+ All Categories
Home > Documents > Phase A Phase B Phase C dc - Princeton

Phase A Phase B Phase C dc - Princeton

Date post: 02-Dec-2021
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
1
Turbo-MMC: Minimizing the Submodule Capacitor Size in Modular Multilevel Converters with a Matrix Charge Balancer Yenan Chen, Youssef Elasser, Ping Wang, Jaeil Baek, MinjieChen Power Electronics Research Lab, Princeton University Background & Motivation Control Strategy for Turbo Operation Turbo MMC with a Matrix Charge Balancer Submodule Capacitors in Modular Multilevel Converters Buffer pulsating power at low frequencies The voltage ripple of submodule capacitors: V pp 1/f o and I o Modular Multilevel Converter based Motor Drive Design submodule capacitor for maximum I o and lowest f o . Capacitors take more than 50% of total size and weight. Pulsating Power in MMC Simulation and Experiments Fig. 3: Three ways of balancing the pulsating power. Simulation Parameters V dc 700V P o 6kW f mmc 10kHz f mab 100kHz L arm 4mH C sm 1mF L b 5H C b 0.1mF SM Number 4 Fig. 1: Typical startup process of a 3- ac induction motor: (a) phase current amplitude (b) phase current waveform and motor speed. Fig. 2: Schematic of a 3- MMC and Voltage ripple and pulsating power of the submodule capacitors in Phase A. SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM 0.5V dc 0.5V dc L arm L arm L arm L arm L arm L arm L o R o Phase A Phase B Phase C i oa i ob i oc i ua i la P UA1 N UA1 P UA2 N UA2 P UAn N UAn P LA1 N LA1 P LA2 N LA2 P LAn N LAn P UB1 N UB1 P UB2 N UB2 P UBn N UBn P LA1 N LA1 P LA2 N LA2 P LAn N LAn P UC1 N UC1 P UC2 N UC2 P UCn N UCn P LC1 N LC1 P LC2 N LC2 P LCn N LCn E ua v cua v cla p ua p la 0 0 i oa i ob i oc ft Voltage ripple: v cua , v cla Ac circulating current: i za Pulsating power: p ua , p la Output current: i oa Pulsating power = ac output power + circulating power Reduce the voltage ripple in SM capacitors: Sophisticated control strategy for power management Active pulsating power balancing Matrix Power Balancing p ua p ua p la p la p ub p ub p lb p lb p uc p uc p lc p lc Phase A Phase B Phase C Upper Arm Lower Arm Vertical Power Balancing Horizontal Power Balancing Fig. 5: A matrix charge balancer implemented as a multi-active-bridge converter with a single magnetic core. 0 ft 100 0 -100 p.u. [%] 0 0 -0 p.u. [%] 0.0 0 -0.0 p.u. [%] E v E h E m p v p h2 p m p h1 Fig. 4: Percentage of residual unbalanced pulsating power. Vertical: partially balance power Horizontal: completely balance the output power, partially balance the circulating power Matrix: completely balance power Balance energy among submodule capacitors Vertical Horizontal Matrix MMC Central Controller v sm MCB Port + _ MMC SM H i G PI_i Φ i v ref Delay Global Synchronize Clock Global Enable Signal Distributed Phase Shift Controller Fig. 7: Distributed phase-shift control with a ripple voltage hysteresis for submodule capacitor voltage. V #1 V #j V #k N w :1 1:N w 1:N w L 1j L jk L 1k V #n N w :1 Fig. 6: Simplified ac power flow model of a matrix charge balancer. Power flow controlled by modulating the phase-shift: = 2 2 Φ −Φ 1− Φ −Φ v 0 V pp /2 V pp /2 V h V h Deliver energy from/to a submodule capacitor by closed-loop control with hysteresis in voltage ripple Fig. 8: Simulated capacitor voltage ripple of the Turbo-MMC in five operating modes: (1) 0.0s -- 0.3s, low frequency (10 Hz) startup with Turbo mode ON, 20% load (1200 W); (2) 0.3s -- 0.6s, light load operation with Turbo mode OFF; (3) 0.6s -- 0.9s, output frequency increased to 50Hz with Turbo mode OFF; (4) 0.9s -- 1.2s, output load steps up to 100% (6000 W); (5) 1.2s -- 1.5s, high frequency heavy load operation with Turbo mode ON. Experiment Parameters V dc 24V P o 30W f mmc 50kHz f mab 200kHz L arm 7mH C sm 1mF L b 0.1H C b 0.1mF SM Number 4 Fig. 9: A Turbo-MMC prototype Fig. 10: Measured waveforms of the prototype Turbo-MMC with f o = 50 Hz. High voltage ripple even causes arm inductor saturation without Turbo operation. Summary: Turbo-MMC operation for startup process can 1. Reduce the submodule capacitor and arm inductor size. 2. Reduce the voltage ripple in submodule capacitors for low frequency and high power operation; Power flow controlled by time domain multiplexing. 3Φ - MMC Matrix Charge Balancer Half-bridge Module Branch Inductor L b 12-Winding Transformer One Port of MCB
Transcript
Page 1: Phase A Phase B Phase C dc - Princeton

Turbo-MMC: Minimizing the Submodule Capacitor Size in Modular Multilevel Converters with a Matrix Charge Balancer

Yenan Chen, Youssef Elasser, Ping Wang, Jaeil Baek, Minjie ChenPower Electronics Research Lab, Princeton University

Background & Motivation

Control Strategy for Turbo Operation

Turbo MMC with a Matrix Charge Balancer

➢ Submodule Capacitors in Modular Multilevel Converters

• Buffer pulsating power at low frequencies

• The voltage ripple of submodule capacitors: Vpp 1/fo and Io

➢ Modular Multilevel Converter based Motor Drive

• Design submodule capacitor for maximum Io and lowest fo.

• Capacitors take more than 50% of total size and weight.

Pulsating Power in MMC

Simulation and Experiments

Fig. 3: Three ways of balancing the pulsating power.

Simulation Parameters

Vdc 700V

Po 6kW

fmmc 10kHz

fmab 100kHz

Larm 4mH

Csm 1mF

Lb 5H

Cb 0.1mF

SM Number 4

Fig. 1: Typical startup process of a 3- ac induction motor: (a) phase current amplitude (b) phase current waveform and motor speed.

Fig. 2: Schematic of a 3- MMC and Voltage ripple and pulsating power of the submodule capacitors in Phase A.

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

0.5Vdc

0.5Vdc

Larm

Larm

Larm

Larm

Larm

Larm

Lo Ro

Phase A Phase B Phase C

ioa

iob

ioc

iua

ila

PUA1

NUA1

PUA2

NUA2

PUAn

NUAn

PLA1

NLA1

PLA2

NLA2

PLAn

NLAn

PUB1

NUB1

PUB2

NUB2

PUBn

NUBn

PLA1

NLA1

PLA2

NLA2

PLAn

NLAn

PUC1

NUC1

PUC2

NUC2

PUCn

NUCn

PLC1

NLC1

PLC2

NLC2

PLCn

NLCn

Eua

vcua

vcla

pua

pla

0

0

ioa iob ioc

ft

Voltage ripple: vcua, vcla

Ac circulating current: iza

Pulsating power: pua, pla

Output current: ioa

➢ Pulsating power = ac output power + circulating power

➢ Reduce the voltage ripple in SM capacitors:

• Sophisticated control strategy for power management

• Active pulsating power balancing

Matrix

Power

Balancing

pua

pua

pla

pla

pub

pub

plb

plb

puc

puc

plc

plc

Phase A Phase B Phase C

Upper Arm

Lower Arm

Vertical

Power

Balancing

Horizontal Power Balancing

Fig. 5: A matrix charge balancer implemented as a multi-active-bridge converter with a single magnetic core.

0 ft

100

0

-100

p.u

. [%

]

0

0

-0

p.u

. [%

]

0.0

0

-0.0

p.u

. [%

]

Ev

Eh

Em

pv

ph2

pm

ph1

Fig. 4: Percentage of residual unbalanced pulsating power.

➢ Vertical: partially balance power

➢ Horizontal: completely balance the

output power, partially balance the

circulating power

➢ Matrix: completely balance power

➢ Balance energy among submodule capacitorsVertical

Horizontal

Matrix

MMC Central

Controllervsm MCB

Port

+

_

MMC

SM

Hi

GPI_i

Φivref

Delay

Global Synchronize Clock

Global Enable Signal

Distributed Phase

Shift Controller

Fig. 7: Distributed phase-shift control with a ripple voltage hysteresis for submodule capacitor voltage.

V#1 V#j

V#k

Nw:1 1:Nw

1:Nw

L1j

Ljk

L1k

V#n

Nw:1

Fig. 6: Simplified ac power flow model of a matrix charge balancer.

➢ Power flow controlled by

modulating the phase-shift:

𝑃𝑖 =𝑉𝑖

2𝜋𝑓𝑚𝑎𝑏𝑁𝑤2

𝑗≠𝑖

𝑉𝑗

𝐿𝑖𝑗Φ𝑗 −Φ𝑖 1 −

Φ𝑗 −Φ𝑖

𝜋

v

0

Vpp/2

— Vpp/2

Vh

Vh

➢ Deliver energy from/to a submodule capacitor by closed-loop

control with hysteresis in voltage ripple

Fig. 8: Simulated capacitor voltage ripple of the Turbo-MMC in five operating modes: (1) 0.0s -- 0.3s, low frequency (10 Hz) startup with Turbo mode ON, 20% load (1200 W); (2) 0.3s -- 0.6s, light load operation with Turbo mode OFF; (3) 0.6s -- 0.9s, output frequencyincreased to 50Hz with Turbo mode OFF; (4) 0.9s -- 1.2s, output load steps up to 100% (6000 W); (5) 1.2s -- 1.5s, high frequency heavy load operation with Turbo mode ON.

Experiment Parameters

Vdc 24V

Po 30W

fmmc 50kHz

fmab 200kHz

Larm 7mH

Csm 1mF

Lb 0.1H

Cb 0.1mF

SM Number 4 Fig. 9: A Turbo-MMC prototype

Fig. 10: Measured waveforms of the prototype Turbo-MMC with fo = 50 Hz. High voltage ripple even causes arm inductor saturation without Turbo operation.

➢ Summary: Turbo-MMC operation for startup process can

1. Reduce the submodule capacitor and arm inductor size.

2. Reduce the voltage ripple in submodule capacitors for low

frequency and high power operation;

➢ Power flow controlled by

time domain multiplexing.

3Φ - MMC

Matrix Charge

Balancer

Half-bridge Module

BranchInductor Lb

12-Winding Transformer

One Portof MCB

Recommended