+ All Categories
Home > Documents > Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared...

Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared...

Date post: 12-Jan-2016
Category:
Upload: douglas-underwood
View: 221 times
Download: 0 times
Share this document with a friend
Popular Tags:
20
Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa Dr. Sahar Abd El Moneim Moussa 1
Transcript
Page 1: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

1

Pharos UniversityEE-272

Electrical Power Engineering 1“Electrical Engineering Dep”

Prepared By:Dr. Sahar Abd El Moneim Moussa

Dr. Sahar Abd El Moneim Moussa

Page 2: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 2

SINGLE PHASE SYSTEM

Page 3: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 3

Review on AC CircuitBasic Principles: Sinusoidal voltage source: it is a source that

produces voltage that varies with time as sine wave

Waveform:

Where:

T: periodic time: the time of one complete cycle.

f: number of cycles per second = 1/T Hz

ω: angular frequency of the sine wave = 2πf rad/sec

T

Page 4: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 4

Equation: V(instantaneous)= Vm sin ωt

Where: Vm

: The maximum voltage value & it is knows as the amplitude

Vrms : Root mean square of the voltage =

Symbol:

~ V(t)= Vm sin ωt

Page 5: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 5

Resistive Circuit Circuit diagram:

Equation: V= Vm sin ωt , I= Im sin ωt Waveform: “in terms of the time domain”

Phasor diagram:

∴ The Resistive current is in phase with the voltage

VmIm

V(t)= Vm sin ωt

Page 6: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 6

Capacitive Circuit Circuit diagram:

Equation: V= Vm sin ωt , I= Im sin (ωt+90) Waveform:

Phasor Diagram:

Where: θ is the angle between the voltage and the current

(cos θ is called the power factor )

∴ The Capacitive current leads the voltage by 90o

Vm

Im

Xc = 1/ωc Ω

θ

Page 7: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

7

Inductive Circuit Circuit diagram:

Equation: V= Vm sin ωt , I= Im sin (ωt-90) Waveform:

Phasor Diagram:

Where: θ is the angle between the voltage and the current

( cos θ is called the power factor )

∴ The Inductive current lags its voltage by 90o

XL = ωL Ω

VmI

m

θ

Dr. Sahar Abd El Moneim Moussa

Page 8: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 8

THREE-PHASE SYSTEM

Page 9: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 9

Balanced Three Phase System

Balanced three-phase voltage consists of three sinusoidal voltage having the same amplitude & frequency but are out of phase with each other exactly by 120o

Page 10: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 10

3 Phase Voltages in Time Domain

Va = Vm Sin ωt Vb = Vm Sin (ωt-120) Vc = Vm Sin (ωt-240)

Phase

(a)

Phaseb

Phase (c)

Page 11: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 11

3-Phase Voltages in Terms of Phasors

Va = Vm ∠0

Vb = Vm ∠-120

Vc = Vm ∠-240 = Vm ∠120

Page 12: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 12

Types of Connections in 3-phase system

Wye”Y”

Delta”∆”

Page 13: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 13

Wye Connection “Y”

Wye Connection: “Y”

Iline = Iphase

Page 14: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 14

Delta Connection “∆”

For Delta Circuit:

Eline = Ephase

Page 15: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 15

Example 1:

A balanced three-phase Y-connected generator with positive sequence has an impedance of 0.2 +j0.5 / and internal voltage 120V/ feeds a -connected load through a distribution line having an impedance of 0.3 +j0.9 /. The load impedance is 118.5+ j85.8 /. Use the a phase internal voltage of the generator as a reference.

A. Construct the single-phase equivalent circuit of the 3- system.

B. Calculate the line currents IaA , IbB and IcC.

C. Calculate the phase voltages at the load terminals.

D. Calculate the phase currents of the load.

E. Calculate the line voltages at the source terminals.

F. Calculate the complex power delivered to the -connected load.

Page 16: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 16

Solution:

A. The load impedance of the Y equivalent is

Page 17: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 17

B. The a-phase line current is

A.

Therefore,

IbB=204-156 A.

IcC= 2.483.13 A.

C. because the load is - connected, the phase voltages are the same as the line voltages. To calculate the line voltages,

VA=(39.5 + j28.6)(2.4-36.87) = 117.04-0.96

Page 18: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 18

The line voltage VAB is

= 202.72 -0.96 V

Therefore,

VBC=202.72 -90.96 V

VCA= 202.72 149.04 V

D. The phase currents of the load will be,

= 1.39 -6.87 A.

Page 19: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 19

Therefore,

IBC=1.39-126.87 A

ICA=1.39113.13 A

E. The line voltage at the source terminals will be,

Va=(39.8 + j29.5) (2.4-36.87)

=118.9 -0.32 V.

The line voltage will be

= 205.9429.68 V.

Therefore ,

Vbc=205.94 -90.32 V.

Vca= 205.94149.68 V.

Page 20: Pharos University EE-272 Electrical Power Engineering 1 “Electrical Engineering Dep” Prepared By: Dr. Sahar Abd El Moneim Moussa 1.

Dr. Sahar Abd El Moneim Moussa 20

F. The total complex power delivered to the load will be,

V=VAB= 202.72 29.04 V.

I=iAB=1.39-6.87 A.

Therefore,

ST= 3 (202.72 29.04) (1.396.87)

= 682.56 +j 494.21 VA


Recommended