareoriented inpreferreddirections: black opaque rods (mainlymagnetite andilmenite)andhoney-coloredtored-brownplatesthatarerichinTiandFe(mainlyilmeniteandrutile,butwithsomebiotite).Manyoftheplatesaresothin(<1mm)thattheyarenon-opaque(Fig.8d).Plagioclasewiththeinclusions typicallycontains0.3–0.4wt%TiO2.Bothtypesof inclusionsareabsentfromplagioclaseof thecross-cuttingtroctolitesandleucotroctolites.Theyarealsoabsentfromneoblasticplagioclaseandfromrimsonmegacrysts. Ina later section,wesuggest that theinclusion-bearing regionsmay indicate crystals that

formed at greater depth andwere presentwhen theChugwaterAnorthositemagmawasemplaced.

Pyroxenes. Some pyroxene grains in gabbroicanorthosite are subhedral, suggesting that theymaybe cumulus;most, however, are clearly interstitial toplagioclase,asisalwaysthecaseforanorthositeunits. Oikocrystic pyroxene, common in the PoeMoun-tainAnorthosite to the north (Scoates 1994, Scoateset al. 2010), is essentially absent in theChugwaterAnorthosite.

AugiteisthemostcommonpyroxeneintheChug-waterAnorthosite.Typically,ithasexsolutionlamellaeoflow-Capyroxeneandofilmenite.Intheleucotrocto-lites,ithasthecompositionWo40En45Fs15.Augitefromthegabbroicanorthositesissomewhatmoreiron-rich,intherangeWo40En40–44Fs16–20,andthatfromtheolivine-free (mainseries) rocks ranges fromWo38En40Fs22 toWo40En34Fs26(Fig.9).Theaugitecontainsonlyminornon-quadrilateral components.The amount ofAl2O3rangesfrom2.0to3.5wt%,TiO2,from0.4to0.9wt%andNa2O,from0.3to0.4wt%.Augitefromtheleuc-

Page 13: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 899

totroctolitestendstofallonthehighsideoftherangeforalltheseelements,whereasthatfromtheolivine-freerocksisonthelowside.

Orthopyroxene contains thin lamellae of augitealong(100).Someorthopyroxeneformsanovergrowthon olivine.Orthopyroxene from leucotroctolite hasthecompositionWo1–2En69Fs29,whereasthatfromthegabbroic anorthosites ranges fromWo1–2En68Fs30 toWo1–2En60Fs38, and that from the anorthosites, fromWo1–2En60Fs38 toWo1–2En51Fs47.Aswith the augite,non-quadrilateral components are low,withAl2O3ranging from1.0 to 2.0wt%,MnO, from0.3 to 0.5wt%, andTiO2, from0.2 to0.3wt%.Orthopyroxenefromtheleuctotroctolitestendstohaveminor-elementcompositionsthatfallonthehighsideoftheseranges,whereas that from themain serieshavecompositionsthatfallonthelowside.

Althoughthereisconsiderablevariation(seebelow,Fig.12),XFe

Opx[i.e.,Fs/(En+Fs)]formain-seriesrockslies near 0.5 in the lower portions of theChugwaterAnorthosite,dropsto0.3to0.4inthemiddleportions,andthenincreasesfairlyuniformlyupto0.56atthetop.

Forallleucotroctolitesstudied,XFeOpxisequalto0.31.

Asexpected,XFeOpx formixedrocks liesbetween the

valuesformain-seriesrocksandleucotroctolitesatanygiven stratigraphic level.Even thoughXFe

Opxmayberesetuponcooling(OpxgainsFefromCpxbutlosesittoolivinebyFe–Mgexchange),weconsideritamorereliablemeasureofthemg#ofanorthositicrocksthanthat derived frombulk-rock analysis. [In rockswith~90%plagioclase,smallvariationsinthemodalpropor-tionsofFe–Tioxidesand ferromagnesianphasescanmakeverylargerelativedifferencesinbulkMgandFe.]Our data suggest that onemay approximate the bulkmg# in theChugwaterAnorthosite through the rela-tionshipmg#=0.92–XFe

Opx.However,thatempiricalrelationshipdoesnotholdfortheleucotroctolites,anditmaynot hold for anorthositic rocks other than theChugwaterAnorthosite.

Pigeoniteispresentonlyintheupper2000metersof theChugwaterAnorthosite and has “inverted” tocoarse lamellae of augite broadly parallel to (001)in the orthopyroxenehost. It has a bulk compositionnearWo10–12En45Fs43 (Fig. 9).Minor elements in the

Page 14: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

900 thecanadianmineralogist

hostOpx and augite lamellae are similar to those intheprimaryphases.Invertedpigeonitealsooccursinasmall iron-enrichedbody that intrudes theChugwaterAnorthositeabouthalfwayupthestratigraphy.

Olivine.Olivineisabsentfromnearlyallsamplesofanorthositesensu strictobutispresentinmanygabbroicanorthosites and by definition in all leucotroctolitesand troctolites. In a later section,we argue that theabsenceofolivinefromthetrueanorthositesisrealandsignificant,ratherthananartifactofthelowcontentofferromagnesianmineralsintheserocks.OlivinehasacompositionnearFo65intheleucotroctolitesandtrocto-litesandrangesfromFo65toFo54intheolivine-bearinggabbroicanorthosites(Fig.9).TheCaO,MnO,andNiOcontentsofolivinearelow,lessthan0.03,0.5,and0.2wt%,respectively.Inapproximatelyhalfoursamples,olivine has partially or completely altered to chloriteplusotherphases.

Biotite. Biotite typicallymakes up 1–2 vol.% ofleucotroctolites,occurs insomegabbroicanorthosites

(typicallythosecontainingolivine),andisabsentfromanorthosites(exceptasoccasionalorientedlamellaeinplagioclasemegacrysts).IttypicallyrimsFe–Tioxideand has the deep-red color associatedwith elevatedcontentofTi.

Quartz.Primaryquartzisabsentfromtheleucotroc-tolites andmost of theChugwaterAnorthosite.Mostsamplesthatcontaininvertedpigeoniteintheuppermost2000moftheChugwaterAnorthositealsocontaintracetominoramountsofprimaryquartz.

Fe–Ti oxide.Both theChugwaterAnorthosite andthe associated leucotroctolites contain ilmenite andtitaniferousmagnetite(Ti–Mgt).Typically,thelatterismoreabundant,appearingasgrainsand(111)lamellaeofilmeniteinarelativelylow-Timagnetitehost.Rarely,isitpossibletoreconstructtheoriginalspinelcompo-sition by re-integrating the oxy-“exsolved” lamellaewiththehost;QUILFcalculations(seealatersection)suggest original compositions ofUsp40–60. In rockswheretitaniferousmagnetitedominates,theilmeniteis

Page 15: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 901

homogeneous,withcompositionstypicallyintherangeHem3–6.However, in the fewsamples forwhich suchtitaniferousmagnetiteisscarceorabsent,theilmeniteshowsfineexsolution-inducedlamellaeofhematite,andthe bulk composition isHem12–13. Ilmenitewith 3–6wt%Fe2O3 is faroutofequilibriumwith titaniferousmagnetite and the coexisting ferromagnesian silicatesforanyreasonablerangeoftotalpressureandtempera-ture.We conclude that the oxide inmostChugwaterAnorthositesamplescooledalongamagnetiteisopleth(Frostet al. 1988,Fig. 4),whichwould have forcedreductionoftheilmenite.Itissignificantthattherareilmenitethathasexsolvedhematiteandbulkcomposi-tionsofHem12–13occursonlyinsampleshavingaveryhighilmenite:magnetiteratioandwouldthereforehavecooledmorenearlyalonganilmeniteisopleth.WeinferthatHem12–13 is close to the composition of all theChugwaterAnorthositeilmenitepriortocooling.InourQUILFcalculations,wetookHem13asanupperlimitontheilmenitecomposition.

Sulfides. Pyrrhotite with lesser pentlandite andchalcopyriteoccur as traceamounts in somesamplesofanorthosite,andaremoreabundantinsomeleuco-troctolites andgabbroic anorthosites, especially thosethatoccuratthe~4000mlevel.

Low-temperature alteration.Somesamplescontainvaryingamountsofcalcite,whitemica,quartz,chloriteandepidoteasproductsof low-temperaturealterationinfracturesandlocalpockets.

Petrographic evidence for magma mixing

Threemainmagma-types evidently contributed totheformationoftheChugwaterAnorthosite:theparentto the anorthosites and gabbroic anorthosites,whichapparentlylackedolivine,andatleasttwovariantsoftroctolitic or leucotroctoliticmagma, both ofwhichweremagnesianrelativetotheanorthositicrocks.ThetroctoliticmagmasassociatedwiththelowerportionofthestratigraphicChugwaterAnorthositewererelativelysodic, having normativeAn contents very similar tothose of the anorthositic rocks,whereas those in theupper portionwere distinctlymore calcic (Fig. 8c).There is strong petrographic evidence formixing ofthetroctoliticmagmaswiththegabbroicanorthosites.

Themainpetrographicevidenceformixingbetweenthe anorthositicmagma and the associated leucotroc-toliticmagma ormagmas is zoning in theminerals,especially plagioclase. In some cases, the zoning isobvious, as in theAn2 andGan3 units, where the

Page 16: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

902 thecanadianmineralogist

invadingleucotroctoliteisAn-rich,andplagioclaseinthenearbygabbroicanorthositeshowsstrongreversedzoning. In other cases,where the plagioclase in thetroctolitedifferslittlefromthatoftheanorthositicunits,thezoningismuchmoresubtle.Heretheevidenceformixingstemslargelyfromoutermostzonesofplagio-clasemegacrysts that are optically continuouswith,but lack the oriented ilmenite lamellae of, the cores.Inclusion-free plagioclase in gabbroic anorthosite isespeciallyprominentnearolivine. In favorablecases,thezoningalsoshowsupinoneormoreoftheferro-magnesianminerals.Overall, thesepatternsofzoningsuggestanabruptchangeinthenatureoftheremainingliquid,consistentwithmagmamixing.Troctolitesandleucotroctolites usually have sharp boundarieswheretheyinjectedtrueanorthosite,presumablybecausethelatterhadlittleremainingliquidformixing.Incontrast,the contactswith gabbroic anorthosite are diffuse,

suggestingthatthoselayersstillhadsufficientresidualliquidatthetimeofinjectiontoallowsignificantmixingofmagmas.

Importantly,whenthesetexturalcriteriaareappliedtoseparatemixedfromnon-mixedsamples, the latter(91intotal)areallfoundtobefreeofolivine,aphasethatisdistinctiveofthetroctoliticrocks.Of51anortho-siticsamplesclassifiedasmixed,incontrast,40containolivine, andmost of the rest are richer inOpx thannon-mixedsamplesnearby,suggestingthatanyaddedolivinecomponentmayhavereactedwithSiO2toformadditionalOpx.Thepetrographicevidenceformixingisfurthersupportedbygeochemicalevidence(presentedlater).TheChugwaterAnorthositecomprisesalltheseunits.Forconvenience,werefertotheanorthositesandgabbroicanorthositesthatshownoevidenceofmixingasthe“mainseries”,andthosethatshowsuchevidenceas“mixedrocks”.

Fig. 7. Plagioclase compositionsversus stratigraphic height in theChugwaterAnorthosite.The thickfilledbar shows therangeofmostanalyses,and the trianglesshow theextremevalues found ineachsample;boxesshownormativeAnforanalyzedsamples,calculatedfrommajor-elementcompositions.a.Main-seriesChugwaterAnorthosite.b.Mixedrocks.c.Leucotroctolites.

Page 17: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 903

Anoutcropofgabbroicanorthositenearthenorth-westernendofAn2(BM289,5935mlevel)containsabundantmultiply-zonedcrystalsofiridescentplagio-clasethatshowresorbedhorizons,includingtheonethatadornedthecoveroftheJournalofPetrologyin1998.ThiszonediridescentplagioclaseissoabundantinthevicinityofBM289thatweinformallynamedthearea“ZIPCity”(Fig.10).Weinterpretthesecrystalstobetheresultof repeated injectionsandmixingofhotter,more calcic leucotroctoliticmagma into a gabbroicanorthositelayeroftheChugwaterAnorthosite.SimilarrelationshipsoccurintheNainPlutonicSuiteonPaulIsland(Wiebe1990,p.9)andinthePortManversRunIntrusion(MichaelHamilton,writtencommun.,2009).A true anorthosite layer immediately aboveBM289(An2), in contrast, contains pods of calcic troctoliteandleucotroctoliteatthe5960–6075mlevel(samples

KM36,5960m;BM52,6000m;BM269,6075m);herethecontactsaresharpanddistinct,withnoevidenceofmixing.Theseleucotroctoliteinclusionsareparticularlyinteresting.We havemapped eight of them, rangingin size fromapproximately3 tomore than10metersacross, over an along-strike distanceof 8 km.Modalplagioclasedecreases systematically from89% in thenorthwest (BM52) to 71% in the southeast (KM36),whereas theAn content decreases from 64 to 59%.Grainsizealsodecreasesfromnorthwesttosoutheast.Weconsider itpossible that thesenow-isolated inclu-sionswere once part of a continuous intrusion thatwasbrokenapartduringlate-stagedeformationoftheenclosingChugwaterAnorthosite.Ifthisinterpretationiscorrect,thenthefeeder,whichhasnotbeennotfound,mayhavebeenneartheregionofBM52,whereplagio-clasephenocrystsaccumulatedbyflowdifferentiation.

Fig.8. PlagioclasetexturesintheChugwaterAnorthosite.a.Photographoffragmentsofmegacrysts(darkgreytoblack)inamatrixofneoblasticplagioclase(lightgrey).Coinis2.4cmacross.b.Photographofathinsectionshowingaportionofamegacrystwithfine-grainedneoblasticplagioclasesurroundingit.Crossedpolars;fieldofview2.3 3.4cm.c.Photographofathinsectionshowingfragmentsofplasticallydeformedplagioclasemegacrysts.Crossedpolars;fieldofview2.3 3.5cm.d.Photomicrographofaportionofamegacrystcontainingatleasttwoorientationsofilmeniteplatesandrods.Notevariationinsizeoftheinclusions;smallergrainsaremorecloselyspaced,whichisconsistentwithaconstantvolume-fractionoftheinclusions.Widthoffield:2.5mm.Plane-polarizedlight.

Page 18: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

904 thecanadianmineralogist

ThedecreaseinAncontenttothesoutheastmayhaveresulted either from a decrease in the abundance ofcalcicphenocrystsorfromasmalladmixtureofresidualliquidfromthehostanorthosite.

IntensiveParameters

Mineral compositions in plutonic rocks like theChugwaterAnorthosite typically undergo significantchangesduringcooling,bothbyexsolutionandthroughexchangewith other phases. In an attempt to “seethrough”thesechanges,wehaveappliedQUILFequi-libria(Lindsley&Frost1992,Frost&Lindsley1992,Andersenet al.1993)totheChugwaterAnorthositeandsummarizetheresultshere.

Pressure

The ChugwaterAnorthosite lacks a definitivegeobarometer, sowe estimate pressure from nearbyrocks.PressureforthenorthernmarginoftheLaramieAnorthositeComplexhasbeenestimatedtobenear3kilobars(SybillePluton,Fuhrmanet al.1988;contactaureole,Grant&Frost1990),whereaspressuresforthesouthernmargin are closer 3.5 to 4 kilobars (MaloinRanchPluton,Kolker&Lindsley1989;contactaureole,Xirouchakis1996).BecausetheChugwaterAnorthositeliesinthesouthernportionofthecomplex,weadoptanemplacementpressureofcloseto3.5kilobars.Clearly,however, if our reconstructed stratigraphy is correct,

theremusthavebeenarangeofseveralkbarfromtoptobottomoftheChugwaterAnorthosite.

Temperature

Themost robust thermometer in theChugwaterAnorthosite is the pigeonite thermometer,which isbasedontheXFeoftheassemblageOpx+Cpx+Pig(Davidson&Lindsley1989,Lindsley&Frost 1992,Fig.2).Onlyafewsamplesshowevidenceforcoexis-tenceofallthreepyroxenes,butfortheremainder,thegap between pigeonite-bearing rocks (fictiveXFe

Opx= 0.53) andpigeonite-absent rocks (XFe

Opx= 0.49) issmall,andallowsustoconcludethattheupperportionoftheChugwaterAnorthositecrystallizedoverarangeoftemperaturesthatincluded1050°C.

Oxygen fugacity and silica activity

Because the compositions of the Fe–Ti oxideshave been significantly reset on cooling,we use theQUIlF equilibria (Lindsley&Frost 1992) to calcu-late the oxygen fugacity and silica activity for theChugwaterAnorthosite.To facilitate comparison,wefix the temperatureat1050°Cand thepressureat3.5kbar.Forthef(O2)ofolivine-bearingrocks,weusethelocation of the assemblageOl–Opx–Cpx–Mgt–Ilm,which is dependent only onXFe of the silicates. Forassemblageswithoutolivine,wemustcalculatearangeof possible oxygen fugacities, the lower limit being

Fig.9. Summaryplotofpyroxeneandolivinecompositions,asprojectedthroughQUILF(Andersenet al.1993).

Page 19: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 905

that of olivine saturation,whereas the highest is thatdefinedby ilmenitewithXhem= 0.13.We chose thisvaluebecauseitisclosetothecompositionofilmeniteinChugwaterAnorthositerocksthathavecooledalonganilmeniteisopleth(i.e.,thosethatoriginallyhadaveryhighilmenite:magnetiteratio)(Frostet al.1988,Fig.4).

Fromthesecalculations,wedeterminethatthemainseriescrystallizedatoxygenfugacitiesbetweenFMQand FMQ+ 0.5, the leucotroctolites crystallized atoxygen fugacities aroundFMQ+1.0, and themixedrocks,atoxygenfugacitiesbetweenFMQandFMQ+1.0.Thecalculatedactivityofsilica(relativetoquartz)ofthemainseriesvariesfrom0.7atthebaseupto1.0atthetop,wherefreequartzislocallyfound.Incontrast,thesilicaactivityofthemixedandtroctoliticrocksliesinarestrictedrange,definedbyolivinesaturation,near0.7(Fig.11).

Whole-RockChemistry

We selected 37 samples from the ChugwaterAnorthosite formajor-elementanalysis, togetherwitha limited number of trace elements; for 32 of these,wealsohavemoreextensiveinformationonthetraceelements,includingtheREE(Tables3aand3b).Theseinclude15samplesofthemainseriesand15ofmixedandtroctoliticrocksfromthestratigraphicChugwaterAnorthosite.LocationsofanalyzedsamplesaregiveninFigures4,5,and6.

Sample preparation and analytical details

TheweatheringprofileinanorthositicrocksoftheLACrangesfromseveralcentimeterstoseveralmetersin thickness.Themajority of samples collected forthisstudywereobtainedusingawater-cooledportablediamonddrill,withcoretubes2.5cmindiameterand

Fig.10. Photographsofzonediridescentplagioclasemegacrysts(a,c,dapproximately3cmacross;b,approximately4cmacross)fromtheChugwaterAnorthosite.BlueindicatesAn52–53,greenAn53,yellowAn54,orangeAn55,allwithapproximatelyOr3.5.Photos(a),(b),and(d)arefromtheBM289locality,informallyknownas“ZIPCity”.Theoscillatoryzoningin(a),(b),and(d)isinterpretedtoresultfromrepeatedinjectionsofleucotroctoliticmagma,mixingwithmain-stageChugwatermagma(seetext).Photo(c)showsmainlynormalzoning,withonlyasmallreversalevident.

Page 20: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

906 thecanadianmineralogist

30cmlong.Dependingonthegrainsize,wecollectedfourto10coresforsamplesthatweretobeanalyzed.The surface of each corewas abradedwith tungstencarbide(WC)papertoremoveresiduefromtheinsideofthecoretube.CoarsecrushingwasdoneinaRocklabshydraulicpressbetweentwoflatWCplates(percussionmethod).Asinglealiquot(75to100g)ofhomogenizedcoarselycrushedsamplewaspowderedinaWCshat-terboxforthreeminutes.Allreportedgeochemicaldatainthisstudyarefromthisaliquot.

Concentrations of themajor elementswere estab-lished byX-ray fluorescence spectrometry (XRALLaboratories,DonMills,Ontario)andbytheICP–MSmethod(DukeUniversity,NorthCarolina).

Major elements

Themajor-element data hold few surprises, ascompositions are dominated by the components ofintermediate plagioclase.Normativemineralogywascalculatedassumingthat15%oftotalFeisferric.Verylow(cation)normativecontentsof candne forsomesamplesprobablyarenotrealandmayreflectuncertain-tiesintheanalyses.Asexpected,normativeolcontents

ofmostmixedandtroctoliticrocksaredistinctlyhigherthanthosereportedforthemainseries,reaching25%fortroctoliteBM273(4180mlevel).Figure12containsplotsofnormativeqandol asafunctionofstratigraphiclevel,witholexpressedasnegativeqforconvenience.Mostmain-series rocks plot at or just above zero,whereas allmixed rocks and leucotroctolites shownormative olivine.Themodest contents of normativeolivineformain-seriesrocksat4900to6790mmirrorsthemainlylowervaluesofXFe

Opx(Fig.13)andhighermg#inthatinterval.

Whole-rockmg numbers (Table 1) do not varysystematicallywith stratigraphic height. In anortho-sitic rocks,mg numbers are problematical, as theyare extremely sensitive to the relative proportions offerromagnesian silicate andFe–Ti oxide crystals thatwere present at the stagewhen the residual liquidwasexpelled,aswellastoerrorsinchemicalanalysisresultingfromverylowabundancesofMgandFe.Insamples classified as of themain series (non-mixed)onpetrographiccriteria,mg#rangesfrom0.41to0.57.Formixedrocks,Mg#rangesmainlybetween0.57and0.62,withthevaluesdroppingto0.53(7256mlevel)and0.49(7585mlevel).Thisdropiscloselyreflected

Fig.11. Valuesofsilicaactivity(relativetoquartz)(Andersenet al.1993),asafunctionof stratigraphic height.Rectangles: range of values formain-series (olivine-free)ChugwaterAnorthosite.Upperlimitofa(SiO2)isgivenbyquartzsaturation[a(SiO2)= 1] or by assumingXHem= 0.13 in ilmenite (see text); the lower limit is that ofolivine saturation.Grey ellipses:mixed rocks that contain olivine, black ellipses:leucotroctolites;forbothofthese,therangeincalculateda(SiO2)islimitedbytheFe/Mgvaluesinthepyroxenes.

Page 21: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 907

byXFeOpxinthemixedrocks(Fig.13).Thehighermg

valuesforthemixedrocksalmostcertainlyreflecttheadmixture ofMg-rich leucotroctolitematerial,whichhasmg# ranging from0.63 to 0.69. SamplesKM44andKM46(4900mlevel)werecollectedlessthan1mapart,yettheirmg#are0.49and0.56.Thedistributionofmg#approximatelyreflectsthatofXFe

Opx(0.39–0.41inKM44; 0.35–0.38 inKM46).We suspect that the

highermg#ofKM46,aswellasitsrangeofXFeOpx,may

reflectsomemixingofleucotroctoliteintothissample.Cationnorms for the rocksof themain series are

plagioclase-rich(asexpected):normativefeldspartotalsfrom80.1 to 95.6%.The normative content ofOr isquiteclosetothemeasuredOrcontentsofChugwaterAnorthositeplagioclase,consistentwiththefactthatnoseparateK-feldsparphaseisseen.Thusitisappropriate

Page 22: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

908 thecanadianmineralogist

touse total normative feldspar as an estimate for theamountofmodalplagioclase.NormativeAncontents[an/(an+ab+or)]tendtolieattheupperendorevenabove therangeof themostabundantmodal feldsparcompositionsmeasuredbyelectronmicroprobe(Figs.7a,b, c).Thereareprobably severalexplanations forthisphenomenon.First,becauseofthegeometricrela-tionshipbetweenthevolumeofasolidandthesurface

exposedbyarandomsectionthroughit,themostcalcicportion of a normally zoned plagioclasemay not beexposedatthethin-sectionsurface,orifexposed,maynothavebeenanalyzed.Second,thenormcalculationignoresthesmallbutrealCa-Tschermakscomponentofthepyroxenes,whichisslightlydominantovertheirJdcomponent.Third,xenocrystsofcalcicplagioclasemaybe underrepresented in the population of plagioclase

Page 23: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 909

analyzedbymicroprobe.Finally,theXRFanalysesofthewholerocksmayhaveslightlyunderestimatedtheirNa2Ocontents.

Trace elements

Formost analyzed samples,we have data for 21traceelementsplustherare-earthelements;analytical

detailsfortheICP–MSmethodaregiveninMeureret al.(1999,p.147-148).Asonemightexpect,Srishighlycorrelatedwith total feldspar in each rock.ElementssuchasRb,V,Y,Sc,Hf,Nb,Ta,Tl,ThandU,whicharelargelyincompatibleinplagioclase,showconsider-ablevariation.Allincreasebyfactorsof3to10frombottomtotopoftheChugwaterAnorthosite(Fig.14).The increase is far from smooth; it is punctuated by

Page 24: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

910 thecanadianmineralogist

excursionsthatapproximatelymirrorthevariationsin XFe

Opx.InUnit1(0–5590m),theaverageincreaseisbyafactorofapproximatelytwo.InUnit2(5590–8300m),theincreaseisalsobythesamefactor,buttherateofincreaseisgreaterbecauseofthesmallerstratigraphicinterval.Wehaveonly twoanalyzed samples inUnit3(8300–10000m),buttrace-elementconcentrationsalsoincreaseupwardbetweenthetwo.Zinc,Cu,andNiarestronglyenrichedintheleucotroctolitesrelativeto

theanorthositicrocks.Thoseelementsarealsoslightlyenrichedinthemixedrocksrelativetothemain-seriesChugwaterAnorthosite.

The rare-earth elements

The chondrite-normalized REE patterns in themain-seriesChugwaterAnorthosite have positiveEuanomalies(Eu/Eu*)thatrangefrom>10tojustslightly

Page 25: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 911

greaterthanone(Fig.15a).ThevalueofEu/Eu*andtheslopeofthepatternsdecreasewithoverallabundance;both features alsomainly decreasewith increasingstratigraphic height, but there are excursions thatapproximatelymirrorthevariationsin otherincompat-ibletraceelements(e.g.,Fig.14).Ofparticularinterestis thenear-absenceofaeuropiumanomalyat the topof theChugwaterAnorthosite; under the reasonableassumptionthattheplagioclasemegacrystshereretainapositiveEuanomaly,thentheremainderofthesamplemusthaveacorrespondingnegativeanomaly.TheREEpatternsforthemedium-Anleucotroctolitesaresimilartothoseofthemain-seriesChugwaterAnorthosite(butwithlessvariationinabundance)(Fig.15b).

Discussion

Significance of Fe–Ti oxide inclusions in plagioclase megacrysts

We believe that the Fe–Ti oxide inclusions inplagioclase place important constraints on the evolu-tionoftheChugwaterAnorthosite;itisthusnecessarytounderstandtheirorigin.Weconsider threepossibleorigins:(1)entrapmentofearlyFe–Tioxidebygrowing

plagioclase, (2) late-stage deposition by circulatingfluids, and (3) exsolution from the plagioclase.Werejectcase(1)onfourverydifferentgrounds.First,itismostimplausiblethattheparentalliquidwouldhavebecomesaturatedwithFe–Tioxidebeforeplagioclase,and thepreferredorientationof the inclusions is alsohard to explain if they had simply been engulfed bygrowingplagioclase.Second,favorablesectionsshowthatdifferentsetsofalbite-twinlamellaehavedifferentorientationsoftheinclusions,stronglysuggestingthatboth theplagioclase and its albite twins existedpriorto formationof the inclusions.Third,wehaveshownexperimentally that the inclusions cannot have coex-istedwith their host plagioclase at 1100°C at 1 barorat5kbar.Heatingexperimentsonplagioclasewithinclusions,intendedtohomogenizetheinclusionsandplagioclase, insteadproducedminute pockets ofmeltwithin thehost plagioclase.Thus clearly the separatecrystallinephaseswerenotstablewithrespecttomeltingatthattemperature,andmeltformedintheexperimentsuntilalltheoxidewasusedup.Fourth,magnetiteandrutile,which are found touching each other in someinclusions, are not compatible at temperatures above~400°C(Lindsley1991,p.85).Weconclude that theinclusions couldonlyhave formed in the plagioclase

Fig. 12. Normative olivine or quartz (mol.%) formain-series rocks (open circles),mixedrocks(grey-filledcircles),andleucotroctolites(blackcircles)intheChugwaterAnorthosite.Positiveandnegativenumbersgivepercentagesofnormativequartzorolivine,respectively.Normativecalculationsassumethat15%oftotalironisferric;ifthisvaluevariedby±5%,thepositionofthezeropoint(nonormativequartzorolivine)wouldvarybyapproximately±1%.Main-seriesrockshavenomodalandlittleornonormativeolivine, suggesting that themainChugwateranorthositicmagmawasnotolivine-normative, and thatolivinewascontributedbyadmixtureof leucotroctoliticmagmawiththeChugwaterAnorthosite.

Page 26: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

912 thecanadianmineralogist

afterthelatterhadcooledbelow1100°C,andthuscouldnothavebeenpresentatearlystagesofcrystallization.

Origin(2),late-stagedepositionbyfluids,cannotbecompletelyruledout,butseemsunlikely.Insofarasonecantellinthinsection,theinclusionsoccupyvolumeswithintheplagioclase;thereisabsolutelynoevidencethat they are associatedwith healed cracks or otherplanarfeatures.Furthermore,theabsenceofinclusionsfromtherimsofmegacrysts(evenwherethecoreandrimcompositionsofplagioclasearevirtuallyidentical)and fromplagioclaseofnearby leucotroctolite arguesagainstdepositionfromapervasivefluid.Byelimina-tion,weconcludethatcase(3),originof theorientedinclusionsbyexsolution,isthebestexplanation.Suchanorigin,alsosuggestedbyAnderson(1966),ismostcompatible with the preferred orientation and theextremethinnessoftheplatyinclusions.It isalsotheonlyplausibleexplanationforthedistributionofinclu-sionsinthespectacularlyzonediridescentplagioclasecrystalsinsampleBM289(5935mlevel).Plagioclase

compositionsrangefromAn52toAn57,correspondingto interference colors fromblue to red.Oxide inclu-sionsoccuronly in the blue resorbed cores(whichareinterpreted to represent the plagioclase compositionpriortomixingwithhigh-Antroctolite);theyareabsentfromallthemanyzonedovergrowthlayers,whichareinterpreted to have formed following repeated injec-tionsofthetroctoliteattheleveloffinalemplacement.OxidelamellaeareabsentevenfromzoneshavingthesameAncontentasthecores,sothiscannotbeasimplebulk-composition effect.Thus it seems clear that theFe–TioxidelamellaeintheChugwaterAnorthositedonotforminplagioclasethatcrystallized at the depth of emplacement in the middle crust.AndastheplagioclaseinBM289 cooled slowly enough to permit feldsparexsolution (hence the iridescence), the absence ofFe–Tioxidelamellaeisunlikelytobeakineticeffect.We conclude that feldspar that crystallized at greaterpressure (hence also higher temperature inH2O-poormelts)mayhaveincorporatedgreateramountsofTiO2

Fig.13. XFeOpxversusstratigraphicheightintheChugwaterAnorthosite;symbols:main

series:squares,mixedrocks:circles,andleucotroctolites:triangles.XFeOpxisequalto

Fe/(Fe+Mg)inorthopyroxene.Itprovidesanestimateofwhole-rockmg#throughtheempiricalrelationshipmg#=0.92–XFe

Opx.Wedonotknowwhetherthisrelationshipholdstrueforotheranorthosites.

Page 27: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 913

(~0.3–0.4wt%),therebypermittingilmeniteandrutilelamellaetoform,whereasplagioclaseformingatshal-lowerdepthssimplydidnotdissolvethatmuchTiO2.

ThatinterpretationissupportedbytheexperimentsreportedbyScoates&Lindsley (2000).Theymeltedacompositioncontaining2.9wt%TiO2and16.7wt%FeO(T)at10kbarand1235°Candcrystallizeditatthesame temperature (1130°C)but at twodifferentpres-sures:10kbarand5kbar(thelatterpressuretosimulate

decompressionofanupwellingmagma).Bothexperi-mentsproducednearlyidenticalplagioclaseintermsofmajorelements(~An53),buttheplagioclaseformedat10kbarcontained0.32–0.37wt%TiO2,approximatelytwiceasmuchasthatformedat5kbar(0.13–0.20wt%).Incontrast,ironcontentsofplagioclasewereessentiallyindependent of pressure: 0.69–1.04wt%FeO at 10kbar, 0.67–1.13wt%at 5 kbar.TheTiO2 contents oftheplagioclasecrystallizedat10kbarareclosetothe

Fig.14. Variationwithstratigraphicheightof(a)plagioclasecontent,(b)Sr,(c)Rb,(d)Y,(e)Nb,and(f)NdintheChugwaterAnorthosite.

Fig. 15. Rare-earth elements (chondrite-normalized;Boynton1984) in themain series andmixed rocksof theChugwaterAnorthosite.a.Mainseries:Unit1(An1+Gan1),Unit2(An2+Gan2),andUnit3(An3+Gan3);b.leucotroctolites.

Page 28: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

914 thecanadianmineralogist

bulk compositions of ilmenite-bearing plagioclase intheChugwaterAnorthosite.

If one accepts the exsolution origin of the Fe–Tioxide lamellae, then several interesting implicationsemerge.Therestrictionoftheinclusionstoplagioclasecoresstronglysuggeststhattheconditionsatwhichthecores formed favored sufficient solubility ofFe- andespeciallyofTi-bearingcomponentstoallowthelaterexsolution.Most likely, these conditionswere thoseatwhichmegacrysts and other plagioclase entrainedin theChugwaterAnorthosite originally crystallized,presumablyadeepmagmachamber.Ifthisisso,thenthepresenceoftheilmenitelamellaeprovidesasimplepetrographicmeanstodistinguish“intratelluric”plagio-clasefromthatwhichcrystallizedin situ,eitherdirectlyfrommeltorduringneoblasticrecrystallization.

Blackplagioclaseisfairlycommoninavarietyofigneousrocks,butwesuggestthatinmanysuchcases,theplagioclasegetsitscolorfrominclusionsofTi-poormagnetite.WefurthersuggestthatitistheTi-richinclu-sionsthatmaybediagnosticofplagioclasethatformedat considerable depths. If that criterion is valid, thenwe conclude that very approximately one-half of theplagioclasenowpresentinthemain-seriesChugwaterAnorthositewasbroughtintothelevelofemplacementasentrainedcrystals;theremaininghalfmusttheneitherhavecrystallized from themelt that accompanied thecrystalsintothelevelofemplacement,orhavelosttheoxide inclusions during deformation and neoblasticrecrystallization.

Origin and nature of the parent melt

Therearethreemainwaysinwhichrockswithhighcontentsofplagioclase,i.e.,anorthosites,couldpoten-tiallyform:(1)crystallizationfromahyperfeldspathicmagma,(2)formationfromamelthavingahighpropor-tionofentrainedplagioclasecrystals,and(3)removalofmostoftheresidualmeltaftermuchplagioclasebutrelatively small amounts of ferromagnesianmineralshadcrystallized.WebelievethatallthreemechanismsmayhavebeenimportantintheformationoftheChug-waterAnorthosite.

Theoriginoffeldspar-richmeltsthroughatwo-stageprocess is awell-recognizedmodel for anorthositegenesis(Morse1968,Emslie1985,Longhi&Ashwal1985,Longhiet al.1993).Thefirststageiscrystalliza-tionofamantle-derivedmeltat thebaseofthecrust.Thehigh-pressure conditions at the base of the crusthavetwomajoreffectsonthecrystallizationofbasalticmelt. First, the crystallization fields for olivine andespeciallypyroxenesexpandwith increasingpressureat the expense of plagioclase (Fram&Longhi 1992,Scoates&Lindsley2000),allowingtheproportionsofplagioclasecomponents tobuildup in the liquid,andsecond,theinitialplagioclasetocrystallizeisrelativelysodic(Longhiet al.1993,Scoates&Lindsley2000).Inthis“standardmodel”ofanorthositegenesis,thedense

olivineandpyroxenesettle to thebottomof the low-levelmagmachamber,effectivelyremovingthempriortoemplacement into thecrust.The secondadvantageis that,owingtoitscompressibilityat thesepressures(seeFig.12ofScoates2000),theresidualbasalticmeltismuch denser than plagioclase.Thuswhen plagio-claseeventuallycrystallizes, itfloatstothetopofthechamber.Finally,thisplagioclase-richmushatthetopof the chamber becomesgravitationally unstable andrisesdiapiricallyintothecrust,ultimatelyforminganor-thositeasmuchoftheresidualliquidisexpelledthroughavagueprocesscalled“filter-pressing”.However,thismodelalonecannotfullyexplainlayeredbodieslikethePoeMountainAnorthositeandtheChugwaterAnortho-site,whichappeartohavecrystallizedanddifferentiatedinmid-crustal-levelmagmachambers.

Wiebe (1990, 1992) has proposed a variation onthis “standardmodel” to explain the production ofhyperfeldspathicmelts,magmas containing greaterproportions of plagioclase components than could beproducedbycotecticcrystallizationalone.Inhismodel,theplagioclase-richportionofthedeepmagmachamberis reheated, probably through emplacement of freshmantle-derivedmelt that provides heat but relativelylittlemass.Aportionof thefloatingplagioclasecrys-talsisresorbed,andsincemuchoftheferromagnesianmineralsthathadcrystallizedalongwiththeplagioclasehadsettledtothebottomofthechamberandwouldbeunavailableforresorption,theresultingmeltwouldbehyperfeldspathic.Afurtheroutcomeofthismechanismisthattheresultingmeltcouldhaveapositiveeuropiumanomaly,acharacteristicofmanyhigh-Algabbrosthathavebeenproposedaspossibleparentsforanorthosites(e.g.,Mitchellet al.1995,Scoates&Mitchell2000).Note that adiabatic decompressionof themushuponascentintothecrustcouldalsoresultinminorresorp-tionofplagioclase;Longhiet al.(1999)calculatedthata pressure release from13 to 4 kbar could remelt asmuchas4%ofthesuspendedplagioclase.

Inanearliersection,wesuggestedonthebasisofTi-rich inclusions that approximately one-half of theplagioclasenowpresentintheChugwaterAnorthositecame in as entrained crystals that had formed at aconsiderablygreaterdepththanthelevelatwhichtheintrusionwasemplaced.Withthisfractioninmind,wecanmakesomeeducatedguessesaboutboththefrac-tionofcrystalsinthemagmathatproducedtheChug-waterAnorthosite,aswellasitsnormativeplagioclasecontent.Thetotalfeldsparinananorthositemustreflectthe contributions from entrained plagioclase crystalsplus normative plagioclase in themelt,minus thefeldsparcontentofinterstitialliquidthatwasremoved.However,thefinalproportionsofentrainedplagioclasedependonly on thefirst and last of these. Figure 16shows the total feldspar that could be produced bymeltshaving60,65,and70%normativefeldsparandcarrying varying amounts of entrained plagioclasecrystals. Consider amagma having 67%normative

Page 29: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 915

feldsparandcontaining40%entrainedplagioclase (ainFig.16);itstotalfeldsparcontentis80%(binFig.16)priortofilterpressing.Suchamagmacouldcrys-tallize directly to a gabbroic anorthositewithout anyremoval of liquid.Assume that the interstitial liquidhas the composition of ferrodiorite (Mitchell et al.1996),which contains approximately 46%normativefeldspar.SincethepresentaveragefeldsparcontentofthesolidifiedChugwaterAnorthosite isclose to90%,thiswouldrequireremovalofapproximately15–18%interstitial liquid,whichwould yield an anorthositecontaining50%entrainedplagioclaseand40%plagio-clasethatcrystallizedin situ.Whereassmallvariationsintheproportionsofentrainedplagioclaseandnorma-tive feldspar content of the originalmelt could yielda similar result, other considerations suggest that theanswercannotvarygreatlyfromthisestimate.

Smallerproportionsofentrainedplagioclasewouldrequire either correspondingly greater normativefeldspar contents of themagma (thus an increasinglygreater hyperfeldspathic character) or removal ofcorrespondinglygreater amountsof interstitial liquid.

Neitherisattractive.Stronglyhyperfeldspathicmagmawould require a greater contribution from theWiebemechanismdescribedabove.Sincethatmodelrequiresanextrastep(reheating),Ockham’srazorsuggeststhatit should be invoked asminimally as possible.Andremovingmoreinterstitialliquidraisesseriousproblemsaboutwhere that liquid has gone, since onlyminoramountsof ferrodioriteareexposed in thevicinityoftheChugwaterAnorthosite.

Higherproportionsofentrainedplagioclasearealsoproblematical,astheviscosityofthemagmaincreasesexponentiallywith the crystal content (Marsh 1996).This leads to a conundrum: tomake anorthosite, onewants amaximum fraction of entrained plagioclase(this ispartof theattractionof theMorse–Emslie–Longhi –Ashwalmodel of anorthosite petrogenesis;the anorthosite is emplaced as a crystal-richmush),but formovement and production of layerswithin amagmachamber,asinterpretedfortheChugwaterandPoeMountainanorthosites, that fractionshouldbeassmallaspossiblesoastokeeptheviscosityrelativelylow!Marsh(1996)pointedoutthatthereisaprofound

Fig.16. Nomogramshowingthetotalfeldsparcontentthatwouldbecontributed(priortoremovalofresidualliquid)bymagmascontaining60,65,and70%normativefeldspar,plusvaryingamountsofentrainedplagioclasecrystals.Therelationshipsholdforbothweightandvolumepercent(ifpossibledifferencesinthermalexpansionareignored).Touse the diagram, one chooses an amount of entrainedplagioclase (for example,40%asina),movesverticallytointersectthedesiredpercentageofnormativefeldsparinthemelt,andmoveshorizontally(b)todeterminethetotalfeldsparcontent(80%in theexamplechosen).Note thatbecause thenormativeOrcontentsofChugwaterAnorthositerocksandmeasuredOrcontentsoftheirplagioclasearenearlyidentical,itisappropriatetotreatallnormativefeldsparas“plagioclase”.

Page 30: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

916 thecanadianmineralogist

changeinthebehaviorofmeltsat~55%crystallinity;atandabovethatproportion,theybehavemainlylikeweaksolids.TheparentstoPoeMountainAnorthositeandChugwaterAnorthositemusthavehadaconsider-ably smaller percentageof entrainedplagioclase than55%.As a compromise,we adopt the estimate thattheaveragemagmaemplaced to form theChugwaterAnorthosite contained~40%entrainedplagioclase inamelthaving~67%normativefeldspar.Thisassumedcomposition ofmelt is onlymildly hyperfeldspathic,approximately4–8%abovethecotecticvalue.Approxi-mately 4% hyperfeldspathic character could haveresultedsimplyfromadiabaticresorptionofplagioclase,asthecotecticwouldshiftawayfromplagioclaseupondecompressionduringascentintothecrust(Lindsley&Emslie1968,Fram&Longhi1992,Longhiet al.1999,Scoates2000).ThusthecontributionrequiredfromtheWiebereheatingmechanismneednotbegreat.

Small volumes of fine-grained high-Al gabbrosoccur as dikes throughout the LaramieAnorthositeComplexandhavebeenproposedasexamplesofmeltsthat could have produced anorthosite plus residualferrodiorite throughpolybaric fractionation (Mitchellet al. 1995).Althoughmost of the high-Al gabbrosarestronglyolivine-normative,thereareafewhigh-Algabbrosingroup1ofScoates&Mitchell(2000)thataresilica-saturatedornearlysoandthathavecompositionssimilar to themagma thatmayhavebeen the sourcefor themainseriesof theChugwaterAnorthosite.Anexperimentalstudyofstepwisefractionalcrystallizationof a high-Algabbro from theLAC strongly supportsthishypothesis(Scoates&Lindsley2000).

Relatively high silica activity and f(O2) of the Chugwater Anorthosite

TwopuzzlingaspectsoftheChugwaterAnorthositeareitsrelativelyhighsilicaactivity(0.7–1.0basedonaquartz standard state;Fig.10A)and relativelyhighf(O2); neither is a featurewemight expect in a rockderived directly from themantle.One possibility isthattheparentwasderivedbyremeltingofProterozoiccrust, as advocated byLonghiet al. (1999). Frostet al. (2003,2010)havepointedout that theChugwaterAnorthositehasthemostmantle-likeinitialNdandSrisotopicratiosoftheLaramieanorthosites(seealsoFig.15ofScoates&Chamberlain 2003), but these ratioscould also reflect remelting of Proterozoic crust thatwasonlyslightlyolderthantheanorthositeitself.Whiletheisotopicdataalonecannotruleoutacrustalorigin,wepreferthesimplerinterpretationofadirect-mantlesource.Anexplanationforbothfeaturescouldbe theadditionofSiO2totheChugwaterAnorthositefromthecountry rockduring its ascent and fractionation.Thisadditionalsilicawouldreactoutanyolivinepresent,andthroughtheQUILFreactions(Lindsley&Frost1992),couldalsoraisethef(O2).Unfortunately,theChugwaterAnorthositeoccursmainlysouthoftheCheyennebelt,

wherethedominantcountry-rockisProterozoicmate-rial~300Myrolder than theChugwaterAnorthosite;even substantial amounts of contaminationmight notshowup in theNd andSr isotopic ratios (Scoates&Chamberlain2003,Frostet al.2010).Indirectevidencefavoringcrustalcontaminationofmantle-derivedmate-rialisthefactthatthehighestvaluescalculatedforsilicaactivity inparts of themain series arenear 0.75, notgreatly above those for olivine-saturation (0.67–0.70;Fig.11).

Emplacement of the Chugwater Anorthosite and magmatic processes: crystallization in situ

ThereareseveraltexturalandgeochemicalfeaturessuggestingthattheChugwateranorthositeaccumulatedessentiallyinplace.First,theplutoncontainslayeringonallscalesfromkilometertodecimeteranddisplaysfabrics and textures that are dominated by tabularplagioclase, a typically igneousmorphology.Second,we see enrichments in incompatible elementswithincreasingstratigraphiclevelthatarelocallyinterruptedbyexcursions toward lowervalues.These excursionsaremost readily interpreted as recording replenish-mentofnewmagmawithinamagmachamber.Thesefeatureswouldhavebeendestroyedhadtheplutonbeenemplacedeitherinthesolidstateorasamushwithahighproportionofcrystals.

We propose that the ChugwaterAnorthositecrystallizedwithin amagma chamber at a depth ofapproximately 10–12 km, as based on the availablegeobarometry.Themagma chamberwas filled by aseriesofinjectionsofamildlyhyperfeldspathicmagmawithapproximately40%entrainedplagioclasecrystals,as outlined above.Therewere at least threemajorepisodes of injection, corresponding to stratigraphicunits1,2,and3,buttheremaywellhavebeenmore.ExcursionsinXFe

Opx(Fig.13;aproxyfor1–mg#)andin theabundancesof traceelements(Fig.14)suggestthattheremayhavebeenatleasteightormorereplen-ishmentsofmagma.ThereispermissiveevidencefromvaluesofXFe

Opx that themagma that fedUnit2mayhavebeenmarginallymoremagnesiancomparedtotheunitsaboveandbelow.Figure17isasetofschematicdiagramsillustratingtheemplacementoftheChugwaterAnorthositeasinterpretedhere.

TheU–Pbradiometricdatesonsamplesfromnearthebottom(BM136,1404mlevel,1435.4±0.5Ma;baddeleyite; Scoates&Chamberlain 1995) and top(KM13,8860mlevel,1436.0±0.5Ma;zircon;Frostet al. 2010) of theChugwaterAnorthosite are indis-tinguishablewithin analytical uncertainty, suggestingthat all 10,000+mmay have been emplaced (or atleast cooled through the closure temperatures forPbdiffusion in zircon andbaddeleyite, ~1000°C)withinamillionyears.Wehavenoreasontosuspectthatall10,000+mexistedasanopenmagmachamberatanygiventime,butitcertainlyappearsthattheentirebody

Page 31: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 917

Fig.17. SchematicdiagramsshowingstagesinthedevelopmentoftheChugwaterAnorthosite.1.Injectionofatleastthreepulsesofmegacryst-richmagma,resultinginthethreeunitsofthemainseries.Silicaactivityinthemagmaswas0.70–0.75,solittletonoolivineformedfromthem.Theinjectionsneednothavebeensimultaneous,butsomeresidualliquidmusthaveremainedinolderunitsasnewpulseswereemplaced.2.Plagioclaseaccumulatesnearthebottomofeachunit.Someresidualliquidisremoved(notshown),somemigratesupward,producinganoverallupwardenrichmentinincompatibleelements.3.Atleasttwodifferentleucotroctoliticmagmas(onehigh-An,onemedium-An)areinjectedintotheChugwaterAnorthosite.Contactswithanorthositelayersaremainlysharp,suggestingthatthoselayersbehavedassolidsatthatstage.However,therewas extensivemixingbetween leucotroctolite and the residualmelts in gabbroic anorthosite layers,producingolivine-bearingmixedrocks.Not shown:Doming,whichmaywellhavebeenoccurringduringandafterstages2and3.AlltrueanorthositesintheChugwaterAnorthositeshowevidenceofhigh-temperaturedeformation,suggestingthat theyweremainlysolidat thetimeofthedoming.Incontrast,mostgabbroicanorthositesshowsome,butlesser,degreesofdeformation,suggestingthatsufficientresidualmeltremainedtoaccommodatemuchof thedeformation in those layersbyflow.Some leucotroctolites,especially thoseintrudingUnit1,aredeformed,butmostarenot,suggestingthattheywereemplaced,oratleastcrystallized,relativelylateinthedomingprocess.Domingprobablywascontemporaneouswith“filterpressing”toremovemuchresidualmelt.DrainingawayofdenseresidualliquidwouldhaveincreasedthegravitationalinstabilityoftheChugwaterAnorthositeandthuscouldhavecontributedtotheformationofdoming.

Page 32: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

918 thecanadianmineralogist

was emplaced during that short an interval.Each ofthe threemain units likely crystallized and fraction-atedindependently,butseverallinesofevidenceshowthat the lower units had not fully crystallized beforetheoverlyingonewasemplaced.Themostcompellingevidenceistheoverallupwardincreaseinincompatibletraceelements (Figs.14–15),which isbestexplainedbyescapeofatleastsomeresidualliquidsfromlowerlevels into the units above. In addition, the fact thatthroughouttheChugwaterAnorthosite,theanorthositelayersaredistinctlymoredeformed than theadjacentlayersofgabbroicanorthositestronglysuggeststhatatthe timeof deformation (presumablyduringdoming;seebelow),themoremaficlayersineachofthethreemainunitsstillretainedsufficientmelttoaccommodatethestrainwithoutmajordeformationoftheplagioclase.Thisinterpretationisfurthersupportedbytheobserva-tionthattheintrudingleucotroctolitescrosscutandhavesharpboundariesagainstanorthositelayersbutclearlymixedwiththeslightlymoremaficlayers.

Origin of the layering

As stated above,we attribute the existenceof thethree stratigraphic units 1, 2, and 3 to threemajorinjections ofmagma. In particular, unitsAn2 andAn3canreadilybetracedthroughouttheoutcropareaof the stratigraphicChugwaterAnorthosite and aredistinctive in their thickness (km scale).UnitAn1 isless distinctive, in part because it contains numerousregions of gabbroic anorthosite thatmay result frommultiple smaller injections ofmagma. It is possiblethat decameter-scale layers also reflect episodes ofmagma recharge, at least in part.However, our datasimplydonotpermit testsof thishypothesis.Aswasthe case for the PoeMountainAnorthosite (Scoates1994,2000,Scoateset al.2010),plagioclasemusthaveaccumulated as a network of cumulus grains on thefloorofthemagmachambertoformthevariousscalesoflayering.Sincethehostmeltwashyperfeldspathic,only plagioclasewas initially stable, and each layerwould gain further plagioclase through adcumulusgrowth,therebyproducingthetrueanorthositelayers.Eventuallythemeltwouldbecomepyroxene-saturatedaswell,givingrisetolayersofgabbroicanorthositeaspyroxenescoprecipitatedwithplagioclase(Fig.17,step2).Theoriginofdecimeter-scalelayeringintheChug-waterAnorthositeremainsenigmatic.Deepweatheringandthelackoffreshoutcropsmakedetailedobserva-tiondifficult,butmodallygradedlayering,ascribedtodensitycurrentsintheSkaergaardIntrusionandDukeIslandComplexbyIrvine(1987),forexample,appearsto be lacking.One possibilitymay beflowdifferen-tiationduring emplacement of themagma,which, asdiscussed earlier, probably contained~40%entrainedplagioclasecrystals.FlowduringpenecontemporaneousdomalupliftoftheChugwaterAnorthosite(seealatersection)mayhaveaccentuatedlayerdevelopment.

Mixing with leucotroctolites

Themain-series ChugwaterAnorthosite, whichmainly lacksmodal olivine,was injected repeatedlybyat least twotypesof leucotroctolites(Fig.17,step3).Bothtypesaredistinctlymoremagnesianthanthemain-seriesChugwaterAnorthosite;onehasnormativeandmodalcompositionsofplagioclasethatarecloselysimilartotheChugwaterAnorthosite,whereastheotherisclearlymorecalcic.Thefirsttypecouldmixinsmallproportionswith theChugwaterAnorthosite,with theonly obvious evidence being an increase in orthopy-roxeneasolivine reactedwith silica;once theexcesssilicawasexhausted,smallamountsofmodalolivinewouldthenappear.Weseethisinalmosteveryinstancewhereleucotroctoliteintrudedandmixedwithgabbroicanorthosite.Plagioclaseislittleaffected,exceptthatitdevelopsarimlackingtheFe–Ti-richlamellaetypicalofmegacrysticplagioclase.Incontrast,wherethemorecalcicleucotroctoliteshavemixed,theplagioclaseoftheanorthositeshowsreverseoroscillatoryzoning.

PerhapsfivepercentofthemassoftheChugwaterAnorthositeconsistsoftheseintrudingleucotroctolites;another10to15%hasbeendemonstrablyaffectedbymixingwiththem,althoughtheoverallmassfractionofleucotroctolitewithinthemixedrocksisprobablysmall.Onesample(BM273,4180mlevel)isatruetroctolite;with 25%normative olivine and 63% feldspar, it isclosetothecotecticproportions.Itisequigranularandfinegrained(1–2mm),andalmostcertainlyrepresentsaliquid.Alltheotherleucotroctoliteshave70%norma-tive feldsparormore,and thusprobably reflect somedegreeofplagioclaseaccumulation,althoughmostlackobviousplagioclasephenocrysts.AnexceptionisBM52(6000m level),which has 89% normative feldsparandisthusnearlyananorthosite.Weascribethehighfeldsparcontentofthissampletoflowdifferentiation,withplagioclasephenocrystsconcentratedinaregionofpresumablyrestrictedflow.Thegeneticrelationshipof the leucotroctolites to themain-seriesChugwaterAnorthosite, if any, is unclear, although it is possiblethattheyreflectless-evolvedsamplesofthemagmathatgaverisetothemain-stageanorthosites.

Origin and timing of the doming

ThestratigraphicChugwaterAnorthosite formsananticline plunging to the south and southwest, and ismost likelya relicofadomal structure.Far too littlecountryrockisexposedtobecertain,butintheabsenceofknownregionaldeformationatthetimeofemplace-ment of theChugwaterAnorthosite,we assume thatthedomingwasproducedduring late-stageprocessesassociatedwithemplacementoftheChugwaterAnor-thositeitself.Alikelyexplanationisthattherelativelylight, plagioclase-rich cumulates becamegravitation-ally unstable andbegan to rise.Muchof the domingevidentlytookplacewhiletherewasstillresidualliquid

Page 33: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 919

presentinthegabbroicanorthositelayers,wheremostofthedeformationassociatedwiththedomingcouldhavebeenaccommodatedbyflowofmeltbetweencrystals.Indeed,thisprocessmayhaveaidedinthedevelopmentof decimeter-scale layering. In the plagioclase-richlayers, however, the deformationwas accomplishedthroughrecrystallizationofplagioclasevia fastgrain-boundarymigration(Lafranceet al.1996).Thatprocessoccurs only at near-magmatic temperatures,which iscompatiblewiththenotionthatsomemeltremainedinmoregabbroiclayers.Someleucotroctolites intrudingtheChugwaterAnorthosite also show deformation,suggestingthattheyhadbeeninjectedpriortotheendofthedeformation.MotionassociatedwiththedomingmayexplainwhywefindnoobviousrooftotheChug-waterAnorthosite,forexampleahorizonofrelativelyfine-grained leucogabbro; in the oneplacewhere theexposuresaregood,gabbroicanorthositeofUnit3 isindirectcontactwithpartiallymeltedpeliticrocks.Wehavenowayofestimatinghowmuchverticaldisplace-mentwasassociatedwiththedoming.

Significance of the “structural boundary”

Asnotedinanearliersection,theanorthositicrockstothesouthandsoutheastofthe“structuralboundary”(Fig. 2) have distinctly different orientations and aremore strongly deformed, even though they are indis-tinguishablepetrographicallyandchemicallyfromthe“stratigraphicChugwaterAnorthosite”.We concludethattheserockswereapartoftheChugwaterAnortho-sitethathadadifferentdeformationalhistory.Wecanonlyspeculateaboutwhatledtothedifferentdeforma-tionalhistories,butonepossibilityisthattheChugwaterAnorthositeeastandsouthofthe“structuralboundary”simply underwent an earlier and possibly strongerdomingevent.AnotheristhatitwasstronglyaffectedbytheemplacementoftheMaloinRanchPluton,abasinalstructureplungingtothesoutheast(Kolker&Lindsley1989).Permissivesupportforthisnotionisprovidedbythepresenceofinclusionsofhighlydeformed,high-AnanorthositeneartheboundarybetweentheChugwaterAnorthosite and theMaloinRanchPluton aswell asalong the structural boundarywithin theChugwaterAnorthosite. In the southeast, the structural boundaryappears to involve truncation of theAn1,Gan1, andAn2units by the broadly curvingupper units (Gan2,An3,Gan3);however,thepictureisobscuredbylater(Laramide?)faulting,Whateverthecauses,thesedefor-mationsappeartohavebeenmainlylate-magmatic,astheassociateddeformationoftheplagioclaseoccurredat a high temperature.However, local concentrationsofepidotenearthe“structuralboundary”suggestthatdeformation theremust have continueddown to lowtemperatures.

Clearly,thehigh-Aninclusionsassociatedwiththeboundariesareolder than theChugwaterAnorthosite,

butwehavenoideajusthowmucholder.Theytypi-callyaresodeformedthattheyappearlikegranulatedsugar.Oureffort toextractdatablematerial fromonewasunsuccessful.Onepossibilityisthattheyarecoevalwiththe1.76GaHorseCreekanorthosite,whichalsoishighinAn.AnotheristhattheyarebarelyolderthantheChugwaterAnorthosite,butthatliketheChugwaterAnorthositerockssouthandsoutheastofthe“structuralboundary”, they underwent strong deformation justpriortoincorporationalongtheboundary.

Extraction of residual liquid; nature of “filter-pressing”

Weestimatedabovethattoachieveitspresentbulkcomposition,theChugwaterAnorthositemusthavelostapproximately15–18%ofitsmass,theresidualliquid,whichispresumedtohaveacompositionclosetothatofsomeoftheferrodioritesfoundintheLaramieAnor-thositeComplex.Thisraisestwoimportantquestions:(1)whereisthatmassnow,and(2)bywhatmechanismwas it removed?Some residualmelt from the lowerportionsoftheChugwaterAnorthositemovedupward,as evidencedby theup-section increase in incompat-ibleelements.Althoughferrodioritesareabundantbothas dikes and pods in theChugwaterAnorthosite andadjacentrocks,theirexposedmassistrivialcomparedto the amount needed to achievemass balance.Thusmuchresidualmeltmusthavebeenremovedfromthepresent outcrop area of theChugwaterAnorthosite,leavingonlysmall,volumetricallyinsignificantpocketsandintrusionsofferrodioriteasevidenceofthismuchlargervolume.Oneveryrealpossibilityisthatthedenseresidual liquidsdraineddown-dipduring thedoming;indeed, theremovalofdensematerialwould increasethe gravitational instability believed to have causedthedomingandwouldaccelerateit.Thusmuchoftheresidualliquidmayliebelowthepresentlevelsofexpo-sure. In addition, a concept called “filter-pressing” iscommonlyinvokedtoexplaintheexpulsionoftrappedliquid,buttoourknowledgenoonehasyetproposedaviablemechanism to accomplish it.Onepossibilitywouldbethenucleationandexpansionofalatevaporphasethatmightdrivethetrappedliquidstoregionsoflowerpressure.Suchamechanismhasbeeninvokedfortheformationofdiktytaxitic texture inbasalts (Fuller1931, 1938). In diktytaxitic basalts, the gas-filledangular interstices remain, producing the distinctive“net-like”textureoftheserocks.Inananorthositeat3–4kbarpressure,however,thecavitieswouldcollapseasthegasescaped,therebycontributingtothedeformationsotypicalofanorthosites.Ifthismechanismhadbeenoperative in theChugwaterAnorthosite,quiteclearly,given thehigh temperatures and relatively anhydrousassemblage inferred for it, the vapor could not havebeenwater-rich.Although space precludes a detaileddiscussion here, there is substantial direct (Frost&

Page 34: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

920 thecanadianmineralogist

Touret1989)andindirectevidencetosuggestthatthevapormayhavebeenC–Orich,perhapsamixtureofCOandCO2.

Conclusions

The ChugwaterAnorthosite has a mappablemagmatic stratigraphy totaling at least 8,000meters,andprobablymorethan10,000meters.Itsmainseriescomprises threemajor units, eachwith a dominantlyanorthosite(>90vol.%plagioclase)baseandgabbroicanorthosite (80–90vol.%plagioclase) upper portion.Mostof theplagioclase in themain series isAn50–55;olivineisessentiallyabsent.Layering,mostlymodalbutinplacestexturalaswell,occursonscalesfromdeci-meters to decameters.Themain serieswas producedby threemajor injections ofmildly hyperfeldspathicmagma containing approximately 40vol.%entrainedplagioclasemegacrysts.Themain serieswas repeat-edlyintrudedbyatleasttwoleucotroctoliticmagmas.Contactsofleucotroctolitearesharpagainstanorthositebutdiffuse against gabbroic anorthosite; petrographicevidence showsmixing between leucotroctolite andthe residual liquidof gabbroic anorthosite, indicatingthatthelatterhadnotcompletelysolidifiedatthetimeofintrusion.Priortofinalsolidification,theChugwaterAnorthositewasdomed,probablyasaresultofgravita-tionalinstabilityofplagioclase-richmaterial.Removalofdenseresidualliquid(ferrodiorite)byfilterpressingprobablycontributedtothatinstability.

Althoughmassifanorthositesaregenerallyconsid-ered to have been emplaced as crystal-laden diapirs(Ashwal1993),theChugwateranorthosite,likeitssisterthePoeMountainanorthosite, isbestconsideredasaplagioclase-richlayeredintrusion.Thedirectevidencefor crystallization from an openmagma chamber ismore subtle in theChugwater anorthosite than in thePoeMountainanorthosite,whichrecordsfeaturessuchas scourmarksandmagmatic “drop stones” (Scoates1994, 2000, 2002,Scoateset al. 2010).Nonetheless,theevidenceisstrongenoughtosupportthecontentionthat theChugwater anorthosite formed by processesthat are not very different from those found in othermafic–ultramaficlayeredigneousintrusions,exceptforthefactthatthemajorcumulusmineralwasplagioclase,ratherthanolivineorpyroxene.

Acknowledgements

We thank Jon Philipp,GoeffRawling, and PattiBleifus for assistance during thefieldwork,WilliamMeurer,JeremyMitchell,andAllanKolkerforchemicalanalyses, andGregory Symmes, Susan Swapp, andBobRapp for electron-probe analyses.DHL thankstheUniversité Libre deBruxelles for a productivesabbaticalin1997–98,undertheauspicesofaUniver-sity InternationalChair, duringwhichmuch of thisreportwasprepared.ThisworkwassupportedbyNSF

grantsEAR–9218329anditspredecessorstoDHL,andEAR–9017465 andEAR–9218360 toBRFandCDF.ConstructivereviewsbyJohnLonghi,TonyMorse,andMikeHamilton improved themanuscript;weheartilythankthem.ItisapleasuretodedicatethispapertothememoryofRonEmslie.Ron infectedus allwith hisenthusiasmforanorthosites,someinthefield,someinthelab,allthroughdiscussionsandhiscontributionstotheliterature.Wemisshim.

References

Allmendinger, K. D., Brewer, J.A., Brown, L. D.,Kaufman, S., Oliver, J. E. & Houston, R.S. (1982):COCORPprofiling across theRockyMountain front inSouthernWyoming. 2. Precambrian basement structureanditsinfluenceonLaramidedeformation. Geol. Soc. Am., Bull.93,1253-1263.

Andersen,D.J.,Lindsley,D.H.&Davidson,P.M.(1993):QUILF: aPASCALprogram to assess equilibria amongFe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput. Geosci.19,1333-1350.

Anderson,A.T.(1966):MineralogyoftheLabrievilleanor-thosite,Quebec.Am. Mineral.51,1671-1711.

Ashwal,L.D.(1993):Anorthosites.Springer-Verlag,Berlin,Germany.

Ball, S.H. (1907):Titaniferous iron ore of IronMountain,Wyoming:contribution toeconomicgeology.U.S. Geol. Surv., Bull.315,206-212.

Barnichon,J.D.,Havenith,H.,Hoffer,B.,Charlier,R.,Jongmans,D.&Duchesne,J.-C.(1999):ThedeformationoftheEgersund–Ognaanorthositemassif,southNorway:finite-elementmodelling of diapirism.Tectonophysics303,109-130.

Bowen,N.L.(1917):Theproblemoftheanorthosites.J. Geol,25,209-243.

Boynton,W.V. (1984):Geochemistryof the rareearthele-ments:meteorite studies. In Rare Earth ElementGeo-chemistry(P.Henderson,ed.).Elsevier,Amsterdam,TheNetherlands(63-114).

Brewer,J.A.,Allmendinger,R.W.,Brown,L.D.,Oliver,J.E.&Kaufman,S.(1982):COCORPprofilingacrosstheRockyMountainFrontinsouthernWyoming.1.Laramidestructure.Geol. Soc. Am., Bull.93,1242-1252.

Buddington,A.F.(1939):Adirondackigneousrocksandtheirmetamorphism.Geol. Soc. Am., Mem.7.

Darton,N.H.,Blackwelder,E.&Siebenthal,C.E.(1910):Laramie–ShermanFolio.U.S. Geol. Surv., Geologic Atlas of the United States, Folio173.

Davidson,P.M.&Lindsley,D.H.(1989):Thermodynamicanalysis of pyroxene–olivine–quartz equilibria in thesystemCaO–MgO–FeO–SiO2.Am. Mineral.74,18-30.

Page 35: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 921

DeVore,G.W.(1975):Theroleofpartialmeltingofmetasedi-mentsintheformationoftheanorthosite–norite–syenitecomplex,LaramieRange,Wyoming.J. Geol.83,749-762.

Eberle,M.M.C. (1983):Genesis of the Magnetite–Ilmenite Deposit at Iron Mountain, Laramie Anorthosite Complex, Wyoming.M.S. thesis,University ofColorado,Boulder,Colorado.

Emslie,R.F.(1970):TheGeologyoftheMichikamauintru-sion,Labrador.Geol. Surv. Can., Pap.68-57.

Emslie,R.F.(1985):Proterozoicanorthositemassifs.InTheDeepProterozoicCrust in theNorthAtlantic Provinces(A.C.Tobi& J.L.R.Touret, eds.).D.ReidelPublishingCompany,Dordrecht,TheNetherlands(39-60).

Emslie, R.F., Hamilton, M.A. &Thériault,R.J. (1994):Petrogenesisofamid-Proterozoicanorthosite–mangerite– charnockite – granite (AMCG) complex: isotopic andchemicalevidencefromtheNainPlutonicSuite.J. Geol.98,539-558.

Fountain, J.C., Hodge, D.S. & Hills, F.A. (1981):Geo-chemistry and petrogenesis of theLaramieAnorthositeComplex,Wyoming.Lithos14,113-132.

Fowler,K.S. (1930a):Theanorthosite areaof theLaramieMountains,Wyoming.1.Geomorphologichistory.Am. J. Sci.219,305-315.

Fowler,K.S. (1930b):Theanorthositeareaof theLaramieMountains,Wyoming.2.Petrographicandstructuraldis-cussion.Am. J. Sci.219,373-403.

Fram,M.S.&Longhi, J. (1992):Phase equilibriaofdikesassociatedwithProterozoic anorthosite complexes.Am. Mineral.77,605-616.

Frey,E.(1946a):ExplorationoftheShantoniron-oreprop-erty,AlbanyCounty,Wyoming.U.S. Bureau of Mines, Rep. Invest.3918.

Frey, E. (1946b): Exploration of IronMountain titanifer-ousmagnetite deposits,AlbanyCounty,Wyoming.U.S. Bureau of Mines, Rep. Invest.3968.

Frost,B.R.,Frost,C.D.,Lindsley,D.H.,Scoates,J.S.&Mitchell, J.N. (1993):TheLaramieAnorthositeCom-plexand theShermanBatholith:geology,evolution,andtheories for origin. In Geology ofWyoming 1 (A.W.Snoke,J.R.Steidtmann&S.M.Roberts,eds.).Geol. Surv. Wyoming, Mem.5,119-161.

Frost,B.R.&Lindsley,D.H.(1992):EquilibriaamongFe–Tioxides,pyroxenes,olivine,andquartz.II.Application.Am. Mineral.77,1004-1020.

Frost,B.R.,Lindsley,D.H.&Andersen,D.J.(1988):Fe–Tioxide–silicateequilibria:assemblageswithfayaliticoliv-ine.Am. Mineral.73,727-740.

Frost, B.R. &Touret, J.L.R. (1989):MagmaticCO2 andsalinemelts from the Sybillemonzosyenite, Laramie

AnorthositeComplex,Wyoming.Contrib. Mineral. Petrol.103,178-186.

Frost,C.D.,Chamberlain,K.R.,Frost,B.R.&Scoates,J.S. (2000):The1.76-GaHorseCreek anorthosite com-plex,Wyoming:amassifanorthositeemplacedlateintheMedicineBoworogeny.Rocky Mountain Geol.35,71-90.

Frost,C.D.,Frost,B.R.,Lindsley,D.H.&Chamberlain,K.R. (2003):Role of limited crustal assimilation in theevolutionofthreedistinctanorthositetypesintheLaramieAnorthositeComplex,Wyoming.Geol. Soc. Am., Abstr. Programs35,394.

Frost, C.D., Frost, B.R., Lindsley, D.H., Chamberlain,K.R.,Swapp,S.M.&ScoatesJ.S.(2010):Geochemicaland isotopic evolutionof the anorthositic plutons of theLaramieAnorthositeComplex:explanationsforvariationsinsilicaactivityandoxygenfugacityinanorthosites.Can. Mineral.48,925-946.

Fuhrman,M.L.,Frost,B.R.&Lindsley,D.H.(1988):Crys-tallizationconditionsoftheSybillemonzosyenite,LaramieAnorthositeComplex,Wyoming.J. Petrol.29,699-729.

Fuller, R.E. (1931): The geomorphology and volcanicsequence of SteensMountain in southeasternOregon. Univ. Washington, Publ. in Geology3(1).

Fuller,R.E. (1938):Deuteric alteration controlled by thejointingoflavas.Am. J. Sci.235,161-171.

Goldberg,S.A.(1984):Geochemicalrelationshipsbetweenanorthositeandassociatediron-richrocks,LaramieRange,Wyoming.Contrib. Mineral. Petrol.87,376-387.

Grant, J.A.&Frost,B.R. (1990):Contactmetamorphismandpartialmeltingofpelitic rocks in the aureoleof theLaramieAnorthositeComplex,MortonPass,Wyoming.Am. J. Sci.290,425-472.

Hayden,F. (1871):Preliminary Report of the United States Geological Survey of Wyoming and Portions of Contiguous Territories.U.S.GovernmentPrintingOffice,Washington,D.C.

Hild,J.H.(1953):DiamonddrillingontheShantonmagne-tite–ilmenite deposits,AlbanyCounty,Wyoming.U.S. Bureau of Mines, Rep. Invest.5012,1-17.

Hodge,D.S.,Owen,L.B.&Smithson,S.B.(1973):GravityinterpretationoftheLaramieAnorthositeComplex,Wyo-ming.Geol. Soc. Am., Bull.84,1451-1464.

Hodge,D.S.,Smith,B.D.&Smithson,S.B.(1970):Quantita-tivegeophysicalstudyofpetrogenesisofsyenitesrelatedtoLaramieanorthosite,Wyoming,U.S.A.Lithos3,237-250.

Irvine,T.N. (1987):Layering and related structures in theDuke Island andSkaergaard intrusions: similarities, dif-ferences,andorigins. InOriginsof IgneousLayering (I.Parsons,ed.).D.ReidelPublishingCompany,Dordrecht,TheNetherlands(185-245).

Page 36: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

922 thecanadianmineralogist

Klugman,M.A.(1966):ResumeofthegeologyoftheLara-mieanorthositemass.The Mountain Geologist3,75-84.

Kolker,A.&Lindsley,D.H. (1989):Geochemicalevolu-tion of theMaloinRanch Pluton, LaramieAnorthositeComplex,Wyoming:petrologyandmixingrelations.Am. Mineral.74,307-324.

Lafrance, B., John, B.E. & Scoates, J.S. (1996): Syn-emplacement recrystallization and deformationmicro-structures in the PoeMountain anorthosite,Wyoming.Contrib. Mineral. Petrol.122,431-440.

Lindsley,D.H.(1991):Experimentalstudiesofoxideminer-als.InOxideMinerals:PetrologicandMagneticSignifi-cance(D.H.Lindsley,ed.).Rev. Mineral.25,69-106.

Lindsley,D.H.&Emslie,R.F.(1968):Effectofpressureontheboundarycurveinthesystemdiopside–albite–anor-thite.Carnegie Inst. Wash., Year Book66,479-480.

Lindsley,D.H.&Frost,B.R.(1992):EquilibriaamongFe–Tioxides,pyroxenes,olivine,andquartz.I.Theory.Am. Mineral.77,987-1003.

Longhi,J.&Ashwal,L.D.(1985):Two-stagemodelforlunarandterrestrialanorthosites:petrogenesiswithoutamagmaocean. Proc. 15thLunar Planetary ScienceConf. 2. J. Geophys. Res.90,suppl.,C571-C584.

Longhi,J.,Fram,M.S.,VanderAuwera,J.&Montieth,J.N. (1993): Pressure effects, kinetics, and rheology ofanorthositicandrelatedmagmas.Am. Mineral.78,1016-1030.

Longhi,J.,VanderAuwera,J.,Fram,M.S.&Duchesne,J.-C. (1999).Somephase equilibriumconstraints on theorigin of Proterozoic (massif) anorthosites and relatedrocks. J. Petrol.40,339-362.

Marsh,B.D.(1996)Solidificationfrontsandmagmaticevolu-tion.Mineral. Mag.60,5-40.

Meurer,W.P.,Willmore, C.C. & Boudreau,A. (1999):Metalredistributionduringfluidexsolutionandmigrationin theMiddleBanded series of theStillwaterComplex,Montana.Lithos47,143-156.

Mitchell, J.N. (1993):Petrology and Geochemistry of Dioritic and Gabbroic Rocks in the Laramie Anorthosite Complex, Wyoming: Implications for the Evaluation of Proterozoic Anorthosites. Ph.D. dissertation,Univ. ofWyoming,Laramie,Wyoming.

Mitchell,J.N.,Scoates,J.S.&Frost,C.D.(1995)High-AlgabbrosintheLaramieAnorthositeComplex,Wyoming:implications for the composition ofmelts parental toProterozoic anorthosite.Contrib. Mineral. Petrol.119,166-180.

Mitchell, J.N., Scoates, J.S., Frost, C.D. & Kolker,A.(1996):ThegeochemicalevolutionofanorthositeresidualmagmasintheLaramieAnorthositeComplex,Wyoming.J. Petrol.37,637-660.

Morse,S.A.(1968):Layeredintrusionsandanorthositegen-esis. InOrigin ofAnorthosite andRelatedRocks (Y.W.Isachsen,ed.).New York State Museum and Science Ser-vice, Mem.18,175-187.

Newhouse,W.H.&Hagner,A.F.(1957):Geologicmapofanorthosite areas, southeastern part of LaramieRange,Wyoming.U.S. Geol. Surv., Mineralogical Investigations Field Studies MapMF119.

Scoates, J.S. (1994):Magmatic Evolution of Anorthositic and Monzonitic Rocks in the Mid-Proterozoic Laramie Anorthosite Complex, Wyoming, USA.Ph.D.dissertation,Univ.Wyoming,Laramie,Wyoming.

Scoates, J.S. (2000): The plagioclase –magma densityparadoxre-examinedandthecrystallizationofProterozoicanorthosites. J. Petrol.41,627-649.

Scoates, J.S. (2002): The plagioclase –magma densityparadoxre-examinedandthecrystallizationofProterozoicanorthosites:areply. J. Petrol.43,1979-1983.

Scoates, J.S. & Chamberlain,K.R. (1995):Baddeleyite(ZrO2)andzircon(ZrSiO4)fromanorthositicrocksoftheLaramieanorthositecomplex,Wyoming:petrologiccon-sequencesandU–Pbages.Am. Mineral.80,1317-1327.

Scoates,J.S.&Chamberlain,K.R.(1997):Orogenictopost-orogenicorigin for the1.76GaHorseCreekanorthositecomplex,Wyoming,USA.J. Geol.105,331-343.

Scoates,J.S.&Chamberlain,K.R.(2003):Geochronologic,geochemical and isotopic constraints on the origin ofmonzonitic and related rocks in theLaramie anorthositecomplex,Wyoming,USA.Precamb. Res.124,269-304.

Scoates, J.S. & Frost,C.D. (1996):A strontiumandneo-dymiumisotopicinvestigationoftheLaramieanorthosites,Wyoming,USA: implications formagma chamber pro-cessesandtheevolutionofmagmaconduitsinProterozoicanorthosites.Geochim. Cosmochim. Acta60,95-107.

Scoates,J.S.,Frost,C.D.,Mitchell,J.N.,Lindsley,D.H.&Frost,B.R.(1996):Residual-liquidoriginforamonzo-niticintrusioninamid-Proterozoicanorthositecomplex:theSybilleintrusion,Laramieanorthositecomplex,Wyo-ming.Geol. Soc. Am., Bull.108,1357-1371.

Scoates,J.S.&Lindsley,D.H.(2000):Newinsightsfromexperimentsontheoriginofanorthosite.Trans. Am. Geo-phys. Union(Eos)81(48),V71B(abstr.).

Scoates,J.S.,Lindsley,D.H,&Frost,B.R.(2010):Mag-matic and structural evolutionof an anorthositicmagmachamber:thePoeMountainintrusion,Laramieanorthositecomplex,Wyoming(USA).Can. Mineral.48,851-885.

Scoates,J.S.&Mitchell,J.N.(2000):Theevolutionoftroc-toliticandhighAlbasalticmagmasinProterozoicanortho-siteplutonicsuitesandimplicationsfortheVoisey’sBaymassiveNi–Cusulfidedeposit.Econ. Geol.95,677-701.

Page 37: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

thechugwateranorthosite,laramiecomplex,wyoming 923

Singewald,J.T.,Jr.(1913):ThetitaniferousironoresintheUnitedStates.U.S. Bureau of Mines, Bull.64,111-1125.

Smith,B.D.,Hodge,D.S.&Smithson,S.B.(1970):Geol-ogyandgeophysicsof syenites associatedwithLaramieAnorthosite,Wyoming.Rocky Mountain Geol.9,27-38.

Streckeisen,A.L. (1967):Classification andnomenclatureofigneousrocks(finalreportofaninquiry).Neues Jahrb. Mineral., Abh.107,144-214.

Streckeisen,A.L. (1976):Toeachplutonic rock itspropername.Earth-Sci. Rev.12,1-33.

Subbarayudu,G.V.(1975): The Rb–Sr Isotopic Composition and the Origin of the Laramie Anorthosite–Mangerite Complex, Laramie Range, Wyoming. Ph.D. dissertation,StateUniversity ofNewYork atBuffalo,Buffalo,NewYork.

Subbarayudu,G.V.,Hills,A.F.&Zartman,R.E.(1975):AgeandSrisotopicevidencefortheoriginoftheLaramieanorthosite–syenite complex,LaramieRange,Wyoming.Geol. Soc. Am., Abstr. Programs7,1287.

Wiebe,R.A.(1990)EvidenceforunusuallyfeldspathicliquidsintheNainComplex,Labrador. Am. Mineral.75,1-12.

Wiebe,R.A. (1992): Proterozoic anorthosite complexes. InProterozoicCrustalEvolution(K.C.Condie,ed.).Elsevier,Amsterdam,TheNetherlands(215-261).

Xirouchakis,D. (1996):Contact Metamorphism Adjacent to the Laramie Anorthosite Complex, Albany County, Wyoming.M.S. thesis,University ofMinnesota,Duluth,Minnesota.

Received December 15, 2008, revised manuscript accepted July 6, 2010.

Page 38: PETROLOGY, GEOCHEMISTRY, AND STRUCTURE OF THE …geofaculty.uwyo.edu/cfrost/pdfs/Lindsley_CM_2010.pdfcroûte. La pression de la mise en place n’est pas bien contrôlée, mais semble

Recommended