+ All Categories
Home > Documents > Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150...

Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150...

Date post: 07-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
22
Electronic Supplementary Information Ring opening polymerization of lactides and lactones by multimetallic alkyl zinc complexes derived from the acids Ph 2 C(X)CO 2 H (X = OH, NH 2 ) Yahya F. Al-Khafaji, a Mark R.J. Elsegood, b Josef W. A. Frese b and Carl Redshaw *a a Department of Chemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K. b Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K. E-mail: [email protected] Contents Chart S1. Previously reported metal/main group complexes derived from 2,2 / -diphenylglycine. Crystallography Figure S1. Alternative view of 1. Figure S2. Packing diagram of 1. Figure S3. View of [ZnCl 2 (NCMe) 2 ] Figure S4. Layered structure in [ZnCl 2 (NCMe) 2 ] Figure S5. Alternative view of 3. Figure S6. Packing diagram of 3. Figure S7. Alternative view of 4. Figure S8. Packing diagram of 4. Figure S9. Molecular structure of (2-CF 3 C 6 H 4 ) 3 B(NCMe)·MeCN. Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016
Transcript
Page 1: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Electronic Supplementary Information

Ring opening polymerization of lactides and lactones by

multimetallic alkyl zinc complexes derived from the acids

Ph2C(X)CO2H (X = OH, NH2)

Yahya F. Al-Khafaji,a Mark R.J. Elsegood,b Josef W. A. Frese b and Carl Redshaw*a

a Department of Chemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K.

b Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

E-mail: [email protected]

Contents

Chart S1. Previously reported metal/main group complexes derived from 2,2/-diphenylglycine.

Crystallography

Figure S1. Alternative view of 1.

Figure S2. Packing diagram of 1.

Figure S3. View of [ZnCl2(NCMe)2]

Figure S4. Layered structure in [ZnCl2(NCMe)2]

Figure S5. Alternative view of 3.

Figure S6. Packing diagram of 3.

Figure S7. Alternative view of 4.

Figure S8. Packing diagram of 4.

Figure S9. Molecular structure of (2-CF3C6H4)3B(NCMe)·MeCN.

Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2016

Page 2: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Ring opening polymerisation

Table S1. Optimum condition screening for the ROP of -CL, rac-LA and -VL using 4.

For -CL

Figure S10. Relationship between [-CL]/[4] and the number of average molecular weight and PDI of

the polymer.

Figure S11. 1H NMR spectrum of polycaprolactone (run 1 table 1).

Figure S12. 13C NMR spectrum of polycaprolactone (run 1 table 1).

Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

For rac-LA

Figure S14. Relationship between [rac-LA]/[4] and the number of average molecular weight and PDI

of the polymer.

Figure S15. 1H NMR spectrum of polylactide (run 6 table 1).

Figure S16. 13C NMR spectrum of polylactide (run 6 table 1).

Figure S17. MALDI-ToF spectrum of PLA (run 6, table 1).

Figure S18. Homonuclear decoupled 1H NMR spectrum of of PLA (run 6, table 1).

Figure S19. 2D J-resolved 1H NMR spectrum of PLA (run 6, table 1).

Figure S20. Homonuclear decoupled 1H NMR spectrum of PLA (run 8, table 1).

Figure S21. 2D J-resolved 1H NMR spectrum of PLA (run 8, table 1).

For -VL

Figure S22. Relationship between [-VL]/[4] and the number of average molecular weight and PDI

of the polymer.

Figure S23. 1H NMR spectrum of PVL (run 11 table 1).

Co-polymerization of -CL and rac-LA.

Figure S24. 1H NMR spectrum of copolymer PCL+ PLA, table 2 run 1.

Figure S25. 13C NMR spectrum of co-polymer PCL+ PLA, table 2 run 1.

Figure S26. DSC plot of co-polymer from -CL and rac-LA, table 2 run 2.

2

Page 3: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Chart S1. Previously reported metal/main group complexes derived from 2,2/-diphenylglycine.

HN O

O

Zn

HN

O OZn

NHO

O

Zn

NH

OOZn

Et

Et

Et

Et

Mo NH2Cl

Cl O

OPh

Ph

NCl

HPh

Ph

W

H2N

O

O

PhPh

ClClCl

O NN PhPh

OO

PhPh

OO

M M

O OOO O

OB

H2N

O

OH3N B(C6F5)3

O O

Al

NH

O O

Al

MeAlMe

MeMe

HN

O O

NH

O O

Al

Me

HN

Me

AlMe Me

AlMe Me

Redshaw 1997Gibson 1997

Redshaw 2011 (M= Cu, Zn) Redshaw 2009

Redshaw 2007

Redshaw 2005

3

Page 4: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

O O

NH

O O

Al

Me

HN

O O

NH

O O

Al

Me

HN

AlMe Me

AlMe Me

O

O

NHO

O

AlMe

NH

AlMeMeMe

MeAl

HN

MeAl

O

OHN

O

OAl

Al Al

AlMe

MeMe

MeMe

MeMe

Me

DyH2N

Ph

Ph

O

O

OO

Ph

Ph

DyO

O

Ph

Ph

H2N

O

Ph Ph

O

Dy

NH2

PhPh

O

OO

O

Ph

Ph

Dy

NH2

OO

Ph

Ph

OO

PhPh

HO Dy OHOH

OH

O

O

OO

Ph

Ph

PhPh

OH

Powell, Roesky 2013Redshaw 2005

PdCO2Me

PhNH2

Cl

Cl

H2NPh

MeO2CPd

Martinez, Urriolabeitia 2013

References[1] C. Redshaw, V. C. Gibson, W. Clegg, A. J. Edwards and B. Miles, J. Chem. Soc. Dalton Trans. 1997, 3343.[2] V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, J. Chem. Soc. Dalton Trans. 1997, 3207.[3] C. Redshaw and M. R. J. Elsegood, Angew. Chem. Int. Ed. 2007, 46, 7453.[4] C. Redshaw, M. R. J. Elsegood and K. E. Holmes Angew. Chem. Int. Ed. 2005, 44, 1884.[5] A. Arbaoui, C. Redshaw, D. L. Hughes and M. R. J. Elsegood, Inorg. Chimica Acta. 2009, 362, 509.[6] A. Arbaoui, C. Redshaw, N. M. Sanchez-Ballester, M. R. J. Elsegood and D. L. Hughes, Inorg. Chimica Acta, 2011, 365, 96.[7] E. Laga, A. Garcia-Montero, F. J. Sayago, T. Soler, S.Moncho, C. Cativiela, M. Martinez, E. P. Urriolabeitia, Chem.-Eur.J.2013 ,19,17398[8] D. T. Thielemann, A. T. Wagner, Y. Lan, C. E. Anson, M. T. Gamer, A. K. Powell, P. W. Roesky, Dalton Trans. ,2013, 42, 14794

4

Page 5: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Crystallography

Figure S1. Alternative view of 1.

5

Page 6: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S2. Packing diagram of 1.

Figure S3. View of [ZnCl2(NCMe)2]

6

Page 7: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S4. Layered structure in [ZnCl2(NCMe)2]

Figure S5. Alternative view of 3.

7

Page 8: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S6. Packing diagram for 3.

Figure S7. Alternative view of 4.

8

Page 9: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S8. Packing diagram of 4.

9

Page 10: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S9. Molecular structure of (2-CF3C6H4)3B(NCMe)·MeCN. Selected bond lengths (Å) and angles

(o): B(1) – N(1) 1.5857(17), B(1) – C(1) 1.6507(19), B(1) – C(8) 1.6450(19), B(1) – C(15) 1.6434(19);

N(1) – B(1) – C(1) 107.58(10), N(1) – B(1) – C(8) 106.65(10), N(1) – B(1) – C(15) 108.31(10).

Ring opening polymerisation

Table S1. Optimum condition screening for the ROP of -CL, r-LA and -VL using 4.

Run Monomer [Monomer]:[Cat]:[OH] Time/h Temp/oC Conva (%) Mnb×10

3 ,GPC Mn,Cal

c PDId

1 -CL 125:1:0 1 110 91 11400 12980 1.402 -CL 250:1:0 1 110 78 15000 22260 1.383 -CL 375:1:0 1 110 88 20800 37670 1.414 -CL 500:1:0 1 110 91 33700 51930 1.685 -CL 625:1:0 1 110 85 43800 60640 1.436 -CL 750:1:0 1 110 89 56200 76190 1.517 -CL 250:1:0 3 80 69 8590 19690 1.218 -CL 250:1:0 3 60 22 3850 6280 1.099 -CL 250:1:0 3 25 --- --- --- ---10 -CL 250:1:1 1 110 67 2580 19230 1.1011 r-LA 50:1:0 12 110 74 3370 5330 1.1912 r-LA 100:1:0 12 110 67 6150 9660 1.2313 r-LA 150:1:0 12 110 61 9670 13190 1.2714 r-LA 200:1:0 12 110 65 13000 18740 1.5115 r-LA 250:1:0 12 110 60 15400 21620 1.3716 r-LA 300:1:0 12 110 64 22900 27670 1.4017 r-LA 150:1:0 12 80 19 1460 4110 1.0918 -VL 50:1:0 24 110 42 860 2100 1.0419 -VL 100:1:0 24 110 58 2670 5810 1.1320 -VL 150:1:0 24 110 41 3210 6160 1.2321 -VL 200:1:0 24 110 31 4750 6210 1.0822 -VL 250:1:0 24 110 51 5800 12770 1.2523 -VL 300:1:0 24 110 60 8820 18020 1.12

a Determined by 1H NMR spectroscopy; b Calculated from ([Monomer]0/[Cat]0) × conv.(%) × Monomer molecular weight; c Mn from GPC. d From GPC.

10

Page 11: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S10. Relationship between [CL]/[4] and the number of average molecular weight and PDI of the polymer.

11

Page 12: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S11. 1H NMR spectrum of polycaprolactone (run 1 table 1).

12

Page 13: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S12. 13C NMR spectrum of polycaprolactone (run 1 table 1).

-100102030405060708090110130150170190210f1 (ppm)

23.946

25.361

28.082

33.851

63.364

173.689

13

Page 14: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

Figure S14. Relationship between [rac-Lactide]/[4] and the number of average molecular weight and PDI of the polymer.

14

Page 15: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S15. 1H NMR spectrum of polylactide (run 6 table 1).

Figure S16. 13C NMR spectrum of polylactide (run 6 table 1).

-100102030405060708090110130150170190210f1 (ppm)

0.613

17.419

69.119

170.171

15

Page 16: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S17. MALDI-ToF spectrum of poly(rac-LA) (run 6, table 1).

16

Page 17: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S18. Homonuclear decoupled 1H NMR spectrum of of poly(r-LA), (run 6, table 1).

Figure S19. 2D J-resolved 1H NMR spectrum of poly(r-LA) (run 6, table 1).

17

Page 18: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S20. Homonuclear decoupled 1H NMR spectrum of of poly(r-LA), (run 8, table 1).

18

Page 19: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S21. 2D J-resolved 1H NMR spectrum of poly(r-LA) (run 8, table 1).

Figure S22. Relationship between [-VL]/[4] and the number of average molecular weight and PDI of the polymer.

19

Page 20: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S23. 1H NMR spectrum of PVL (run 11 table 1).

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.5f1 (ppm)

1.659

2.331

3.623

4.055

7.273

Figure S24. 1H NMR spectrum of copolymer PCL+ poly(r-LA), table 3 run 1.

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

1.413

1.659

2.323

4.066

4.355

5.190

20

Page 21: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S25. 13C NMR spectrum of co-polymer PCL+ PLA, table 3 run 7.

2030405060708090100110120130140150160170180190f1 (ppm)

16.725

25.595

34.193

64.070

69.089

169.454

174.264

21

Page 22: Ph2C(X)CO H (X = OH, NH · 11 r-LA 50:1:0 12 110 74 3370 5330 1.19 12 r-LA 100:1:0 12 110 67 6150 9660 1.23 13 r-LA 150:1:0 12 110 61 9670 13190 1.27 14 r-LA 200:1:0 12 110 65 13000

Figure S26. DSC plot of co-polymer from -CL and rac-LA, table 2 run 2.

In tegral 73.15 mJ norm alized 43.80 Jg -1Onset 48.56 °CPeak 50.69 °C

Integral 0. 00 m J norm alized 0. 00 J g -1Onset 178. 34 °CPeak 178. 34 °C

m W2

m in2 3 4 5 6 7 8 9 10 11 12 13 14 15

endo

SW 8.10eRTASHull Liquid Crystal Group: chsjah

22


Recommended