+ All Categories
Home > Documents > (Ph.D.) 2007 Dysfunction: Mechanism and Therapeutic Strategies

(Ph.D.) 2007 Dysfunction: Mechanism and Therapeutic Strategies

Date post: 07-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
71
Thesis for doctoral degree (Ph.D.) 2007 TumorInduced Immune Dysfunction: Mechanism and Therapeutic Strategies Mikael Hanson Thesis for doctoral degree (Ph.D.) 2007 TumorInduced Immune Dysfunction: Mechanism and Therapeutic Strategies Mikael Hanson
Transcript

 

 

 

 

 

 

 

 

 

 

     

Thesis for doctoral degree (Ph.D.)2007 

Tumor‐Induced Immune Dysfunction: Mechanism and Therapeutic Strategies 

Mikael Hanson 

 

Thesis for doctoral degree (Ph.D.) 2007 Tum

or‐Induced Immune D

ysfunction: Mechanism

 and Therapeutic Strategies                                   Mikael H

anson 

 

From Department of Oncology‐Pathology, Cancer Centrum Karolinska, 

Karolinska Institutet, Stockholm, Sweden 

TUMOR-INDUCED IMMUNE DYSFUNCTION:

MECHANISM AND THERAPEUTIC STRATEGIES

Mikael Hanson 

 

Stockholm 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doctorial Thesis Tumor‐Induced immune Dysfunction: Mechanism and Therapeutic Strategies  © Mikael Hanson, 2007  All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Sundbyberg  ISBN 978‐91‐7357‐356‐6 

 

 

  

To my family 

 

 

 

 

Abstract Cancer is one of the major causes of premature death in humans. Although standard 

treatments, such as surgery and chemotherapy, are successful in many cases, there 

are instances when their utility and efficacy are limited. Immunotherapy against 

cancer has recently been developed as an example of a new generation of 

“targeted” therapy. However, the immunosuppressive milieu associated with 

tumors is an obstacle that needs to be overcome to improve the response rates of 

immunotherapeutic approaches. 

Several biological processes are involved in the induction and resolution of an 

immune response and these need to be in perfect equilibrium to allow optimal 

functioning of the immune system. However, this balance is skewed in cancer 

patients creating a state of chronic inflammation that in turn results in a suppression 

of the immune system leading to tumor‐induced immune dysfunction. Several 

mechanisms have been suggested to contribute to this phenomenon, including 

mechanisms that induce oxidative stress in cancer patients.  

The aim of this thesis is to elucidate the effects of oxidative stress on lymphocytes 

and define methods of reducing it. We have shown that oxidative stress affects 

competent anti‐tumor cells, such as CD8+ T effector memory cells and CD56dim NK 

cells, most as compared to other cells in the immune system. This may provide one 

explanation for the limited clinical response noted with active immunotherapy 

against cancer. To counteract oxidative stress, we have developed two approaches; 

firstly, we have been able to increase NK cell function in cancer patients by oral 

administration of the antioxidant vitamin E. Secondly, by transferring a gene 

encoding for the antioxidant enzyme catalase we were able to increase the 

antioxidant capacity in lymphocytes and improve their ability to resist oxidative 

stress.   

The work performed within this thesis furthers the understanding of oxidative 

stress‐induced suppression of lymphocytes. This study has also contributed to the 

development of approaches for reversing this suppression.  Methods for reversing 

oxidative stress‐induced immune dysfunction may potentially improve the clinical 

outcome of subsequent active immunotherapy regimens against cancer. 

 

 

List of Publications  

 

 

 

I. Takahashi, A*., M. G. Hanson*, H. R. Norell, A. M. Havelka, K. Kono, K. J. Malmberg, and R. V. Kiessling. 2005. Preferential cell death of CD8+ effector memory (CCR7‐CD45RA‐) T cells by hydrogen peroxide‐induced oxidative stress. J Immunol 174:6080. 

II. Harlin, H*., M. Hanson*, C. C. Johansson, D. Sakurai, I. Poschke, H. Norell, 

K.‐J. Malmberg, and R. Kiessling. 2007. The CD16‐CD56bright NK Cell Subset Is 

Resistant to Reactive Oxygen Species Produced by Activated Granulocytes 

and Has Higher Antioxidative Capacity Than the CD16+CD56dim Subset.  

J Immunol 179:4513 

III. Hanson, M. G., V. Ozenci, M. C. Carlsten, B. L. Glimelius, J. E. Frodin, G. Masucci, K. J. Malmberg, and R. V. Kiessling. 2007. A short‐term dietary supplementation with high doses of vitamin E increases NK cell cytolytic activity in advanced colorectal cancer patients. Cancer Immunol Immunother 56:973. 

IV. Hanson, M.*, K. Mimura*, C. Larsson, T. Palma, D. Sakurai, H. Norell, M. Li, M. Nishimura, and R. Kiessling. 2007. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. Submitted. 

            *Shared first authorship 

 

 

 

 

Contents  

 

INTRODUCTION ........................................................................................ 1 

1.  The Start and Stop of Inflammation ............................................................ 2 

1.1.  Onset of Inflammation .............................................................................. 3 1.2.  Resolution of Inflammation ...................................................................... 5 

2.  Tumor Immunology ..................................................................................... 9 

2.1.  Cancer as a Chronic Inflammation .......................................................... 10 2.2.  Tumor Escape .......................................................................................... 12 

2.2.1.  Immunoediting and Tumor Escape. ........................................................................... 15 2.2.2.  Tumor Cell Immune Selection ................................................................................... 16 2.2.3.  Tumor Cell Immune Subversion ................................................................................ 17 

3.  Lymphocyte Cell Death ............................................................................. 25 

3.1.  Oxidant‐induced Cell Death .................................................................... 27 

AIMS OF THE THESIS ................................................................................ 31 

RESULTS AND DISCUSSION......................................................................... 32 

4.  Part 1 ‐ Differences in Susceptibility to Cell Death of Lymphocyte Subsets 32 

4.1.  Implications of Preferential Cell Death of CD8+ TEM (Paper I) ................. 32 4.2.  Antioxidants Rescue CD56bright NK Cells from Cell Death (Paper II) ........ 37 4.3.  Conclusion Part 1 .................................................................................... 39 

5.  Part 2 – Therapies to Reverse Oxidative Stress in Lymphocytes ................ 41 

5.1.  Using Vitamin E to Reduce Oxidative Stress in Colon Cancer Patients               (Paper III) ................................................................................................. 41 5.2.  Arming T Cells with an Antioxidant Enzyme (Paper IV) .......................... 43 5.3.  Conclusion Part 2 .................................................................................... 44 

CONCLUDING REMARKS ............................................................................ 45 

ACKNOWLEDGEMENTS ............................................................................. 48 

REFERENCES .......................................................................................... 50 

 

 

List of Abbreviations 4‐HNE  4‐hydroxynonenal  IDO  Indoleamine 2,3‐dioxygenase 

8‐OxoGua  8‐oxo‐2‐deoxyguanosine  IFN‐γ  Interferon gamma 

ACAD  Activated cell autonomous death  IL  Interleukin 

AICD  Activation‐induced cell death  iNOS  Inducible nitric‐oxide synthase 

Apaf‐1  Apoptotic protease activating factor 1  LMP  Low molecular mass polypeptide 

APM  Antigen presentation machinery  MCA  Methylcholanthrene 

ARG1  Arginase 1  MDSC  Myeloid‐derived suppressor cells 

ATP  Adenosine 5'‐triphosphate  MHC  Major histocompatibility complex 

Bad 

Bak 

Bcl2‐antagonist of cell death 

Bcl‐2 Homologous Antagonist Killer 

MIC  Major histocompatibility complex class I chain‐related  

Bax  Bcl‐2–associated X protein  NCR  Natural cytotoxicity receptors 

Bcl‐2  B‐cell lymphoma‐2  NF‐κB  Nuclear factor‐kappa B 

BH  Bcl‐2 Homology  NK  Natural killer 

Bid  BH3 interacting domain death agonist  NKG2A  Natural killer group 2A 

Bik  Bcl‐2‐interacting killer  NO  Nitric oxide 

Bim  BCL‐2‐interacting mediator  of cell death 

NO2 

PARP 

Nitrogen dioxide  

Poly(ADP‐ribose)polymerase 

Caspase  Cysteine‐dependent aspartate‐ directed proteases 

PBL 

PBMC 

Peripheral blood lymphocytes 

Peripheral blood mononuclear cells 

CAT  Catalase  PD‐1  Programmed death‐1 

CCR7  Chemokine receptor‐7  PGE2  Prostaglandin E2  

CD  Cluster of differentiation  PMA  Phorbol myristate acetate 

CD95L  CD95‐ligand  PUMA  p53‐upregulated modulator of apoptosis 

cdk4  Cyclin‐dependent kinase 4  RAG  Recombination activating gene 

CTL  Cytotoxic T lymphocytes  RNS  Reactive nitrogen species 

CTLA‐4  Cytotoxic T‐lymphocyte‐ associated protein 4 

ROS 

SLPI 

Reactive oxygen species 

Secretory leukocyte protease inhibitor 

DC 

DIABLO 

Dendritic cell  

Direct inhibitor of apoptosis‐binding 

Smac  Second mitochondria‐derived activator of caspases 

  protein with a low isoelectric point,  SOD  Superoxide dismutase 

DISC  Death‐inducing signaling complex  TAA  Tumor‐associated antigens 

DNA 

FasL 

Deoxyribonucleic acid 

Fas ligand 

TAP 

TCM 

Transporter associated with antigen processing 

Central memory T cells 

Foxp3 

GM‐CFS 

Forkhead box P3 

Granulocyte macrophage‐colony 

TCR 

TEM 

T cell receptors 

Effector memory T cells 

  stimulating factor  TGF‐β  Tumor growth factor beta 

GSH  Glutathione  TH1  T helper 1 

GSSG  Disulfide glutathione  TIL  Tumor‐infiltrating lymphocytes 

H2O2  Hydrogen peroxide   TNF‐α  Tumor necrosis factor‐α  

HIV 

HLA 

Human immunodeficiency virus 

Human leukocyte antigen 

TRAIL  Tumor‐necrosis factor‐related apoptosis‐inducing ligand 

HMGB1  High mobility group box 1  Treg  Regulatory T cells 

IAP  Inhibitors of apoptosis proteins  VEGF  Vascular endothelial growth factor 

ICAD  Inhibitor of caspase‐activated Dnase     

 

 

    1 

Introduction Despite the great progress made in research, cancer still continues to be one of 

the major causes of premature death in humans. In 2003, 48 867 new cases of 

cancer were recorded in Sweden, which is twice as many as in the year 19701. 

Many cancer types have a much better treatment prospect today compared to 20 

– 30 years ago, while other more aggressive cancers, such as pancreatic cancer, 

still have a very poor prognosis. Thus, there is a great need for new and innovative 

cancer therapies to treat these cancers.  

Current Therapies of Cancer Radical surgery is presently one of the first line 

treatments of solid tumors. It is an effective, yet drastic, way to eliminate tumor 

tissue. Unfortunately, many tumors are inoperable due to their anatomical 

location or to the extent of dissemination to the surrounding tissue. In many cases, 

the surgeon needs to remove healthy tissue, including lymph nodes surrounding 

the tumor, giving rise to other complications. In the case of non‐solid tumors, e.g. 

leukemia, surgery is not an option. The second most common approach of cancer 

therapy is exposing the tumor to radiation. Radiotherapy has been used since the 

late 19th century and constitutes 30 % of all treatments. This therapy is often used 

in combination with surgery or chemotherapy. However, despite its potential 

benefit, radiation can cause serious damage to the adjacent nonmalignant tissue.  

As for surgery, the anatomical location and spread of the tumor may restrict the 

potential utility of radiation in cancer therapy.  The third major arm of cancer 

treatment is chemotherapy using cytotoxic drugs that preferentially kill cancer 

cells. Although the treatment with these drugs in several malignancies is effective, 

the adverse effects are often severe. The side effects of certain chemotherapy 

regimens are severe enough to preclude their use in the treatment of the elderly 

or patients whose health is compromised. The limitations of existing treatment 

approaches underline the need for novel therapies. The field of potential cancer 

therapies is evolving and is now extended to involve many medical disciplines. For 

example, the introduction of hormone and receptor antagonists for the treatment 

of hormone‐dependent cancers has improved the prognosis of advanced cancers. 

Tamoxifen, an antagonist of the estrogen receptor, has been successfully used in 

treating breast tumors that are dependent on the estrogen receptor. However, a 

significant number of patients develop recurrences that are resistant to tamoxifen 

treatment2.  

 

The progress in chemo/radiotherapy and surgery together with other approaches 

like hormone antagonists have greatly improved the survival in many cancers, but 

there is still considerable room for improvement.  One approach of treating 

cancers involves the use of immunological entities, also known as immunotherapy.  

Passive immunotherapy entails the administration of therapeutic antibodies 

whereas active immunotherapy, popularly known as cancer vaccines, relies on 

stimulating  the body’s own immune defense for the eradication of the tumor 

cells3,4. Presently, at least seven antibodies are licensed for the treatment of 

cancer; however, active immunotherapy approaches have not achieved the 

success that the scientific community had hoped for.  

The limited success of active immunotherapy against cancer may be attributed to 

several factors5 (described in detail in section 2). In the progression of the disease, 

cancer cells evolve strategies to avoid an immune response through loss of 

components responsible for the presentation of cancer‐specific antigens and/or 

loss or gain of cellular functions that renders the cancer cell resistant to cell death. 

These mechanisms are intrinsic to the cancer cells and do not have an immediate 

effect on the tumor microenvironment. Concurrently, cancer cells are in constant 

interaction with their surroundings. The cancer cell progressively mutates, thereby 

acquiring traits that enable the cell to utilize a variety of normal physiological and 

biological processes to its advantage. These processes have been named tumor‐

induced immune dysfunction and can be summarized as the tumors ability to 

manipulate the physiological functions of the tumor stroma (normal tissue 

surrounding the tumor), the immune system, and the healing process. The focus of 

this thesis is to investigate mechanisms and possible therapeutic strategies to 

reverse tumor‐induced immune dysfunction. An awareness of the basics of 

inflammation and resolution of inflammation is vital to understanding this thesis, 

as these physiological events also play a critical role in tumor‐induced immune 

dysfunction.    

1. The Start and Stop of Inflammation 

The inflammatory process has evolved to prevent an infection or a “xenobiotic 

insult”6. Inflammation is induced in response to a traumatic tissue damage or an 

infection and is a complex process involving cells and soluble factors7. The 

regulation of inflammation is tightly governed by pro‐ and anti‐inflammatory 

signals and, in normal condition, leads to the eradication of the infectious agents 

 

    3 

and to tissue repair7.  For reasons of simplicity, this section describes the typical 

inflammation caused by non‐infectious tissue damage (mild trauma) with respect 

to the chronic inflammation seen in tumor tissues.   

1.1. Onset of Inflammation 

In response to mild trauma, tissue resident leucocytes (e.g. mast cells and 

macrophages) perceive that a potential infectious agent may have penetrated the 

skin and infected the tissue. To counteract this possible infection, mast cells, 

activated by neuropeptides released by neurons in response to pain, secrete 

several effector molecules, e.g.  histamine, pro‐inflammatory leukotrienes, 

prostaglandin E2 (PGE2), tumor necrosis factor‐α (TNF‐α), and chemokines8.

Histamine, leukotrienes, and PGE2 cause vasodilatation (responsible for the heat 

and redness seen in inflammation) and extravasation of fluid (responsible for the 

swelling seen in inflammation)8. The trauma also causes cell disruption, thus 

releasing constitutively expressed intracellular proteins, such as heat‐shock 

proteins9, the transcription factor high mobility group box 110 (HMGB1) and 

mitochondrial peptides resembling prokaryotic components11. When detected by 

tissue‐resident macrophages, these proteins trigger activation and the release of 

TNF‐α and chemokines by the macrophage7.  

Fig 1 ‐ Activation of the inflammatory response.In  response  to mild  trauma mast  cells  and macrophages  become  activated  and  secretefactors  that  attract  cells  from  the  innate  and  adoptive  immune  system  to  the  site  ofinflammation. Hsps: heat‐shock proteins, HMGB1: high mobility group box 1, TNF‐α: tumor necrosis factor‐α, PGE2: prostaglandin E2. Adapted from Nathan7. 

 

The pro‐inflammatory molecules also activate the endothelium of blood vessels to 

express various cell adhesion molecules, such as E‐ and P‐selectin, needed for 

leukocyte rolling and transmigration from the peripheral blood into the damaged 

tissue12. Once adhered to the endothelial wall of the activated blood vessel, 

chemoattractants direct the leukocyte to the site of inflammation. The first cell 

type to migrate to the inflamed tissue is the neutrophil7. The neutrophil is a cell 

with a short lifespan and phagocytic capacity. It is the most abundant cell in the 

blood and upon tissue damage will accumulate at the site of inflammation within 

hours of insult12 (Fig 1). At the site of tissue damage, TNF‐α activated neutrophils 

secrete various enzymes, such as myeloperoxidase, elastase, matrix 

metalloproteases, and cathepsins that decompose extracellular matrix 

components. Furthermore, the neutrophils secrete reactive oxygen species (ROS) 

through an oxidative burst7,12,13. The events described above lead to further 

neutrophil infiltration, thus potentiating the inflammatory process. 

Peripheral blood monocytes are next to enter the site of inflammation, guided by 

chemoattractants produced during the initial inflammatory response. Once 

activated in the damaged tissue, monocytes differentiate into macrophages or 

immature dendritic cells (DCs)14. The macrophages now act as the main source of 

growth factors and cytokines that modulate both inflammation and resolution of 

inflammation15 (see section 1.2 for details). Macrophage‐ and monocyte‐derived 

TNF‐α and chemoattractants recruit and activate more neutrophils. The 

combination of neutrophil‐derived products, e.g. anti‐bacterial peptides and mast 

cell‐derived PGE2, attracts lymphocytes16 and leukotrienes recruit DCs to the site 

of inflammation17, thus ensuring a response by the adaptive immune system.  

Cytokines produced by lymphocytes together with microbial‐like products, e.g. 

formyl‐peptides released from necrotic cells, trigger macrophages to release anti‐

microbial molecules, e.g. ROS and reactive nitrogen species (RNS)7. 

In summary, the onset of an inflammation is a cascade of events initiated by cells 

and soluble factors. It is an immediate response that ensures a quick and efficient 

removal of infectious agents. As a simplification, one may consider the immediate 

inflammatory response to have two purposes 1) to ensure an infiltration of 

immune cells from peripheral blood into the damaged tissue and 2) to combat the 

infectious agent at the site of inflammation. To facilitate cellular infiltration a 

cascade of cytokines and chemokines are released through different means and to 

execute an immediate removal of infectious agents, macrophages and neutrophils 

 

    5 

secrete various anti‐microbial molecules, e.g. ROS and anti‐bacterial peptides. In 

addition, the initiation of inflammation also triggers an essential process, i.e. 

resolution of inflammation and tissue repair. 

1.2. Resolution of Inflammation  

Normally, inflammation caused by mild trauma quickly declines and the tissue 

heals. To this end, the switch from an anti‐bacterial, tissue‐damaging mode to a 

tissue repair mode needs to be made at the closing stages of inflammation. The 

onset of macrophage infiltration into the inflamed tissue coincides to the decline 

in numbers of neutrophils at the site of inflammation15. As long as there are pro‐

inflammatory components, e.g. HMGB1 and formyl‐peptides, macrophages will 

produce chemokines to attract peripheral blood neutrophils7. The transformation 

from inflammation to tissue repair initiates when the amount of pro‐inflammatory 

components decreases and when macrophages, at a late stage of inflammation, 

start to produce secretory leukocyte protease inhibitor (SLPI), a serin protease 

inhibitor with anti‐inflammatory18 and tissue repair‐promoting effects19.  The 

release of SLPI by macrophages 1) suppresses neutrophil infiltration into the 

inflammatory site by inhibiting the secretion of chemoattractants, 2) inhibits ROS 

production by neutrophils20 and 3) prevents tumor growth factor‐β (TGF‐β) break 

down19. The remaining neutrophils undergo apoptosis and macrophages start to 

ingest apoptotic neutrophils7. The phagocytosis of apoptotic bodies derived from 

neutrophils initiates macrophages to produce TGF‐β7. In turn, the production of 

TGF‐β starts the process of tissue repair. 

Concurrent to the activation of the innate immune response, cells of the adaptive 

immune response enter the site of inflammation and mount a humoral and/or 

cellular adaptive immune response. For most infections, the cellular component of 

the adaptive immune response needs to be reduced to minimize tissue damage 

and autoimmunity once the infectious agent is cleared. This is mediated by several 

physiological processes such as 1) regulation of T cells and natural killer (NK) cells 

through cell death, 2) deprivation of essential nutrients necessary for lymphocyte 

function at the site of inflammation, and 3) production of immune suppressive 

cytokines.  

 

Regulation of Inflammation through Cell Death of T Cells and NK Cells 

It has been shown that induction of cell death in T cells and NK cells regulates the 

lymphocyte immune response. There are two distinct mechanisms in which 

induction of cell death plays a key role, i.e. activation‐induced cell death21 (AICD) 

and activated cell autonomous death22 (ACAD). Upon encounter and recognition of 

antigens presented on DCs, T cells clonally expand and home to the site of 

inflammation23. To counteract possible autoimmune reactions, T cells that are 

activated without proper co‐stimulation are eliminated through AICD23. Over time, 

the majority of the expanded T cells gain traits that make them susceptible to cell 

death, while some T cells differentiate into a memory phenotype with an 

increased resistance to AICD24. The induction of cell death in activated T cells acts 

as a safety mechanism assuring that the effector phase of the adaptive immune 

response is transient and declines when the infectious agent has been cleared. It 

has been shown that the increased susceptibility of activated T cells to cell death is 

due to increased expression of cluster of differentiation 95 (CD95), thus sensitizing 

the cells to CD95‐mediated cell death by autocrine or paracrine CD95‐ligand 

(CD95L) expression25. Other studies have also indicated a role for TNF‐α26 and 

tumor‐necrosis factor‐related apoptosis‐inducing ligand27 (TRAIL) in the induction 

of AICD.  In addition, it has recently been shown that NK cells also commit to AICD 

as interleukin‐2 (IL‐2) stimulated NK cells express and release CD95L upon natural 

cytotoxicity receptors (NCR) engagement with target cells, thus mediating suicide 

of NK cells expressing CD9528. 

The absence of survival signals also contributes to ACAD in T cells22. ACAD is 

regulated by the balance between intracellular anti‐ and pro‐apoptotic proteins 

(mechanisms of cell death are explained in detail in section 3). It has been shown 

that during expansion, T cells downregulate the expression of the anti‐apoptotic 

protein B‐cell lymphoma (Bcl)‐XL29 and upregulate the expression of the pro‐

apoptotic proteins Bcl‐2‐interacting mediator of cell death (Bim) and p53‐

upregulated modulator of apoptosis (PUMA)30‐32. This shift in the balance renders 

the T cells sensitive to cell death stimuli. 

Deprivation of Essential Nutrients L‐arginine is an essential amino acid 

needed for synthesis of proteins. L‐arginine is mainly catabolized in vivo by 

arginase 1 (ARG1) and inducible nitric‐oxide synthase (iNOS) to produce urea and 

L‐ornithine, and nitric oxide (NO) and L‐citrulline, respectively33,34. It has been 

proposed that in higher organisms metabolism of L‐arginine regulates unwanted T  

 

    7 

cell expansion35. Recently, Rodriguez et al. showed that L‐arginine starvation 

impairs the expression of cyclin D3 and cyclin‐dependent kinase 4 (cdk4) in T cells, 

thus inhibiting downstream signaling leading to G0‐G1 cell cycle arrest36. In 

parallel, catabolism of tryptophan has been proposed to downregulate the T cell 

response at the maternal‐fetal interface. It has been shown that expression of 

indoleamine 2,3‐dioxygenase (IDO), which catalyzes L‐tryptophan conversion into 

kynurenine, is important for the establishment of the immune privilege site and 

that starvation of L‐tryptophan leads to cell cycle arrest37.  

Suppressive Cytokines In the late stages of the inflammatory process the 

switch from inflammation to resolution and tissue repair is orchestrated by 

immune suppressive (or pro‐tissue repair) cytokines. TGF‐β expressed in the later 

phase of inflammation inhibits activation, effector function, proliferation and 

differentiation of T cells38,39. TGF‐β is an important regulator of the immune 

system as deficiency in TGF‐β results in lethal autoimmunity in mice40,41. TGF‐β has 

also been shown to inhibit NK cells by inducing downregulation of the activating 

NK cell receptors NKp30 and natural killer group 2D (NKG2D)42 and enhance the 

expression of the inhibitory receptor CD94/NKG2A in T cells43. TGF‐β also drives 

the expansion of regulatory T cells (Treg), a T cell subset responsible for controlling 

the immune response44‐47. In addition, IL‐10 reduces the immune response by 

suppressing the production of pro‐inflammatory cytokines, such as interferon‐γ 

(IFN‐γ) and IL‐2, and impairs DC function, thus limiting priming of T cells48,49. 

Furthermore, vascular endothelial growth factor (VEGF) has also been shown to 

delimit DCs ability to present antigens to T cells50.  

 

In conclusion, there are factors that induce the inflammatory process and other 

factors that lead to the resolution of inflammation (see Table I for summary). 

These factors are programmed to be produced following a particular time course. 

Table I – Key molecules involved in inflammation and resolution of inflammation Induction of Inflammation  Resolution of Inflammation Inflammation initiator molecules CytokinesExamples : Formyl peptides, bacterial products, HMGB1, neuropeptides, Hsps 

Examples: TGF‐β, IL‐10, VEGF 

Inflammatory chemoattractants/cytokines Lack of nutrientsExamples: TNF‐α, TGF‐β, PGE2, Histamine, leukotrienes 

Examples: ARG1 (deprival of L‐arginine) and IDO(deprival of L‐ tryptophan) activity 

Toxic molecules Examples: Antibiotic proteins, e.g. LL‐37,RNS  and ROS  

 

Figure 2 provides a simplified summary of the different factors involved in 

inflammation and resolution of inflammation and relates them to the time course 

of the various processes. Many of these factors have been shown to be implicated 

in tumor‐induced immune dysfunction.  

 

 

Fig 2 ‐ Induction and resolution of inflammation leading to tissue repair.Upon  insult,  tissue‐resident  mast  cells  and  macrophages  become  activated  by  bacterial/viral‐derived products, e.g. LPS and fMLP, or by products produced after tissue damage, e.g. neuro‐peptides, HMGB1, and formyl‐peptides derived from mitochondria of damaged cells. The activation facilitates the inductionof  inflammation during which  the  first wave of  inflammatory cells entering  the site of  inflammation areneutrophils. Thereafter, monocytes enter  the  site  and differentiate  into macrophages. Neutrophils  andmacrophages facilitate antibiotic activity through secretion of toxic molecules, such as ROS. The next waveof immune cells to infiltrate the site of inflammation is T cells previously primed in secondary lymph nodes by DC migrating from the  inflamed tissue. T cells recognize cells that express the antigen that they wereprimed  against,  e.g.  viral  proteins,  and  the  kill  target  cells.  When  the  signals  from  the  insult  have diminished,  e.g.  the  infectious  agent  is  cleared,  the  inflammatory  response  is  converted  to  a  pro‐resolution state. For example, macrophages switch from pro‐ to anti‐inflammatory, thus secreting immune suppressive cytokines, such as TGF‐β. In parallel, lymphocyte activity is downregulated by induction of cell death and deprival of essential nutrients. The above described processes aid the subsequent tissue repair,e.g. angiogenesis, leading to healing of the damaged tissue.   

 

    9 

2. Tumor Immunology 

In the 1960’s the first experiments testing the immunogenicity of tumors were 

conducted. Mice immunized with attenuated, syngeneic tumors, were protected 

from a subsequent challenge with live tumor51,52. This protection was tumor‐

specific as challenge with a different tumor, even with one induced by the same 

carcinogen, did not protect the mice from developing tumors. In contrast, tumors 

induced by virus, such as papilloma virus, share the same antigens and mice are 

protected from a subsequent challenge using a different tumor induced by the 

same virus53. These observations formed the basis of the idea that a tumor‐specific 

adaptive immune responses against non‐virally‐induced tumors could occur.  

Several tumor‐associated antigens (TAA) have been described54‐56. These TAAs can 

be categorized into 1) differentiation antigens, i.e. antigens that are expressed 

during some stage of the differentiation by normal cells in the same lineage, e.g. 

the melanoma antigen MART‐1, 2) mutated antigens, i.e. antigens derived from 

mutated proteins, e.g. mutated p53, 3) overexpressed antigens, i.e. antigens that 

are expressed at low levels in normal cells, but are overexpressed in tumor cells, 

e.g. Her‐2/neu, 4) cancer‐testis antigens, i.e. antigens that are normally expressed 

only in male germ cells, e.g. NY‐ESO‐1, and 5) viral antigens, i.e. antigens that are 

derived from viral proteins expressed by tumor–inducing viruses, e.g. human 

papilloma virus protein E6.     

Immunotherapy Against Cancer Several strategies to utilize the immune 

system for eradicating tumors have been tested. As the immune response is 

directed by various immune regulatory cytokines, investigators have used these in 

clinical trials. The “prototype” cytokine for these efforts has been IL‐2, a cytokine 

that activates both T cells and NK cells in vivo. In a series of clinical trials, 

pioneered by Steven Rosenberg and colleagues, showed that administration of IL‐2 

to cancer patients  had beneficial effects in 16 % of the patients57. Although the 

clinical effect was relatively low, patients that responded to the IL‐2 treatment 

showed signs of long‐term protection from the disease compared to patients 

treated with conventional strategies, e.g. chemotherapy. However, high dose IL‐2 

treatment is associated with severe adverse effects, such as lung edema, which 

makes this treatment difficult to manage58.  

As described above, tumors display antigens that may be recognized by the 

immune system. After the development of successful immunotherapies based on 

 

10 

vaccination using mouse tumor models, the scientific community had great 

expectations on this approach to treat human cancers. However, after vaccination 

against various TAAs the overall conclusion is that only very low clinical response 

can be achieved in cancer patients. For example, a meta‐analysis comprising thirty‐

two phase I/II vaccination trials reporting on 527 patients with advanced or 

metastatic colorectal cancer showed a very low frequency (< 1 %) of clinical 

responses when immunotherapy was used as a treatment59.  

Adoptive cell transfer therapy has recently been developed and clinical trials have 

demonstrated that it has great potential of causing tumor shrinkage. This 

treatment utilizes autologous tumor‐infiltrating lymphocytes (TIL) that have been 

stimulated and expanded ex vivo and then transferred back to the patient60.  In 

conjunction with non‐myeloablative, lymphodepleting chemotherapy, this remedy 

has a ~ 50 % clinical response rate in patients with melamona61. However, these 

clinical protocols are very cost‐ and labor‐intensive and advanced techniques and 

skills are needed for this therapeutic approach, making it unfeasible for treating 

large numbers of patients.  

In conclusion, there is a great need to improve active immunotherapy approaches 

and to boost the immune response in cancer patients at the same time, in order to 

overcome the tumor‐induced immune dysfunction. 

2.1. Cancer as a Chronic Inflammation 

Cancer development is a multistep process in which normal cells acquire a series 

of mutations in tumor suppressor genes and proto‐oncogenes, i.e. genes that 

control cell proliferation62. As first reported by Rous & Kidd, it is thought that viral 

or chemical carcinogens induce somatic changes that initiate a pre‐neoplastic state 

before the transformation into a cancer cell63. This initiation comprises 

deoxyribonucleic acid (DNA)‐damages that are irreversible and induce no 

phenotypic change of the pre‐cancer cell15.  In order for the pre‐cancer cell into 

transform to a cancer cell, further insult is needed. These insults, including 

exposure to chemical irritants, factors secreted upon wound healing, hormones, 

chronic irritation and inflammation that induces cell proliferation, facilitate 

recruitment of inflammatory cells, which leads to additional DNA‐damage15. These 

events induce additional mutations in tumor suppressor genes and proto‐

oncogenes, which ultimately lead to an immortal cancer cell.  

 

    11 

Under physiological conditions inflammation is self‐limiting and controlled tightly 

by the induction‐versus‐resolution balance (described in section 1.1 and 1.2). 

However, chronic inflammation at the tumor site is either due to a persistence of 

the initiating factors or a failure in the resolution of the inflammation15 . In a tumor 

two compartments can be identified: cancer cells and tumor stroma (surrounding 

tissue)64. The tumor stroma provides vasculature to ensure proper gas exchange, 

supply of nutrients, and waste disposal, thus facilitating growth and sustenance of 

the tumor. The tumor stroma has traditionally been divided into three categories: 

blood vessels, inflammatory cells, and connective tissue. The inflammatory cells 

that are present in the tumor stroma mainly consist of macrophages and 

lymphocytes and these components of the stroma are seen in all cancers, but their 

extent varies between cancer types15. For example, in carcinomas such as breast, 

stomach, and pancreas cancer, the tumor stroma accounts for over 90 % of the 

tumor mass. On the other hand, malignant melanoma and medullary carcinomas 

have minimal tumor stroma.  Several similarities have been observed between 

tumor stroma generation and chronic inflammation: 1) initiation by leakage of 

plasma proteins or injured blood vessels64, 2) extra‐vascular blood clotting64, 3) 

recruitment of inflammatory cells64, 4) presence of pro‐inflammatory molecules, 

such as TNF‐α and histamine, and pro‐resolution cytokines, such as TGF‐β, IL‐10 

and VEGF15, and 5) oxidative stress at the tumor site65.  

The Link Between Inflammation and Cancer Several lines of evidence 

indicate that infection and inflammation may induce cancer progression15,66‐69 

(Table II). Infection can induce chronic inflammation, thus facilitating oncogenesis 

through mechanisms described above. For example, a strong positive correlation 

between colon cancer development and inflammatory bowel disease, such as 

chronic ulcerative colitis and Crohn’s disease, has been observed15. Hepatitis C 

virus infection is known to be associated with liver carcinoma70, schistosomiasis 

increases the risk of bladder carcinoma71, and Helicobacter pylori infection is the 

leading cause of stomach cancer72. These observations indicate that inflammation 

is a key factor in tumor development and one may argue that by interfering with 

tumor‐induced inflammation/resolution it could be possible to induce a functional 

immune response and in turn facilitate tumor eradication. 

 

12 

 

Table II – Inflammatory conditions associated with cancerInflammatory conditions  Associated Cancer Asbestosis, silicosis  Mesothelioma, lung carcinomaBronchitis  Lung carcinomaGingivitis  Oral squamous cell carcinomaInflammatory bowel disease  Colorectal carcinomaLichen sclerosus  Vulvar squamous cellcarcinomaChronic pancreatitis  Pancreatic carcinomaReflux oesophagitis  Oesophageal carcinomaSkin inflammation  MelanomaGastritis/ulcers  Gastric adenocarcinomaHepatitis  Hepatocellular carcinomaMononucleosis  B‐cell non‐Hodgkin’s lymphoma, Burkitts 

lymphoma AIDS  Non‐Hodgkin’s lymphoma, squamous cell 

carcinomas, Kaposi’s sarcoma Modified from Coussens & Werb15 

2.2. Tumor Escape 

The “six hallmarks of cancer” is a concept of cancer progression where the cancer 

cell gains six characteristics: the cancer cell is capable of providing autocrine 

growth signals, ignoring growth‐inhibitory signals, avoiding cell death, replicating 

without limits, sustaining angiogenesis, and invading tissues through basement 

membranes and capillary walls73. It has now also been proposed that a seventh 

hallmark should be included: avoidance of immune surveillance74. Numerous cell 

types have been proposed to be involved in immune surveillance  of cancer, i.e. 

CD8+ and CD4+ T cells, NK cells, NKT cells, and IFN‐producing killer dendritic cells75. 

The eradication of cancer cells can be mediated by direct perforin dependent lysis 

of tumor cells (by triggering of specific T cell receptors (TCR):peptide/MHC class I 

recognition by T cells or NK cell triggering by “missing‐self” signals and/or stress‐

induced NK cell receptor ligands), and/or by cytokines, e.g. IFN‐γ75. All of these 

mechanisms can be counteracted by the tumor. 

The Rise and Fall of the Immune Surveillance Concept Paul Ehrlich was 

the first to formulate the idea that the immune system could repress the 

frequency of carcinomas76. In the 1960s with the development of inbred strains of 

mice, immunization against tumor‐transplants showed the existence of tumor‐

specific antigens51,52. Sir Frank Macfarlane Burnet and Lewis Thomas incorporated 

this discovery into the formal hypothesis of ‘cancer immune surveillance’. Burnet 

stated:  

 

    13 

 

‘It  is  by  no means  inconceivable  that  small  accumulations  of  tumor  cells may develop and because of  their possession of new antigenic potentialities provoke an effective  immunological reaction with regression of the tumor and no clinical hint of its existence’ (cited from  76).  

In 1970, Burnet defined the immune surveillance concept, based on speculations 

made by Thomas:  

‘In  large,  long‐lived  animals,  like  most  of  the  warm‐blooded  vertebrates, inheritable genetic changes must be common in somatic cells and a proportion of these  changes  will  represent  a  step  toward malignancy.  It  is  an  evolutionary necessity  that  there  should  be  some mechanism  for  eliminating  or  inactivating such potentially dangerous mutant cells and it is postulated that this mechanism is of immunological character’ (cited from 76).  

After the introduction of the immune surveillance hypothesis many experiments 

were conducted to investigate how suppression of the immune system in mice 

affected the spontaneous or carcinogen‐induced tumor incidence. However, these 

studies did not unequivocally prove or disprove the hypothesis. For example, 

Rygaard et al. showed no differences between spontaneous tumor formations in 

nude mice compared to normal mice indicating that immune surveillance did not 

exist77,78. However, these experiments had pitfalls, which were mainly caused by 

the limited understanding of the nude mouse. For example, it is now known that 

nude mice are not completely immunodeficient as these mice have functional NK 

cells79, thus, immune surveillance may occur in these animals.  

The Return of the Concept From the mid 1970s the immune surveillance as a 

concept gradually lost credibility. However, three key findings in the mid 1990s 

sparked a renewal of the concept. Utilizing knock‐out mice that lack the IFN‐γ 

receptor 1 (IFN‐γR1‐/‐ mice), it was shown that wild‐type mice had lower incidence 

of chemically induced and spontaneous tumors80‐82. Secondly, mice lacking 

perforin (perforin‐/‐ mice), a component of the cytolytic granules of cytotoxic T 

cells and NK cells that is important in mediating lymphocyte‐dependent tumor 

cytotoxicity, were more sensitive to methylcholanthrene (MCA)‐induced tumor 

formation compared to wild‐type mice82‐86.  Finally, studies using mice that lack 

recombination activating gene 1 or 2 (RAG‐1‐/‐, RAG‐2‐/‐) and can therefore not 

undergo TCR rearrangement further supported the existence of the immune 

surveillance hypothesis. Experiments in this model showed that lymphocytes not 

 

14 

only protected the host against formation of chemically induced sarcomas, but 

also prevented the development of spontaneous epithelial tumors87,88.  

Furthermore, epidemiological studies have reported a higher probability of 

developing non‐viral tumors in immune deficient humans89,90.  A positive 

correlation between lymphocyte infiltration and increased survival of cancer 

patients has also been shown, arguing for a role of the immune system in the 

eradication of human tumors91‐93. 

Skepticism Still Remains So far, the studies supporting the role of immune 

surveillance have not formally proven that it does exist. These studies, e.g. 

increased susceptibility to cancer in mice lacking functional T cells and B cells (e.g. 

RAG‐1‐/‐ mice), show the final outcome as tumor/no tumor. However, the formal 

proof, i.e. the eradication of small, un‐palpable tumors by the immune system has 

not been shown. Further, the possibility that the tumor is a consequence of a 

secondary event, e.g. inflammation caused by an infection, cannot be ignored, as 

these mice are very susceptible to bacterial or viral infection. 

A recent study by Willimsky & Blankenstein argued against immune surveillance94. 

In this study a mouse model of sporadic cancer based on rare spontaneous 

activation of a dormant oncogene was developed. However, the tumors grew in 

spite of expressing the rejection antigen and the outgrowth of the tumor was 

paralleled with an increasing T cell tolerance to the rejection antigen. Thus, tumor 

cells did not evade the immune system by altering recognition i.e. loss of antigen. 

The outgrowth of tumor cells was initially due to tolerization of tumor‐specific T 

cells and, in later stages of tumor development, tumor‐induced immune 

suppression was the underlying process for cancer in this model.   

Although several lines of evidence point towards the existence of an immune 

surveillance system, it has not been formally proven. Presently, there is no 

consensus on what would constitute unequivocal proof. One may also argue that 

the murine model experiments should be conducted in germ‐free mice, enabling 

the investigation of the role of immune surveillance in oncogenesis without 

infections as a confounding factor.   

The fact that immunocompromised mice develop more tumors than normal mice 

can be regarded as an indication of immune surveillance, not a proof for 

continuous eradication of cancer cells. In order to obtain proof‐of‐concept, one 

 

    15 

must develop a mouse model in which newly formed cancer cells can be 

visualized. For example, one may use a mouse model with a dormant oncogene 

that, upon activation, will co‐express a reporter gene, such as the luciferase gene, 

enabling detection of small, unpalpable tumors in living animals. If a causal 

relationship between cancer formation, induction of an immune response, and 

eradication of the newly formed cancer cells is observed, the model could pose a 

valid argument for the existence of immune surveillance.  

While immune surveillance against non‐virally‐induced tumors still remains to be 

proven, evidence for immune surveillance against virally‐induced tumors exists. 

For example, it has been shown that young women vaccinated against human 

papillomavirus before first exposure to the virus have decreased incidence of 

cervical intraepithelial neoplasia95, arguing for immune surveillance against virally‐

induced tumors.   

2.2.1. Immunoediting and Tumor Escape.  

Cancers develop despite a functional immune system. It has been shown that 

tumors that develop in immune compromised hosts, e.g.  RAG‐1‐/‐ mice, are 

rejected upon transplantation into an immune competent recipient, but tumors 

developed in wild‐type mice with a functional immune system grow when 

transplanted into syngenic wild‐type mice87. Thus, tumors may be “sculptured” by 

the immune system promoting the outgrowth of tumor cell variants that are 

poorly recognized by immune cells. It is thought that the evolution of tumor cells 

into less immunogenic clones is due to the inherent genetic instability of the tumor 

cell. To conceptualize these new findings with the inclusion of the immune 

surveillance theory, Dunn et al. proposed the term immunoediting74. In essence, 

the model proposes that the immune system facilitates tumor progression by 

exerting immunological pressure on the tumor as it develops (see Fig 3). 

Immunoediting comprises of three phases74: 1) elimination, 2) equilibrium, and 3) 

escape. In the elimination phase, tumor cells are continually eliminated by the 

immune system. However, if a tumor cell acquires traits that enable survival, the 

immune system and the tumor enter a state of equilibrium where the immune 

system suppresses tumor growth, but is unable to eradicate the tumor. This causes 

high immunological pressure on the tumor cells and favors survival of cells with 

mutations that makes the cells less immunogenic, less sensitive to cell death, and 

have traits that can induce immune suppression. This is called tumor escape and 

 

16 

several mechanisms have been shown to be involved. One may divide the 

mechanisms into two categories; 1) immune selection and 2) immune subversion. 

 

 

 

 

 

 

 

 

2.2.2. Tumor Cell Immune Selection 

Tumor cells that have been able to survive the initial elimination process by the 

immune system (immune surveillance) and entered the equilibrium phase are 

constantly targeted by effector cells of the immune system. In a Darwinian 

selection process, tumor cells that are not recognized by the immune system or 

tumor cells that gain traits that renders them resistant to cell death will have a 

growth advantage. 

Lack of Tumor Recognition In order for a tumor cell to be recognized and 

killed by CD8+ T cells (cytotoxic T lymphocytes (CTL)), interactions between 

peptide:major histocompatibility complex class I (peptide:MHC I) on the tumor cell 

surface and TCR on T cells must take place. Through the oncogenic process, cancer 

cells can evade recognition by the T cell through mutations, gene deletions or gene 

regulation, leading to downregulation of proteins which are important for the 

antigen presentation machinery (APM). For example, it has been shown that the 

transporter associated with antigen processing (TAP), which is responsible for 

loading peptides on to the MHC I molecule, and essential components in the 

immunoproteosome, i.e. the low molecular mass polypeptide (LMP)‐2 and LMP‐7, 

are defective in patients with uveal melanomas96 and bladder cancer97 due to 

mutations in their genes.  The consequence of this may be total or partial loss of 

Fig 3 ‐ The interactions between the tumor cells and the immune system.The figure depicts tumor progression in relation to the immune system. Adaptedfrom Zitvogel et al.75. 

 

    17 

peptide:MHC I on the cell surface of the cancer cell. In addition, studies from our 

group have shown total loss of the human leukocyte antigen (HLA) class I locus in 

ovarian carcinoma98 which may contribute to disease progression resulting in 

failure of active immunotherapy99. Antigenic loss, or “epitope” loss, is another way 

by which tumor cells avoid recognition by the immune system100. The rapid 

generation of new, genetically instable tumor cells creates an array of tumor cell 

variants that may lack a tumor antigen. Thus, the antigen loss variants may be able 

to proliferate unnoticed by the immune system. 

Lack of Susceptibility to Cell Death Upon recognition, immune cells kill 

tumor cells by inducing apoptosis. There are two main ways of inducing apoptosis; 

1) the death receptor signaling pathway and 2) the perforin/granzyme B 

pathway101. Both pathways result in intracellular cysteine‐dependent aspartate‐

directed proteases (caspase) activation, which leads to apoptosis. Tumor cells may 

prevent apoptosis by modulating these pathways. For example, it has been shown 

that the death receptor signaling pathway can be avoided by cells that release 

factors, such as soluble Fas102, or autocrine secretion of Fas ligand (FasL)103. TRAIL‐

mediated apoptosis may be evaded through expression of the decoy receptors 

TRAIL‐R3 and ‐R4, which lack the intracellular domain for correct apoptosis 

signaling104. In the perforin/granzyme B pathway, T cells or NK cells release 

granules containing the proteolytic enzyme granzyme B, which together with 

perforin induces apoptosis. It has been demonstrated that cancer cells can escape 

this type of killing by overexpressing an inhibitor of granzyme B105. 

In addition, apoptosis is regulated by pro‐apoptotic and anti‐apoptotic molecules. 

Bcl‐2, a proto‐oncogene encoding a mitochondrial protein, is a key element in 

blocking programmed cell death. Dysregulation of Bcl‐2 function leads to an 

increased ability to withstand apoptotic stimuli in cancer cells leading to cancer 

progression. Bcl‐2 over‐expression in acute myeloid leukemia cells is associated 

with an increased recurrence rate and a significantly lower survival after intensive 

chemotherapy106. 

2.2.3. Tumor Cell Immune Subversion 

Upon further immune selection of tumor cells, the tumor can evolve to subvert the 

immune system by utilizing normal physiological functions. Several mechanisms 

have been proposed to explain this tumor‐induced immune dysfunction.  

 

18 

Inhibition of T cells by Tolerogenic DCs Mature DCs prime T cell responses, 

thus allowing naïve T cells to be activated and become effector cells which in turn 

eradicate infected107 or transformed cells108. Mature DCs also direct the immune 

response to polarize into a T helper 1 (TH1) or TH2 type109‐111 and improve the 

generation of T cell memory112. To perform these tasks, DCs have to undergo 

differentiation and maturation113. Maturation of DCs is induced by both bacterial 

products114,115 and pro‐inflammatory cytokines, especially TNF‐α116. If an antigen is 

captured and presented by a DC that is not fully activated, thus lacking the proper 

co‐stimulatory molecules for interaction with T cells, this results in the induction of 

T cell tolerance113. It has been shown that DCs at the tumor site have an immature 

phenotype113. In addition, tumor cells can modify immature DCs to induce Treg 117 

and facilitate T cell unresponsiveness118. It has been suggested that tumor‐derived 

factors, such as VEGF, granulocyte macrophage‐colony stimulating factor (GM‐

CFS), IL‐10, and TGF‐β, may induce the accumulation of immature DCs, thus 

contributing to T cell tolerance towards tumor cells119.  

Immune System‐derived Soluble Factors Associated with Tumor‐

induced Immune Dysfunction The induction and resolution of an immune 

response is mainly regulated through soluble factors, such as cytokines (see 

section 1 for details). Normally, factors mediate the end of an inflammatory 

episode, e.g. TGF‐β production in late stage of an inflammatory process, 

transforms the response from anti‐pathogenic and tissue‐damaging to promoting 

angiogenesis and tissue repair. However, the chronic state of inflammation in 

cancer patients facilitates the generation of immune suppressive soluble factors 

when the immune system is triggered, thus suppressing a potentially tumoricidal 

immune response.  

CD4+ Treg have the ability to produce high levels of the immunosuppressive 

molecules IL‐10 and TGF‐β and under normal circumstances are important to 

counteract autoimmunity120. There is strong evidence that CD4+ Treg are involved in 

the tumor‐induced suppression of the immune system121. CD4+ Treg that express 

forkhead box P3 (FOXP3) and high levels of CD25, also known as naturally 

occurring Treg, can be found in the tumor or in the circulation of cancer patients, 

and have been shown to promote tumor‐induced immune dysfunction in several 

cancers. For example, an inverse correlation between the presence of Treg and 

survival has been reported in ovarian carcinoma122. In addition, depletion of Treg 

with anti‐CD25 antibodies leads to increased tumor rejection by T cells in mice123. 

 

    19 

The secretion of TGF‐β may be a major obstacle for effective immunotherapy as 

recent studies show that TGF‐β acts on CTLs to repress the expression of perforin, 

granzymes, FasL, and IFN‐γ, all important for CTL function124. It has also been 

shown in mice that neutralization of TGF‐β with specific antibodies restores the 

expression of IFN‐γ, which leads to tumor clearance in vivo. In addition, it has been 

shown that TGF‐β down‐modulates the expression of the activating receptors 

NKp30 and NKG2D on T cells and NK cells42 and induces expression of the 

inhibitory receptors CD94/NKG2A43. Moreover, CD1d‐restricted NK cells may 

induce immune suppression by mechanisms involving IL‐13 and TGF‐β125. In 

humans, there seems to be evidence for a comparable paradigm. Decreased 

frequency and function of CD8+ memory T cells and TILs was noted in TGF‐β rich 

cultures from patients in a melanoma vaccine study, indicating an 

immunosuppressive role of TGF‐β in cancer patients126. Additionally, Treg were 

found in high frequencies in peripheral blood of cancer patients as compared to 

healthy donor blood and at the tumor site in patients with invasive breast or 

pancreas cancers, where they are likely to promote tumor growth by inhibiting 

anti‐tumor immune responses127.  

IL‐10 modulates the function of several cells in adaptive immunity and is 

considered to be one of the main immunosuppressive molecules128. IL‐10 can 

stimulate Tregs to secret TGF‐β, adding to the immune suppressive environment129. 

It has also been suggested that IL‐10 plays a direct role in the differentiation of 

naïve CD4+ T cells into Tregs120. Additionally, IL‐10 has been shown to be secreted by 

melanoma cells leading to impaired function of DCs130. IL‐10 also favors a TH2 

polarization by decreasing the production of IFN‐γ and IL‐12 by CD4+ T cells128. It 

has been shown that high serum levels of IL‐10 correlate with poor survival in 

renal cancer131. Additionally, it has been suggested that PGE2 induces Tregs, 

potentiating the secretion of IL‐10 and TGF‐β132. 

Induction of Lymphocyte Cell Death in Cancer Lymphocyte homeostasis is 

regulated by the thymic output of naïve T cells and death of peripheral T cells that 

have completed their functions133. It has been shown that this homeostasis is 

disturbed in cancer patients leading to rapid lymphocyte turnover and loss of 

tumor‐specific effector cells133. It has been observed that TIL and peripheral blood 

lymphocytes (PBL) exhibit a high frequency of cell death compared to other 

inflammatory sites133,134. Furthermore, studies have demonstrated signaling 

defects in the T cell receptor complex molecule CD3ζ in cancer patients135‐137 and 

 

20 

absence or decreased expression of CD3ζ has been correlated with poor survival of 

oral carcinoma patients138. It has also been shown that signs of cell death are 

paralleled with a decrease in CD3ζ expression, suggesting a shared mechanism of 

the two events139. 

Deprival of Essential Nutrients in Cancer As described above, limitation of 

essential nutrients is a frequently used mechanism to limit biological activity, e.g. 

an immune response. However, due to the chronic inflammatory state in patients 

with cancer, the deprivation of these nutrients leads to inhibition of tumor‐

reactive immune responses. Two enzymes, IDO and ARG1, have been suggested to 

exert the immune inhibitory effect.  

IDO, an enzyme involved in L‐tryptophan metabolism, catalyzes the rate limiting 

step in the oxidative breakdown of L‐tryptophan. IDO has been shown to be 

involved in immune tolerance in the placenta, which protects the fetus against 

attack by maternal T cells and has lately been shown to exhibit 

immunosuppressive functions in the tumor‐micro environments when expressed 

in DCs140.  Studies investigating L‐tryptophan and its metabolites indicate that IDO 

is chronically activated in cancer patients141 and that IDO activation correlates with 

progression of cancer 142. It has also been shown that low L‐tryptophan 

concentration in the blood correlates with decreased survival in patients with T 

cell leukemia or colon carcinoma142,143 and that several tumor types express 

IDO144. The mechanism of immune suppression is probably a combination of two 

factors; 1) overexpressed IDO in DC or tumor cells, depleting L‐tryptophan in the 

tumor‐micro environment, thereby inhibiting cell cycle progression in 

lymphocytes37 and 2) the toxic metabolite kynurenine produced in the reaction 

mediated by IDO, which is capable of inducing apoptosis145. For example, 

Uyttenhove et al. showed that overexpression of IDO in tumor cells intensified the 

tumor cells’ ability to grow more aggressively and that this correlated with a 

decrease of functional T cells at the tumor site144. The study also showed that 

administration of IDO inhibitors reduced tumor mass and stimulated anti‐tumor 

immune responses. 

ARG1 is also involved in inhibiting anti‐tumor immune response by depleting L‐

arginine35,146. It has been shown that depletion of L‐arginine downmodulates CD3ζ 

expression146,147 and impairs the expression of cyclin D3 and cdk4 in T cells, 

inhibiting downstream signaling leading to G0‐G1 cell cycle arrest36. A study 

 

    21 

analyzing the activity of ARG1 in peripheral blood mononuclear cells (PBMC) of 

renal cancer patients showed a significant increase in ARG1 activity compared to 

healthy controls148. The study also revealed a correlation between ARG1 activity 

and a decrease in CD3ζ expression in T cells and NK cells, indicating ARG1‐

dependent immune suppression of these cells. Several cell populations have been 

shown to be implicated in ARG1 activity in tumor‐bearing hosts; e.g. 1) increased 

ARG1 activity has been detected in cancer cell lines of colon, breast, or prostate 

cancer149, 2) CD11b+, CD14‐ myeloid‐derived suppressor cell150 (MDSC) and 

granulocyte expression of ARG1151  in patients with cancer mediate CD3ζ‐

downregulation, thus inhibiting T cell proliferation and cytokine production. 

Tumor Cell‐specific Immunosuppressive Mechanisms There are several 

additional, tumor‐specific mechanisms that are utilized to suppress the immune 

system in tumor bearing individuals. In addition to the mechanisms mentioned 

above, these include expression of FasL, ligands for inhibitory receptors on T cells 

and NK cells, and galectins on the tumor cells.   

The Fas‐dependent cell death pathway is triggered in cells expressing Fas by the 

interaction with its ligand, FasL152. FasL expression has been detected in several 

cancer types, including colon153, lung154, and esophageal155 cancer. Interaction of T 

cells and tumor cells induces Fas‐dependent cell death in T cells, thereby 

facilitating a “Fas/FasL counter attack”152. However, the presence of Fas/FasL 

counter attack is controversial, for example studies have shown pro‐inflammatory 

functions of FasL expressed on tumor cells156. 

Tumor cells express ligands for inhibitory receptors on T cells and NK cells that 

block effector functions of these cells. For example, many tumors express major 

histocompatibility complex class I chain‐related A (MICA), a stress‐induced 

molecule with immune stimulatory function5. However, it has been shown that 

tumor cells may shed MICA, which can bind to the NK cell or T cell activating 

receptor NKG2D, thus inhibiting the function of this receptor157. Soluble MICA has 

been detected in plasma of cancer patients in whom a downregulation of NKG2D 

on T cells and NK cells was seen157,158.  

Galectin‐1, a member of the lectin family, can hamper the T cell response159. It is 

now evident that tumors, including breast, prostate, and colon cancer express 

galectin‐1160. Furthermore, a negative correlation between galactin‐1 expression, 

tumor progression161 and numbers of T cells in the tumor162 has been shown. 

 

22 

Studies indicate that galectin‐1 suppresses T cells through 1) sensitization of T cells 

to Fas‐mediated cell death163, 2) inhibition of TCR signaling by downmodulation of 

CD3ζ164, and 3) suppression of pro‐inflammatory cytokines165.  

Immune Suppressive Inflammatory Effector Molecules in Cancer The 

above mentioned mechanisms of tumor‐induced immune dysfunction originate 

from physiological processes that aim to resolve an inflammatory response. It has 

been shown that effector molecules in the inflammation phase mediate immune 

suppression. ROS and RNS produced by myelomonocytic cells are two of the key 

effectors in the anti‐microbial machinery166,167. However, these reactive molecules 

have been shown to have adverse effects on the tumor‐specific response. It has 

been shown that ROS are produced by splenic macrophages from tumor‐bearing 

mice168, macrophages isolated from metastatic lesions of human melanomas169, 

and activated granulocytes derived from peripheral blood of cancer patients170. 

The secretion of ROS by these cells induces loss of T cell and NK cell functions, 

including defects in receptor associated signaling molecules, such as CD3ζ, defects 

in nuclear factor‐κB (NF‐κB) activation in T cells171,172, as well as a reduced cytokine 

production in response to T cell stimulation171,173‐175.  These phenomena are also 

noted in T cells from cancer patients176. ROS‐producing cells may be monocytes, 

macrophages, granulocytes, or immature myeloid cells and can be detected in the 

tumor‐micro environment168,177‐179, or in the peripheral circulation170. In addition, 

it has been shown that ROS may be produced by the tumor cells themselves, 

adding to the oxidative stress in the tumor‐micro environment180‐182.  

NK cells are extremely sensitive to ROS‐induced dysfunction183. ROS produced by 

granulocytes and monocytes have been shown to hamper NK cell function and 

viability as well as the expression of NCR on NK cells169,184‐187 . The down‐

modulation of NCRs and other NK cell receptors has been observed in NK cells 

from patients with acute myeloid leukemia 188, as well as other chronic 

inflammatory diseases such as hepatitis C189, and active human immunodeficiency 

virus (HIV) infection190.  

In murine models, MDSC inhibited IFN‐γ production by CD8+ T cells when peptide 

epitopes were presented in conjunction with MHC class I on MDSC surface191. This 

was not true for CD4+ cells, indicating the specific impairment of cytotoxic cells. In 

some studies, this inhibition required direct cell‐cell contact and appeared to be 

dependent on ROS, particularly hydrogen peroxide (H2O2)192. In patients with 

 

    23 

advanced tumors, immature myeloid cells inhibited antigen‐specific T cell 

responses, indicating an explanation for reduced T cell response in patients with a high frequency of MDSCs in the tumor environment177. 

NO is a free radical that at low doses regulates several biological functions, such as 

blood flow and smooth muscle relaxation.  This molecule is also produced by 

macrophages at high levels to function as an antimicrobial agent193. Studies 

indicate that NO at higher doses is involved in chronic inflammation, such as in 

cancer194,195. High concentrations of NO can generate RNS, such as nitrogen 

dioxide (NO2●)196. These reactive molecules cause damage to DNA, proteins, and 

lipids, leading to hampered cell functions, increased inflammatory response, and 

cell death197. The main NO‐producing enzyme in macrophages is iNOS193. Several 

lines of evidence indicate elevated levels of RNS at the tumor site.  In breast 

carcinoma, tumor‐infiltrating macrophages express iNOS198 and studies have found 

the expression of iNOS in colon adenomas199, ovarian cancer200, and 

melanomas201. NO has been shown to severely inhibit antitumor responses202 by 

suppressing T cell function203. Additionally, NO produced by macrophages inhibits 

activation of signal transduction, thereby suppressing T cell responses204. 

In parallel, studies utilizing probes for oxidative stress have shown that patients 

with cancer display increased levels of oxidative stress. For example, elevated 

tissue levels of malondialdehyde and 4‐Hydroxynonenal (4‐HNE), which are 

markers for the presence of lipid peroxidation by ROS, correlate with the clinical 

staging of colorectal cancer65.  Furthermore, increased oxidative stress‐induced 

DNA damage, measured by increased levels of 8‐oxo‐2 ‐deoxyguanosine (8‐

OxoGua), has been detected in lymphocytes of colorectal cancer patients205. It has 

also been suggested that oxidative stress is present in the blood, as studies show 

decreased levels of antioxidants in the plasma of colon cancer patients65,205.  

In conclusion, chronic inflammation associated with malignant tumors deregulates 

the induction versus resolution phases of the inflammatory process, which in turn 

facilitates disease progression. Several mechanisms are speculated to be 

responsible for the immune suppression and figure 4 shows a simplified model of 

cancer‐associated chronic inflammation. In consequence, in order to improve the 

immunotherapy regimens available today, a combinatorial remedy aiming not only 

to eradicate the tumor, but to reverse tumor‐induced immune dysfunction, is 

needed.  

 

24 

 

 

Fig 4 ‐ Chronic inflammation caused by a tumor. Upon  insult,  in  this  case  triggered  by  tumor  progression,  tissue‐resident  mast  cells  andmacrophages become activated by products produced after tissue damage or necrosis of tumorcells, e.g. neuro‐peptides, HMGB1, and formyl‐peptides derived from mitochondria of damagedcells.  As  seen  in  physiological  response  to  an  insult,  the  activation  leads  to  neutrophilinfiltration.  Thereafter, monocytes  enter  the  site  and  differentiate  into macrophages whereneutrophils and macrophages secrete ROS and RNS. Next  to enter  the  tumor site are  tumor‐specific T  cells  that  recognize  cells  that express  tumor‐associated antigens  (TAA) and kill  thetumor cells. However, the tumor is not totally eradicated as tumor‐escape variants survive theinitial immune response. This in turn leads to further tumor growth and increased activation ofthe  innate  immune  system  triggered  by  the  continued  necrosis  of  tumor  cells  and  tumorstroma.  In consequence, neutrophils and macrophages are chronically activated and continueto secrete ROS and RNS. In parallel, tumor‐specific T cells continue to enter the tumor site, butlose  effector  functions  and  go  into  apoptosis  due  to  the  immune‐suppressive  tumor‐microenvironment,  including  low  levels  of  nutrients,  accumulation  of  immune  suppressivecytokines,  tolerization  by  immature  DCs,  and  oxidative  stress.  In  conclusion,  the  processdescribed above  leads  to chronic  inflammation characterized by an environment  that  is  toxicand suppressive for cells that are capable of tumor eradication, such as T cells and NK cells. Inaddition,  tissue  repair processes,  such as angiogenesis, will also be  induced,  thus  facilitatingfurther tumor growth.  

 

    25 

3. Lymphocyte Cell Death 

Cell death is an essential physiological process in higher organisms as cell 

homeostasis is maintained by a balance between proliferation and cell death206. 

For example, selective cell death is crucial for proper organ development206 and, as 

described above, cell death of lymphocytes and neutrophils is a necessity for the 

resolution of the inflammation phase. Defects in the process will lead to severe 

disease, such as autoimmunity, degenerative diseases and immunodeficiency206. 

To ensure proper regulation of this vital process, hundreds of proteins are 

committed to govern the pro‐ and anti‐cell death signaling within cells207.  

As a simplification, cell death can be divided into 1) active cell death, i.e. apoptosis 

and 2) passive cell death, i.e. necrosis208. Apoptosis is mediated by a cascade of 

events, triggered by cellular stress, that leads to cell death and removal of the cell 

without release of toxic substances into the surrounding tissue, thereby 

preventing inflammation207. Apoptosis is characterized by morphological changes, 

such as chromatin and cytoplasmic condensation, DNA fragmentation, 

phosphatidylserine externalization and formation of apoptotic bodies208. On the 

other hand, necrosis is a passive, accidental cell death that manifests by rapid loss 

of plasma membrane integrity, which leads to an uncontrolled destruction of the 

cell and evokes the inflammatory process207. Recently, it has become clear that cell 

death in higher organism is more complex and cannot be completely explained 

through the two processes mentioned above; however a detailed explanation of 

these processes is beyond the scope of this thesis. 

The machinery mediating apoptosis involves caspases209. Humans express at least 

seven caspases that govern this process210. These molecules may be separated into 

two categories 1) the initiator caspases 2, 8, 9 and 10, and 2) the effector caspases 

3, 6 and 7211. Moreover, the apoptotic process is mainly mediated through two 

pathways, 1) the mitochondrial pathway, i.e. intrinsic pathway and 2) the death‐

receptor pathway, i.e. extrinsic pathway (see Fig 5). 

Intrinsic Pathway The intrinsic pathway of apoptosis is regulated through 

proteins that interact in the vicinity of the mitochondria212. This pathway is 

governed by the Bcl‐2 family of proteins. This protein family is divided into groups 

as they have opposing roles in cell death due to differences in the number of Bcl‐2 

Homology (BH) domains that the protein contains213. The anti‐apoptotic group, 

 

26 

having three or four BH domains, includes Bcl‐2, Bcl‐xL, and Bcl‐w. Upon activation 

or overexpression, these proteins hinder the cell from implementing the cell death 

machinery212.  In contrast, the pro‐apoptotic Bax‐like proteins (Bcl‐2–associated X 

protein (Bax), Bcl‐2 Homologous Antagonist Killer (Bak), etc), which have two or 

three BH domains, and the BH3‐only group of proteins (Bcl2‐antagonist of cell 

death (Bad), Bcl‐2‐interacting killer (Bik), BH3 interacting domain death agonist 

(Bid) etc), which has one short BH3 domain, induce cell death212. When the cell is 

exposed to stress, e.g. starvation or oxidative stress, the balance may be shifted 

from the anti‐ to a pro‐apoptotic state through activation of genes encoding the 

pro‐apoptotic proteins or activating post‐translational modifications of pro‐

apoptotic proteins214. This will lead to formation of pores in the mitochondria 

triggering mitochondria depolarization214, which leads to permeabilization and 

release of cytochrome c into the cytoplasm of the cell212.  

To counteract unwanted pore formation in the mitochondria, the anti‐apoptotic 

proteins stabilize the mitochondrial membrane215 by interacting with the pro‐

apoptotic proteins, thus blocking their apoptotic capacity216. Cytochrome c is 

released into the cytosol and, together with apoptotic protease activating factor 1 

(Apaf‐1) and pro‐caspase 9, forms the apoptosome that in turn activates the 

executioner caspase 3208,217. Upon mitochondrial disruption, other effector 

molecules, such as Second mitochondria‐derived activator of caspases 

(Smac)/direct inhibitor of apoptosis‐binding (DIABLO), are released, boost the cell 

death machinery after cytochrome c release by hindering the function of several 

inhibitors of apoptosis proteins (IAP) 218.  

Extrinsic Pathway Death receptors of the TNF receptor superfamily include Fas, 

TNF receptor, and TRAIL receptor. Upon ligation, these receptors associate with 

adaptor proteins containing death domains to form the death‐inducing signaling 

complex (DISC), resulting in caspase 8 activation208. In turn, active caspase 8 

cleaves and thereby activates caspase 3208.  Caspase 8 also cleaves Bid, which 

induces Bak and/or Bax incorporation into the mitochondrial outer membrane, 

leading to mitochondrial membrane depolarization and release of cytochrome c as 

in the intrinsic pathway219. The activation of caspase 3 leads to 1) cleavage of the 

inhibitor of caspase‐activated DNase (ICAD), inducing chromatin and DNA 

degradation220, 2) cleavage of lamins resulting in shrinkage of the nucleus, 3) 

degradation of the cytoskeleton, and 4) membrane blebbing due to cleavage of  

 

    27 

 

p21‐activated kinases221. The cumulative effect of all these processes is cell death 

by apoptosis. 

3.1. Oxidant­induced Cell Death 

ROS have a dual function in cellular systems, as it has been demonstrated that 

they can both stimulate cellular signaling pathways and trigger loss of cellular 

functions and cell death222,223. It has been shown that redox signaling is important 

in T cell function, as activation of the TCR induces ROS generation224, which is 

necessary for downstream‐signaling pathways225. On the other hand, ROS may also 

induce cell death in lymphocytes226. Thus, the outcome of exposure to ROS seems  

Fig 5. The intrinsic and extrinsic pathway of apoptosis.The extrinsic apoptotic pathway  is executed upon  ligation of death  receptors, e.g.triggering of Fas by FasL, and will lead to caspase 8 activation. Caspase 8 activationin turn activates caspase 3. In parallel, caspase 8 may also cleave Bid, thus inducingmitochondrial  depolarization  and  cytochrome  c  release.  The  intrinsic  apoptoticpathway  is  triggered  by  cellular  stress,  e.g.  DNA‐damage  or  ROS  exposure,  andcauses  a  shift  in  the balance between pro‐  and  anti‐apoptotic molecules  favoringpro‐apoptotic  signaling.  This  leads  to  mitochondrial  membrane  depolarization,cytochrome  c  release  and  activation  of  the  apoptosome  leading  to  caspase  3activation. Activation of  caspase 3 directs downstream processes  in  the apoptoticmachinery leading to cell death. Adapted from Hengartner et al.212

 

28 

Box 1 – The Basics of ROS and RNS 

Upon activation, neutrophils and macrophages undergo respiratory burst. Respiratory burst is a rapid chemical reaction, facilitated by phagocyte oxidase (Phox), to produce superoxide (O●

2‐) according to the reaction227: NADPH (M(n‐1)+) + O2 → NADP+ (Mn+) + O●

2‐. 

O●2‐ may convert, via super oxide dismutase (SOD), into hydrogen peroxide (H2O2)

228. In turn, myeloperoxidase (MPO) may convert H2O2 into singlet oxygen (

1O2), and further non‐enzymatically into ozone (O3).  MPO may also assist in the conversion of H2O2 into hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypoiodous acid (HOI)229,230. In parallel, O●

2‐ and H2O2 may non‐enzymatically produce hydroxyl radical (OH●). The above 

mentioned molecules are examples of reactive oxygen species (ROS).On the other hand catalase (CAT) may decompose H2O2 into H2O and O2.  Furthermore, the primary source of reactive nitrogen species (RNS) is NO produced by macrophages231. NO is generated by inducible nitric oxide synthase (iNOS) in the reaction231:  L‐arginine → L‐citrulline + NO

●.  Together with O●2‐, NO● may, non‐

enzymatically, produce peroxynitrite (ONOO‐).  Chemical reactions involving NO● lead to oxidation, nitration (addition of NO2), nitrosation (addition of NO), and nitrosylation (addition of NO on cysteine residues) of cellular components231.  Thus, activation of neutrophils and macrophages leads to the generation of ROS and RNS. These molecules are chemically unstable and may lead to damage of cellular structures, such as proteins, lipids, or DNA. Furthermore, these molecules may also act as second messengers in signal transduction, thereby affecting the cellular response to oxidative stress.                          Adapted from Ohshima et al.228   

 

    29 

unpredictable and it may be argued that it leads to activation of different 

processes, such as cell death or cell proliferation, depending on the pro‐ and anti‐

apoptotic balance within the cell and/or the antioxidant capacity of the cell.  

When studying T cell lymphomas as a model for normal T cells, it was 

demonstrated that T cell death involves caspase 3 activity as caspase inhibitors 

prevented cell death232‐234. These studies also showed loss of the mitochondrial 

membrane potential and release of cytochrome c upon H2O2 exposure234,235 and 

demonstrated that the intrinsic cell death pathway was predominant upon 

exposure to H2O2232. Furthermore, T cells that were activated in vivo induced 

apoptosis via a Fas‐ and TNF‐α‐independent pathway and AICD of T cells was 

characterized by caspase‐independent loss of mitochondrial membrane 

potential223. In parallel, a caspase‐dependent DNA loss and enhanced generation 

of ROS was observed. In addition, studies have shown that in the absence of 

survival factors T cells accumulate ROS, increase expression of pro‐apoptotic 

protein Bim and amplify iNOS expression236.  In this study antioxidants were used 

to verify ROS‐dependent cell death, BIM induction, and caspase activation. In NK 

cells studies have shown that ROS induce late caspase activation, DNA 

fragmentation, cellular condensation, and maintenance of intracellular Adenosine 

5'‐triphosphate (ATP)187,237. Other studies have implicated  poly(ADP‐

ribose)polymerase (PARP) as a key mediator of ROS‐induced cell death187. Thus, 

there seems to be a narrow window between activation and inhibition of function 

and cell death when lymphocytes are exposed to ROS.  

Counteracting Oxidative Stress Under normal physiological conditions, 

damage caused by ROS is counteracted by 1) several enzyme systems, such as 

superoxide dismutase (SOD) and catalase (CAT), and 2) scavenger systems,  

including the glutathione system238, the antioxidants vitamin C239, carotenoids240 

and vitamin E241. SOD catalyzes the dismutation of O2− into O2 and H2O2

242, while 

CAT decomposes 2 H2O2 into 2 H2O and O2243. Taken together theses enzyme 

systems act synergistically by efficiently clearing ROS through the overall reaction: 

  → 2 O2     4 O2

− + 4 H+  → 2 H2O2  → O2 + 2 H2O SOD    CAT   

 

The glutathione system is a complex antioxidant system that consists of 

monomeric glutathione (GSH), disulfide glutathione (GSSG), and glutathione 

 

30 

peroxidase, which catalyzes the reaction 2GSH + H2O2 → GSSG + 2H2O, and 

glutathione reductase, which converts GSSG to GSH. The glutathione system is a 

key defense against H2O2 and other peroxides238.  

In conclusion, oxidative stress may either 1) induce a positive signal leading to 

lymphocyte activation, 2) have no significant effect on signaling pathways, or 3) 

induce a negative signal, leading to loss‐of‐function or cell death of the 

lymphocyte. The outcome could be dependent on several factors, including the 

level of oxidative stress and the lymphocyte´s susceptibility to cell death. On the 

other hand, the outcome may also be dependent on the antioxidant capacity of 

the lymphocyte, protecting cells with higher levels of antioxidants from oxidative 

stress‐induced loss‐of‐function or cell death.  

 

 

 

 

 

    31 

Aims of the Thesis To improve the cancer immunotherapy treatments of today, a deeper 

understanding of tumor‐induced immune dysfunction is needed. This knowledge 

may lead to the development of new therapeutic strategies to reverse the immune 

suppression seen in cancer patients.  

Accordingly, the aims of this thesis are: 

► To improve the understanding of mechanisms leading to tumor‐induced 

immune dysfunction and its effects on the immune system; focusing on 

oxidative stress as a source of immune suppression.  

► To develop new treatment modalities to minimize tumor‐induced immune 

dysfunction; focusing on prevention of oxidative stress. 

 

32 

Results and Discussion 4. Part 1 ­ Differences in Susceptibility to Cell Death          of Lymphocyte Subsets 

ROS are known to be involved in phorbol myristate acetate (PMA)‐induced death 

of neutrophils, HIV‐induced death of T cells, death of pancreatic β cells, and neural 

cell death244‐248. However, the molecular events leading to oxidant‐induced cell 

death of lymphocytes is not fully understood. ROS‐induced lymphocyte cell death 

has primarily been studied using T cell lymphomas232‐234, but the effect of oxidative 

stress on primary lymphocytes has not been extensively investigated. By 

examining ROS‐induced cellular events within the various primary lymphocyte 

subsets, one can distinguish differences in the responses of the lymphocyte cell 

types to oxidative stress.  The results are critical to a more detailed understanding 

of the influence of oxidative stress on the individual components that constitute 

the cell mediated immunity, particularly against tumors. 

4.1. Implications of Preferential Cell Death of CD8+ TEM (Paper I) 

T cells are one of the main effector cell types used in immunotherapy against 

cancer. As described above, oxidative stress, caused by ROS that are produced by 

granulocytes and macrophages systemically or at the tumor site, has detrimental 

effects on T cell function and viability. It has been shown that ROS‐exposure of T 

cells at physiological levels leads to impaired TCR signaling, inhibition of NF‐κB 

function, and decreased cytokine production171,173,175.  H2O2‐secretion has been 

proposed as one of the sources of oxidative stress and may be one mechanism 

leading to tumor‐induced immune dysfunction. We have previously demonstrated 

that H2O2 suppresses TH1 cytokine production and that this suppression correlates 

with inhibition of NF‐κB activity171. Of interest, the suppression of cytokines was 

primarily seen in memory T cells.  

T Cell Subsets T cells can be categorized into subsets according to their effector 

functions and the expression of cell surface receptors249‐251 (Box 2). In essence, T 

cells can be sorted into two main compartments, CD4+ and CD8+ T cells.  CD4+ T 

cells (T helper cells) support and coordinate the adaptive immune response, thus 

facilitating the effector functions, i.e. antibody‐ or cell‐ 

 

    33 

Box 2 – Basics of T Cell Subsets 

T cell memory is a requirement for a functional adaptive immune system. Through clonal expansion and differentiation of T cells specific for an antigen, the individual can acquire a life‐long protection against a pathogen. Naïve T cells that have undergone the positive and negative selection in the thymus enter the blood circulation, home to the secondary lymphoid organs, e.g. lymph nodes, and await activation by DCs carrying processed antigens from an inflammatory site252. If the T cell receptor on a naïve T cell recognizes the MHC:peptide complex (signal 1) on the surface of DC, the DC expresses proper co‐stimulatory receptors (signal 2), and the DC secretes stimulatory cytokines (signal 3), the T cell becomes activated and starts to proliferate. These T cells then enter the circulation and home to the inflamed tissue252. When the infection is cleared the majority of T cells go into apoptosis through AICD or ACAD. However, some T cells survive and become memory T cells.  If the pathogen infects the individual again these memory T cells swiftly become reactivated and facilitate protection.  T cells may be divided into subsets249‐251  according to 1) the existence of effector function of the T cell and 2) phenotypic expression of cell surface receptors that allow cells to home to secondary lymphoid organs versus non‐lymphoid tissues. Simplified, T cells (CD3+ CD56‐) can be divided into CD4+ and CD8+ T cells.  CD4+ T cells mainly assist the adaptive immune response determining the appropriate effector functions to use: antibodies or CTLs. CD8+ T cells (CTL) can lyse target cells upon encountering a cell expressing the cognate antigen for its TCR. After clonal expansion of CD4+ or CD8+ T cells, some cells survive and become memory T cells. These memory T cells are divided into effector memory T cells (TEM) and central memory T cells (TCM)

253. Upon re‐activation TEM migrate to the inflammatory site and have the capacity for immediate effector function253. On the other hand, TCM have modest capacity for effector function and preferably home to T cell areas of secondary lymphoid organs. Upon antigen stimulation TCM have a high capacity to proliferate and differentiate into effector cells in response to antigenic stimulation253. Thus, T cells may be divided into different subsets using the phenotypic cell surface marker CD45RO, CD45RA and the functional cell surface marker chemokine receptor‐7 (CCR7)253. The functional consequence of CD45RA or CD45RO expression on T cells is not fully understood. The expression of CCR7 on T cells facilitates homing to secondary lymphoid organs253. By using these markers one may divide T cell subsets according to the following model:                

 

34 

mediated response. On the other hand, CD8+ T cells (CTL) are responsible for the 

direct lytic activity against target cells. Activated CD4+ or CD8+ T cells expand and 

subsequently the majority of T cells undergo apoptosis; however, some cells 

survive and differentiate into memory T cells. By using cell surface markers and 

correlating the expression of these markers to the function of T cells, Lanzavecchia 

and co‐workers have functionally characterized the T cell subsets253.  T cells may 

be divided into naïve, early effector (expressing CD45RA) and memory subset 

(expressing CD45RO). Memory T cells can be further divided into two subsets, 

effector memory T cells (TEM) and central memory T cells (TCM), depending on their 

ability to 1) migrate to the inflammatory site or to secondary lymphoid organs and 

2) perform immediate effector function or proliferate and differentiate into 

effector cells in response to antigenic stimulation253. The TEM subset, which 

expresses CD45RO but lacks expression of chemokine receptor‐7 (CCR7) and 

CD45RA, is characterized by the ability to home to an inflammatory site and 

perform effector function. In contrast, the TCM subset, which expresses CD45RO 

and CCR7 but lacks expression of CD45RA, is primarily located in secondary 

lymphoid organs and has a potent ability to proliferate upon re‐activation.  

In a previous study we observed that cytokine production in the memory T cell 

subset was decreased upon oxidative stress, but naïve cells remained functional. 

We proposed the hypothesis that the loss of function of memory T cells was due to 

a “pre‐apoptotic” state caused by ROS‐exposure. To this end, we developed an 

experimental setup resembling oxidative stress in vivo. In the previous study, H2O2 

was added exogenously to T cells and after 10 minutes the cells were washed to 

stop the ROS‐exposure. However, it may be speculated that ROS‐exposure in vivo 

has a longer duration. Since we used a setup that had H2O2 present throughout the 

entire incubation period in this study, we believe that this system resembles the in 

vivo situation more accurately. Furthermore, we improved the model by including 

purification of T cells using negative sorting techniques, enabling a more detailed 

analysis of cellular events in the different T cell subsets.  

Differences in Sensitivity to ROS‐induced Cell Death in T Cell Subsets 

In this study, we examined the disparities in viability and function following 

oxidative stress among the various T cell subsets. We conducted a detailed 

phenotypic analysis, using fluorescently labeled antibodies specific for surface 

markers together with viability staining using cell death markers.  Large differences 

were noted between the T cell subsets when comparing sensitivity to cell death 

 

    35 

induced by increasing levels of H2O2. We concluded that CD8+ T cells are more 

sensitive to oxidative stress than CD4+ T cells and that memory T cells, in each 

subset, are more sensitive than naïve T cells. Furthermore, when investigating the 

different memory T cell subsets, we found that the CD8+ TEM subset is particularly 

sensitive to cell death caused by low levels of oxidative stress and that CD8+ TCM 

were not as sensitive as CD8+ TEM, although substantial cell death in CD8+ TCM was 

also seen.  

By using a pan‐caspase inhibitor we were able to characterize the mode of ROS‐

induced cell death in memory T cells. We found that by inhibiting caspases we 

were able to reduce H2O2‐induced cell death, indicating an important role for 

caspases in the cell death process. After conducting detailed time‐kinetic 

experiments analyzing the temporal relationship between depolarization of 

mitochondrial membrane potential, caspase 8, and caspase 3 activity, we 

concluded that the intrinsic cell death pathway is primarily responsible for cell 

death, as mitochondrial depolarization was observed prior to caspase 8 and 

caspase 3 activity. In summary, memory T cells, especially CD8+ TEM, are more 

sensitive to oxidative stress‐induced cell death as compared to other T cell subsets 

and cell death is characterized by caspase activity induced by mitochondrial 

depolarization.  These findings are schematically depicted in Figure 6. 

Fig 6 ‐ Different susceptibility to H2O2‐induced cell death of T cell subsets Upon  exposure  to  ROS,  CD8+  T  cells  go  into  apoptosis  at  lower  H2O2

concentrations as compared to CD4+ T cells.  In addition,  in the CD8+ T cellcompartment  memory  T  cells,  in  particular  TEM,  are  more  sensitive  tooxidative stress‐induced cell death and more rapidly undergo apoptosis ascompared to other T cell subsets.  

 

36 

Differences in Signal Transduction in the T Cell Subsets It is possible that 

ROS produced by the T cell itself may have an important role in signal 

transduction. The model of oxidative stress described in previous sections is an 

example of oxidative stress supplied by external sources, e.g. ROS produced in the 

oxidative burst of neutrophils.  It is known that H2O2 can diffuse through the cell 

membrane and one may speculate that exogenously added H2O2 can exert its 

effects intracellularly by acting directly on intracellular components. It has been 

shown that ROS can act as an internal messenger affecting cellular events, such as 

cell death caused by T cell activation223. Although not investigated here, it is 

possible that H2O2 used in this study acts as a signal transduction molecule 

mimicking normal T cell activation signaling events, thus inducing AICD. In theory, 

memory T cells may be more susceptible to AICD following H2O2‐exposure due to 

factors connected to differentiation of T cells into a memory phenotype. 

Differences in Pro‐ and Anti‐apoptotic Molecules Another possible 

explanation for the disparity of sensitivity between the T cell subsets may be 

related to differences in expression levels of anti‐apoptotic (e.g., Bcl‐2 and Bcl‐xL) 

and pro‐apoptotic (e.g., Bax, Bak, and Bim) proteins. Indeed, it has been shown 

that CD8+ T cells have elevated levels of Bcl‐xL and Bax as compared to CD4+  T 

cells254; it is therefore possible to speculate that the differences in pro‐apoptotic 

protein expression could explain the differences in susceptibility to cell death 

between CD4+  and CD8+ T cells. In addition, Akbar et al. have shown that memory 

T cells have decreased levels of the anti‐apoptotic protein Bcl‐2 as compared to 

naïve T cells255.  Other reports have demonstrated that Bcl‐2 and Bcl‐xL levels in T 

cells decrease after activation31,256,257. It is possible that exogenously added H2O2 

induces cellular stress or DNA‐damage, which leads to activation and/or 

expression of pro‐apoptotic molecules. The increase in pro‐apoptotic components 

may then be sufficient to override anti‐apoptotic components in memory T cells as 

these cells have lower levels of counteracting anti‐apoptotic proteins compared to 

naïve T cells, resulting in preferential cell death of memory T cells. 

Implication for Current Immunotherapy Preferential cell death of CD8+ TEM 

by oxidative stress may be a contributing factor to tumor‐induced immune 

dysfunction and may explain the difficulties in developing effective 

immunotherapy against cancer. For example, IL‐2 stimulated, tumor‐specific T cell 

lines from tumor‐infiltrating lymphocytes used in an adoptive cell transfer settings 

are predominantly of the CD8+ TEM subtype61,258 and it may be hypothesized that 

 

    37 

these cells, upon homing to the tumor site following administration to the patient, 

may encounter an oxidative milieu resulting in their elimination by the 

mechanisms described in this study. These therapies might therefore benefit from 

concomitant administration of oxidative stress antagonists, thereby rescuing T 

cells from cell death and augmenting the anti‐tumor response.   

4.2. Antioxidants Rescue CD56bright NK Cells from Cell Death     (Paper II) 

 Like T cells, human NK cells can be divided into subsets. For NK cells, this division 

is based on the levels of CD56 expression, which correlate with differences in their 

biological function. The two NK cell subsets, CD56dim and CD56bright NK cells, have 

different patterns of responding to stimuli. CD56dim NK cells have the ability to 

exert immediate cytotoxic functions and CD56bright NK cells mainly influence the 

immune system by secreting cytokines upon activation259. It has been shown that 

NK cells protect from infection and may be of importance for the eradication of 

tumor cells260. However, as described above, several studies have concluded that 

NK cells are exceptionally sensitive to oxidative stress. Thus, the environment in 

cancer patients is likely to hamper NK cell‐mediated anti‐tumor immunity. 

A number of studies have reported an altered ratio of CD56dim to CD56bright NK cells 

at the inflammatory site261,262.  Members of our laboratory have observed a 

decrease in CD56dim NK cells in ascites of ovarian cancer patients (manuscript in 

preparation). It is, however, not known if this is due to aberrations in induction, 

proliferation, or recruitment of CD56bright NK cells or due to a preferential death of 

CD56dim NK cells at the tumor site.  

Based on our findings of differential susceptibility to oxidative stress‐induced cell 

death in T cell subsets, we hypothesized that the altered CD56dim/CD56bright ratio 

might be due to differences in sensitivity of NK cells to cell death upon exposure to 

oxidative stress. To address this question we developed an in vitro model 

comprising co‐culture of purified NK cells with ROS‐producing neutrophils. In 

parallel with the oxidative stress model that we developed in paper I, a detailed 

investigation of possible differences between the NK cell subsets was conducted. 

Altered CD56dim/CD56bright NK Cell Ratio due to Differences in 

Antioxidant Capacity CD56dim NK cells undergo cell death upon co‐culture with 

activated neutrophils, as a consequence of H2O2 secreted by the latter. In contrast,  

 

38 

Box 3 – Basics of NK Cell Activation 

 NK cells are lymphocytes that are regarded as a part of the innate immune system263. It has been shown that NK cells are important in the immune response against viruses264 and tumors265. NK cells do not possess recognition receptors, such as TCR on T cells; on the contrary, NK cells are governed by a balance of stimulatory and inhibitory signals mediated by receptor:ligand interaction with the target cell266. Thus, NK cell activation is regulated by which stimulatory and inhibitory ligands that are expressed by the target cell and what stimulatory and inhibitory receptors are expressed on the NK cell267.   One important feature in the regulation of the NK cell is its ability to differentiate infected or tumor cells, that have low levels of MHC class I molecules, compared to normal cells267. This is made possible by expression of several of MHC class I‐binding receptors on NK cells267. If the target cell lacks the ligand for these receptors the NK cell becomes active due to a reduced inhibitory signal in the interaction with the target cell, which leads to lysis of the target cell267; i.e. missing‐self recognition by NK cells268. However, NK cells also express stimulatory and inhibitory receptors specific for ligands on the target cell that is expressed if the cell is subjected to stress, such as virus infection, DNA‐damage‐ or carcinogenic transformation of a cell266. If the target cell expresses high levels of these stress‐induced ligands, this may override the inhibitory signal facilitated by MHC class I molecules leading to executing of cell death of the target cell by NK cells267.                                 Adapted from Lainer266   

Adapted from Raulet & Vance267   

 

    39 

CD56bright NK cells are almost resilient to cell death. The selective susceptibility of 

CD56dim NK cells to cell death was verified in a series of experiments exposing NK 

cells to exogenously added H2O2. Of note, the shift in CD56dim/CD56bright NK cell 

ratio was only true for ROS as NO‐ or γ‐radiation‐induced cell death did not show 

the same pattern, indicating a unique role for ROS. A possible explanation for the 

differences in susceptibility to ROS‐induced cell death may be a difference in 

antioxidant levels in the different NK cell subsets. Indeed, assessment of the ability 

of ROS to enter the cell, as well as the antioxidant capacity exhibited by lysate 

from the different NK cell subsets indicated lower levels of antioxidants in CD56dim 

NK cells as compared to CD56bright NK cells.  

Potential Explanation for Differences in Antioxidant Levels  An 

independent study  in parallel also reported that CD56bright NK cells are less 

sensitive to oxidative stress as compared to CD56dim NK cells269, substantiating the 

findings of our study. Thorén et al.269 demonstrated that apoptosis in both NK cell 

subsets is dependent on PARP activity and that the differences in antioxidant 

levels are due to increased levels of surface thiols in the CD56bright NK cell 

subset187,269. Furthermore, Hanna et al. have conducted a detailed mapping of 

gene expression in the different NK cell subsets and found increased levels of 

glutathione peroxidase 1 in CD56bright NK cells, an enzyme that catalyzes the 

reduction of H2O2 and glutathione, thereby adding to the antioxidant capacity of 

this subset270. 

In conclusion, we suggest that the accumulation of CD56bright NK cells at 

inflammatory sites, can be explained by a rapid loss of CD56dim NK cells due to 

ROS‐induced cell death. The increased cell death of CD56dim NK cells as compared 

to CD56bright NK cells results from lower antioxidant levels and leads to a 

preferential survival and accumulation of CD56bright NK cells at the site of 

inflammation. 

4.3. Conclusion Part 1 

In this series of experiments we show a disparity between T cell and NK cell 

subsets in their sensitivity to oxidant‐induced cell death. Strikingly, in both T cells 

and NK cells, the cells with the highest potential to mount an anti‐tumor response 

are the most sensitive to oxidative stress, i.e. CD8+ TEM and CD56dim NK cells. This 

skewed sensitivity to ROS‐induced cell death may have a great impact on the 

 

40 

success of immunotherapy approaches utilizing these cells as primary effector 

cells.   

The underlying mechanism for the differential sensitivity to ROS‐induced cell death 

in subsets of T cells and NK cells is, however, not identical. Based on our finding 

that NK cell subsets display altered levels of antioxidant molecules, we conducted 

a similar analysis investigating the antioxidant capacity in T cell subsets 

(unpublished data). The experiments performed thus far show no, or marginal, 

differences in antioxidant levels between T cell subsets. The preferential cell death 

of CD8+ TEM and CD56dim NK cells may have different mechanisms. Our data 

suggest that, in T cells, a difference in sensitivity to H2O2‐induced cell death 

signaling is the main reason for the different outcome of ROS‐induced cell death in 

the T cell subsets (Figure 7A). This might be due to excess activation signaling, i.e. 

H2O2 acting as a second messenger leading to AICD.  Alternatively, H2O2 could 

induce cellular stress leading to cell death as memory T cells have lower levels of 

anti‐apoptotic proteins. In contrast, the differences in sensitivity of NK cell subsets 

to ROS‐induced cell death may be due to differences in antioxidant levels, leading 

to lower overall levels of oxidative stress in CD56bright NK cells as compared to 

CD56dim NK cells on exposure to identical levels of oxidizing substances (Figure 7B). 

Although not addressed in this study, there may nevertheless be differences in 

sensitivity to cell death signaling in NK cell subsets as NK cells can also undergo 

activation‐induced cell death. 

In conclusion, these studies propose the use of treatment modalities aimed at 

reducing oxidative stress in cancer patients in order to rescue CD8+ TEM and 

CD56dim NK cells from ROS‐induced cell death upon encounter of the oxidative 

milieu in the tumor‐micro environment, thus enabling a more efficient anti‐tumor 

response. 

 

 

    41 

 

 

 

 

 

 

 

 

 

 

 

 

5. Part 2 – Therapies to Reverse Oxidative Stress in        Lymphocytes 

It is now clear that tumor‐induced immune dysfunction substantially reduces the 

efficacy of cancer immunotherapy. In addition to immunotherapy, one may 

develop combinatorial approaches that target these immune suppressive 

mechanisms in order to counteract immune suppression. With regard to oxidative 

stress as a cause of lymphocyte cell death, there are two main approaches to 

introduce molecules that can decompose ROS and decrease oxidative stress: 1) 

administration of antioxidants or 2) utilizing antioxidant enzyme systems.  

5.1. Using Vitamin E to Reduce Oxidative Stress in Colon      Cancer Patients (Paper III) 

The Use of Oral Administered Antioxidants Vitamin E is a lipid‐soluble 

antioxidant that can be administered orally to cancer patients271. Vitamin E 

protects cells from ROS and increases cell membrane stability when located in 

cellular membranes271. We have previously conducted a small clinical trial 

Fig  7 ‐ Different  mechanisms  mayexplain the differential susceptibility ofROS‐induced cell death in T cells and NKcell subsets. A)  In T cells, the most  likely mechanisticexplanation  of  the  differences  insusceptibility  to cell death by naive andmemory T cells  is  the differences  in  thesensitivity  to  ROS‐induced  cell  deathsignaling  between  the  subsets.B) CD56bright NK cells have elevated levelsof antioxidants as  compared  to CD56dim

NK  cells,  which  might  explain  thedifferences  in  susceptibility  to  ROS‐induced cell death between the subsets.

 

42 

comprising 13 colorectal cancer patients receiving a short‐term (2 weeks) 

supplementation of 750 mg vitamin E with the aim to reduce oxidative stress and 

thereby improve the status of the immune system272. Analysis of peripheral blood 

T cells from these patients showed an enhanced production of IL‐2 and IFN‐γ and 

an increase in the CD4/CD8 ratio. With regard to NK cells, studies have shown that 

vitamin E may enhance NK cell activity273,274 and can protect lymphocytes from 

ROS‐induced DNA damage when added to co‐cultures with PMA‐stimulated 

monocytes275. Furthermore, vitamin E together with trace elements, has been 

shown to enhance NK cell activity276. Studies have also shown that vitamin E levels 

are decreased in colon cancer patients indicating a high turnover of 

antioxidants65,205 and a possibility to restore antioxidant levels by supplementation 

of vitamin E.  

Supplementation of Vitamin E Enhances NK Cell Lytic Activity in 

Cancer Patients We conducted a detailed analysis of the function, phenotype 

and receptor expression of NK cells from seven patients with colorectal cancer 

(Dukes stage C and D) that had received vitamin E during a period of two weeks. 

Our data show a clear improvement in NK cell lytic activity after vitamin E 

treatment. The mechanism for the improved activity could not be established 

despite numerous experiments. We did however determine that the increased NK 

cell activity was not due to 1) increased numbers of NK cells or an increase in the 

proportion of the CD56dim NK cell subpopulation, 2) increase in perforin expression 

or an enhanced ability of NK cells to produce IFN‐γ, 3) alteration in levels of CD4+ 

Treg, 4) alteration in viability of NK cells, or 5) alternations in the overall cytokine 

milieu in blood plasma. An increase in the expression of the activating NKG2D‐

receptor was noted in NK cells from all patients. In theory, upregulation of the 

NKG2D receptor may be a factor contributing to the increased cytolytic activity of 

the NK cells.  However, one patient who did not demonstrate increased NK cell 

activity also had an increase in NKG2D expression reducing the possibility that 

upregulation of NKG2D is exclusively responsible for the increased NK cell activity 

observed in this study.  

Potential Mechanism of Action of Vitamin E Supplementation Although 

we were unable to define the mechanism of its protective effect, vitamin E can 

reduce oxidative stress either through incorporation into the membranes of NK 

cells or by reducing the overall oxidative status in peripheral blood, thus indirectly 

 

    43 

decreasing the oxidative stress on NK cells. Other antioxidant modalities have 

been shown to be effective in boosting the immune system. For example, 

administration of the antioxidant histamine together with IL‐2 and IFN‐α showed 

improvement in the anti‐tumor response in melanoma patients277,278 . In summary, 

we demonstrate that oral administration of an antioxidant can improve NK cell 

function and that cancer immunotherapy in conjunction with vitamin E may have a 

greater clinical efficacy.  

5.2. Arming T Cells with an Antioxidant Enzyme (Paper IV) 

Using Gene Therapy to Introduce an Antioxidant Enzyme Another way 

to increase the ability of lymphocytes to resist oxidative stress is to utilize 

antioxidant enzymes that normally protect cells from ROS‐induced injury, such as 

SOD, CAT and enzymes of the glutathione system238.  Gene therapy approaches 

have been used in other studies to improve lymphocyte function. For example, 

gene transfer of a chimeric GM‐CSF–IL‐2 receptor279 or the CD28 molecule280 into 

human CTLs have been shown to improve T cell function.  Expression of 

telomerase gene in T cells has been demonstrated to prolong the lifespan of 

transduced cells281. Gene modification of lymphocytes is thus feasible and has 

even been successfully used to introduce tumor‐specific TCR into primary T cells 

for adoptive therapy of cancer patients282.  

Several studies have shown that the exogenously added antioxidant enzyme CAT 

can protect lymphocytes from oxidative stress169,170,192. We therefore developed a 

gene therapy approach utilizing a retroviral system to insert the CAT gene into 

primary T cells, based on the premise that CAT expression would rescue the T cells 

from ROS‐induced suppression. This gene therapy approach has been successfully 

utilized in other disease models, such as hyperoxia‐induced injury283, oxidative 

stress‐induced pancreatic islet destruction284 and neural cell degeneration caused 

by ROS285. 

CAT Expression Rescues T Cells from Oxidative Stress We were able to 

increase levels of functional CAT in CD4+ and CD8+ T cells by retroviral delivery of 

cDNA encoding for the human wild‐type CAT gene.  CAT transduced T cells were 

less sensitive to oxidative stress‐induced loss of function and cell death as 

compared to control cells when exposed to ROS.  These experiments proved that 

CAT expression in primary CD4+ or CD8+ T cells can rescue these cells from 

oxidative stress, giving “proof‐of‐principle” that a gene therapy approach using an 

 

44 

antioxidant enzyme can potentially reverse tumor‐associated immune suppression 

resulting from ROS. 

Advantages of a Gene Therapy Approach Gene transfer based 

immunotherapies in cancer patients is cost and labor intensive. However, this 

approach has several benefits, as there are established clinical protocols using 

retroviral systems to transduce tumor‐specific T cell receptors282 and concurrent 

retroviral delivery of the CAT gene could be done without major modifications. 

Furthermore, oral administration of antioxidants has several limitations including  

inadequate permeation of the antioxidant into the tumor site, as well as adverse 

effects related to the high antioxidant levels needed to achieve appropriate in situ concentrations. The use of CAT transduced T cells ameliorates some of these 

issues since the cells can proliferate and actively home to the tumor site as well as 

persist in the patients, protracting the anti‐tumor effect.  

5.3. Conclusion Part 2 

We have investigated two approaches for using antioxidants in an attempt to 

decrease oxidative stress. In Paper III, we demonstrate that oral administration of 

vitamin E induces an increase in NK cell lytic activity. In Paper IV we developed a 

gene therapy approach enabling expression of the antioxidant enzyme CAT in 

primary T cells. Both methods can be applied to reduce oxidative stress in cancer 

patients. Systemic administration of vitamin E increased the antioxidant levels in 

the patients, whereas CAT transduction of T cells specifically sustains T cells upon 

encounter of an oxidative milieu, such as the tumor‐micro environment. 

 

    45 

Concluding Remarks The immune system needs to be in perfect synchrony in order to be able to 

perform its function. The immune system responds to infections with both innate 

and adaptive components in order to rapidly eliminate pathogens. The immune 

response is tightly regulated in order to avoid immunopathological consequences. 

This regulation is mediated through pro‐ and anti‐inflammatory mechanisms that 

govern the outcome of the immune response. 

The balance of the immune system in cancer patients is skewed towards chronic 

inflammation. This chronic inflammation is known to decrease the efficacy of 

immunotherapy approaches. Tumor‐associated immune suppression results from 

several mechanisms, such as secretion of anti‐inflammatory cytokines, increased 

cell death of lymphocytes, deprivation of essential nutrients, and oxidative stress. 

Studies have shown that oxidative radicals formed intracellularly may activate 

lymphocytes224,225; however, at higher concentrations ROS may instead induce loss 

of function and cell death of T cells and NK cells169,183. We have here shown that 

oxidative stress targets the most efficient tumor reactive cells, i.e. CD8+ TEM and 

CD56dim NK cells. Our findings might explain the limited clinical responses noted 

for anti‐tumor therapy utilizing these cell types.  

We have used two strategies in order to counteract ROS‐induced immune 

suppression, 1) oral administration of antioxidants aimed at decreasing the 

systemic as well as the intratumoral oxidative stress or at increasing antioxidant 

levels in lymphocytes and 2) utilizing an enzyme, introduced by gene‐transfer into 

lymphocytes, in order to increase their antioxidant capacity. Our results show that 

both approaches may be beneficial in the reversal of the oxidative stress‐induced 

immune dysfunction in cancer patients. 

Other modalities have been suggested to counteract tumor‐mediated immune 

suppression caused by mechanisms other than oxidative stress. For example 

Cheng et al. were able to improve the function of tolerized CD4+ T cells286, whereas 

Wang et al. were able to activate, instead of tolerize, tumor‐specific T cells287 by 

manipulating the signaling pathways in DCs using tyrosine kinase inhibitors. In  

 

46 

Fig 8 ‐ The combination of im

munotherapy and treatm

ents aiming to reverse tum

or‐induced immune dysfunction m

ay lead to improved clinical outcom

e.Chronic inflam

mation in cancer patients creates a disadvantageous m

ilieu for immunotherapy approaches. There are several m

odalities to reduce the immune suppression.

Oxidative stress‐induced im

mune suppression can be reduced by utilizing antioxidants. The effect of suppressive cytokines can be decreased by either targeting the cytokine

itself, e.g. by administration of anti‐TG

F‐β mAb, or by targeting cell populations responsible for the secretion of the suppressive cytokines, e.g. depletion of T

regs  by anti‐CD25

mAb. Inhibitory receptors on T cells, e.g. CTLA

‐4, can be targeted thereby relieving the suppressive effect and drugs reversing the tolerizing capacity of DC can be em

ployed.Drugs can block N

O production, thus reducing RN

S levels, or inhibit enzymes responsible for deprival of essential nutrients, thus im

proving lymphocyte function. The

combination of one or several of these approaches w

ith immunotherapy treatm

ents may lead to reversal of tum

or‐induced immune dysfunction and an im

proved clinicaloutcom

e.  

 

    47 

addition, studies have shown that targeting inhibitory receptors, such as cytotoxic 

T‐lymphocyte‐associated protein 4 (CTLA‐4)288 and programmed death‐1 (PD‐1) 

receptor289, on T cells with antagonistic antibodies potentiates the anti‐tumor 

immune response.  

CD4+ Treg are implicated in the tumor‐induced immune dysfunction and one of the 

main immune suppressive mechanisms that CD4+ Treg exert is secretion of TGF‐β. 

Several studies have shown that depletion of CD4+ Treg with antibodies, such as 

anti‐CD25, has beneficial effects on anti‐tumor activity123. Furthermore, it has 

been suggested that neutralization of TGF‐β by methods such as administration of 

an anti‐TGF‐β receptor antibody and drugs blocking the intracellular signaling of 

the TGF‐β receptor290 may also lead to reversal of this suppression. Blocking 

enzymes responsible for deprival of essential nutrients at the tumor site, i.e. IDO 

and ARG1, may also improve T cell function. Indeed, Muller et al. have observed a 

synergistic effect combining small molecule that inhibits IDO with 

chemotherapy291. Studies have also shown that blockage of ARG1 inhibits tumor 

growth and that this effect is mediated by the immune system146. NO production 

by iNOS as a source of RNS has also been targeted in order to reduce tumor‐

induced immune dysfunction and it has been shown that administration of iNOS 

inhibitor reverses T cell suppression292. It has further been shown that co‐

administration of ARG1 and iNOS inhibitors has synergistic effects on anti‐tumor 

therapy292. 

In conclusion, it is evident that there are ways to reverse tumor‐induced immune 

dysfunction. As depicted in figure 8, it is conceivable that by combining existing 

immunotherapy approaches with one or several methods of reversing tumor‐

induced immune dysfunction, an improved clinical response in cancer patients 

could be achieved. 

 

48 

Acknowledgements The effort, summarized in this thesis, has been fun, frustrating, interesting, and a 

lot of work. I perform at my best when I am surrounded by and collaborating with 

talented co‐workers and when I have the support of my friends and family.  

I have been blessed with the support of many people to whom I would like to 

express my sincere gratitude.  

Rolf Kiessling, my supervisor, for support, knowledge, and for providing an 

excellent balance between scientific guidance and independence; for pushing me 

to continue and enabling me to do “extra”‐scientific activities. Thank You! 

Jelena Leviskaya, my co‐supervisor, for listening and for high‐quality advices 

regarding science and non‐science. 

Mike Nishimura, for a fruitful collaboration, your vast knowledge, and your 

generosity.  

Isabel, Christian J, and Raja for helping me with the writing of this thesis.   

All former and present colleagues in the group: Maria, Simona, Isabel, Lena‐Maria, 

Chiara, Andres, Kosaku, Takhashi, Eiji, Mitsue, Jan‐Alvar, Anita, Lars A, Andreas, 

Kalle L, Max, Tomas, Silvia, Akihiro, Alvaro. A special thanks to: Kristian H for 

convincing me that there is a “light in the tunnel”, Christian J for superb teamwork 

and not despairing during the endless night shifts, Helena for being a super‐

collaborator (when the blizzard is coming you know who to call…), Volkan for your 

kindness and Turkish food, Daiju for everlasting brainstorming and idea creation (I 

hope I’ll visit you and your lovely family in Japan soon), Anna DG for always being 

you (fun, talkative, energetic, positive (most of the time ☺ ), truly caring, and 

helping me develop my computer‐teaching skills, Kalle M for being an inspiration 

and the go‐to guy, Mattias C (lost to the dark side) for your enthusiasm and caring,  

Håkan for making the group more interesting, Telma & Charlotte for making the 

CAT‐project possible, and Carl Tullus; I miss you. 

People at the floor: Thank you for creating a fun and inspiring work atmosphere. A 

special thanks to Eva M, Marzia, Maxim, Ashley, Pavel, Fredrik E “the roomie”, 

Anki, Kajsa, David, Ingrid for all your help, Barbro, Lena, Tina, Torbjörn, Peter, 

Karin, Kalle A, Andrea, and Giuseppe. 

 

    49 

People at CCK: Thank you for the many ways you have helped me. A special thanks 

to: Dan G, Stig L, Bita, Aleksandra, Marianne, Jacob, Magnus B, Evi, Sören, Joe, 

Emily, Elisabeth, Elle, Anders, Gunilla, Eva‐Lena, Mari, and Juan. 

Class‐mates of Biomedicine: Thank you for making the first four years at KI so 

much fun! Especially, Markus (also lost to the dark side) for sauna and laughs, Nina 

R, for being genuine, driven and caring, Linda S for your kindness,  and Jonas for 

being my dear friend, idea creator, and source of inspiration. 

Friends: Martin for being my friend and “brother”, Nina W for always caring and 

adding new perspectives on life,  Anneli & Peter, Lina, Anna G, Linus & Katarina, 

Karolin for your long and true friendship. 

Family: Bosse and Kaj for being my role models in medicine, Arne & Gudrun for 

welcoming me into your family and always being there, Sanna & Fredrik for always 

having your door open, for summers and for winters, Fabian & Josefin for being 

the best cousins, Mormor for being an inspiration ‐ keep on dancing, Tian – my 

wonderful brother, for your warmth, for always laughing and for showing me how 

to be a kid. Eva, for being a great svägerska – you are always positive! Linda – my 

darling sister, for all our talks, your honesty and love, for teaching me not to be a 

robot, Mamma & Pappa for making me who I am, for your everlasting support, 

generosity, and love. 

Albin & Viktor skratt kärlek ömhet skoj brottas läsa saga spela boll jag älskar er.  

Lena for being there, for believing in me, for letting me do what I wish, for having 

dinner served when it is “just such a day”, for pushing to go further when I am 

hesitating, for being a loving mother and my girl.  

For me you are love laughs security trust best friend. Without you I am not me.  

  

 

50 

References 1.  Cancerfonden. Cancer i siffror 2005; 

2006. 2.  Patel RR, Sharma CG, Jordan VC. 

Optimizing the antihormonal treatment and prevention of breast cancer. Breast Cancer. 2007;14:113‐122. 

3.  Melief CJ, Toes RE, Medema JP, van der Burg SH, Ossendorp F, Offringa R. Strategies for immunotherapy of cancer. Adv Immunol. 2000;75:235‐282. 

4.  Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol. 2003;21:807‐839. 

5.  Malmberg KJ, Ljunggren HG. Escape from immune‐ and nonimmune‐mediated tumor surveillance. Semin Cancer Biol. 2006;16:16‐31. 

6.  Damazo AS, Yona S, Flower RJ, Perretti M, Oliani SM. Spatial and temporal profiles for anti‐inflammatory gene expression in leukocytes during a resolving model of peritonitis. J Immunol. 2006;176:4410‐4418. 

7.  Nathan C. Points of control in inflammation. Nature. 2002;420:846‐852. 

8.  Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase‐activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6:151‐158. 

9.  Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones. 2000;5:443‐451. 

10.  Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191‐195. 

11.  Carp H. Mitochondrial N‐formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982;155:264‐275. 

12.  Kaneider NC, Leger AJ, Kuliopulos A. Therapeutic targeting of molecules involved in leukocyte‐endothelial cell interactions. Febs J. 2006;273:4416‐4424. 

13.  Decoursey TE, Ligeti E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci. 2005;62:2173‐2193. 

14.  Osusky R, Malik P, Ryan SJ. Retinal pigment epithelium cells promote the 

maturation of monocytes to macrophages in vitro. Ophthalmic Res. 1997;29:31‐36. 

15.  Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860‐867. 

16.  Yang D, Chertov O, Bykovskaia SN, et al. Beta‐defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525‐528. 

17.  Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP‐3beta, ELC)‐dependent mobilization of dendritic cells to lymph nodes. Cell. 2000;103:757‐768. 

18.  Jin FY, Nathan C, Radzioch D, Ding A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell. 1997;88:417‐426. 

19.  Ashcroft GS, Lei K, Jin W, et al. Secretory leukocyte protease inhibitor mediates non‐redundant functions necessary for normal wound healing. Nat Med. 2000;6:1147‐1153. 

20.  Grobmyer SR, Barie PS, Nathan CF, et al. Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia. Crit Care Med. 2000;28:1276‐1282. 

21.  Krammer PH. CD95's deadly mission in the immune system. Nature. 2000;407:789‐795. 

22.  Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P. Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol. 2002;14:354‐359. 

23.  Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7:532‐542. 

24.  Krueger A, Fas SC, Baumann S, Krammer PH. The role of CD95 in the regulation of peripheral T‐cell apoptosis. Immunol Rev. 2003;193:58‐69. 

25.  Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH. Autocrine T‐cell suicide mediated by APO‐1/(Fas/CD95). Nature. 1995;373:438‐441. 

26.  Sytwu HK, Liblau RS, McDevitt HO. The roles of Fas/APO‐1 (CD95) and TNF in antigen‐induced programmed cell death 

 

    51 

in T cell receptor transgenic mice. Immunity. 1996;5:17‐30. 

27.  Janssen EM, Droin NM, Lemmens EE, et al. CD4+ T‐cell help controls CD8+ T‐cell memory via TRAIL‐mediated activation‐induced cell death. Nature. 2005;434:88‐93. 

28.  Poggi A, Massaro AM, Negrini S, Contini P, Zocchi MR. Tumor‐induced apoptosis of human IL‐2‐activated NK cells: role of natural cytotoxicity receptors. J Immunol. 2005;174:2653‐2660. 

29.  Schmitz I, Krueger A, Baumann S, Schulze‐Bergkamen H, Krammer PH, Kirchhoff S. An IL‐2‐dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95‐mediated activation‐induced cell death. J Immunol. 2003;171:2930‐2936. 

30.  Erlacher M, Michalak EM, Kelly PN, et al. BH3‐only proteins Puma and Bim are rate‐limiting for gamma‐radiation‐ and glucocorticoid‐induced apoptosis of lymphoid cells in vivo. Blood. 2005;106:4131‐4138. 

31.  Hildeman DA, Zhu Y, Mitchell TC, et al. Activated T cell death in vivo mediated by proapoptotic bcl‐2 family member bim. Immunity. 2002;16:759‐767. 

32.  You H, Pellegrini M, Tsuchihara K, et al. FOXO3a‐dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med. 2006;203:1657‐1663. 

33.  Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907‐916. 

34.  Wu G, Morris SM, Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336 ( Pt 1):1‐17. 

35.  Bronte V, Zanovello P. Regulation of immune responses by L‐arginine metabolism. Nat Rev Immunol. 2005;5:641‐654. 

36.  Rodriguez PC, Quiceno DG, Ochoa AC. L‐arginine availability regulates T‐lymphocyte cell‐cycle progression. Blood. 2007;109:1568‐1573. 

37.  Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191‐1193. 

38.  Li MO, Sanjabi S, Flavell RA. Transforming growth factor‐beta controls development, homeostasis, and tolerance of T cells by regulatory T cell‐dependent and ‐independent 

mechanisms. Immunity. 2006;25:455‐471. 

39.  Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor‐beta regulation of immune responses. Annu Rev Immunol. 2006;24:99‐146. 

40.  Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993;90:770‐774. 

41.  Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor‐beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693‐699. 

42.  Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK‐mediated killing of dendritic cells. Proc Natl Acad Sci U S A. 2003;100:4120‐4125. 

43.  Bertone S, Schiavetti F, Bellomo R, et al. Transforming growth factor‐beta‐induced expression of CD94/NKG2A inhibitory receptors in human T lymphocytes. Eur J Immunol. 1999;29:23‐29. 

44.  Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25‐ naive T cells to CD4+CD25+ regulatory T cells by TGF‐beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875‐1886. 

45.  Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF‐beta induces a regulatory phenotype in CD4+CD25‐ T cells through Foxp3 induction and down‐regulation of Smad7. J Immunol. 2004;172:5149‐5153. 

46.  Wan YY, Flavell RA. Identifying Foxp3‐expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A. 2005;102:5126‐5131. 

47.  Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF‐beta regulates in vivo expansion of Foxp3‐expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A. 2004;101:4572‐4577. 

48.  Matsuda M, Salazar F, Petersson M, et al. Interleukin 10 pretreatment protects target cells from tumor‐ and allo‐specific cytotoxic T cells and downregulates HLA 

 

52 

class I expression. J Exp Med. 1994;180:2371‐2376. 

49.  Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL‐10‐treated dendritic cells. J Immunol. 1997;159:4772‐4780. 

50.  Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096‐1103. 

51.  Klein G. Tumor antigens. Annu Rev Microbiol. 1966;20:223‐252. 

52.  Old LJ, Boyse EA. Immunology of Experimental Tumors. Annu Rev Med. 1964;15:167‐186. 

53.  Hellstrom I, Hellstrom KE, Sjogren HO, Klein G. Superinfection of polyma‐induced mouse tumors with polyoma virus in vitro. Exp Cell Res. 1960;21:255‐259. 

54.  Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183:725‐729. 

55.  Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother. 2001;50:3‐15. 

56.  Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. Curr Opin Immunol. 1997;9:684‐693. 

57.  Rosenberg SA. The development of new immunotherapies for the treatment of cancer using interleukin‐2. A review. Ann Surg. 1988;208:121‐135. 

58.  Davis ID, Jefford M, Parente P, Cebon J. Rational approaches to human cancer immunotherapy. J Leukoc Biol. 2003;73:3‐29. 

59.  Nagorsen D, Thiel E. Clinical and immunologic responses to active specific cancer vaccines in human colorectal cancer. Clin Cancer Res. 2006;12:3064‐3069. 

60.  Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6:383‐393. 

61.  Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850‐854. 

62.  Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331‐341. 

63.  Rous P, Kidd JG. Conditional neoplasms and subthershold neoplastic states: a study of the tar tumors of rabbits. J Exp Med. 1941;73:365‐390. 

64.  Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650‐1659. 

65.  Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga‐Koda L, Sulkowska M. Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol. 2005;11:403‐406. 

66.  Blaser MJ, Chyou PH, Nomura A. Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res. 1995;55:562‐565. 

67.  Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248:171‐183. 

68.  Scholl SM, Pallud C, Beuvon F, et al. Anti‐colony‐stimulating factor‐1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst. 1994;86:120‐126. 

69.  Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park). 2002;16:217‐226, 229; discussion 230‐212. 

70.  Parikh S, Hyman D. Hepatocellular cancer: a guide for the internist. Am J Med. 2007;120:194‐202. 

71.  Michaud DS. Chronic inflammation and bladder cancer. Urol Oncol. 2007;25:260‐268. 

72.  Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659‐672. 

73.  Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57‐70. 

74.  Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329‐360. 

75.  Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6:715‐727. 

76.  Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: 

 

    53 

from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991‐998. 

77.  Rygaard J, Povlsen CO. Is immunological surveillance not a cell‐mediated immune function? Transplantation. 1974;17:135‐136. 

78.  Rygaard J, Povlsen CO. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol Microbiol Scand [B] Microbiol Immunol. 1974;82:99‐106. 

79.  Nishimura T, Yagi H, Uchiyama Y, Hashimoto Y. Recombinant interleukin 2 allows the differentiation of Thy 1.2+ LAK cells from nude mouse spleen cells. Immunol Lett. 1986;12:77‐82. 

80.  Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1:447‐456. 

81.  Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gamma‐dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A. 1998;95:7556‐7561. 

82.  Street SE, Trapani JA, MacGregor D, Smyth MJ. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med. 2002;196:129‐134. 

83.  Smyth MJ, Thia KY, Street SE, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med. 2000;191:661‐668. 

84.  Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin‐mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. 2000;192:755‐760. 

85.  Street SE, Cretney E, Smyth MJ. Perforin and interferon‐gamma activities independently control tumor initiation, growth, and metastasis. Blood. 2001;97:192‐197. 

86.  van den Broek ME, Kagi D, Ossendorp F, et al. Decreased tumor surveillance in perforin‐deficient mice. J Exp Med. 1996;184:1781‐1790. 

87.  Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107‐1111. 

88.  Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene‐induced fibrosarcoma. Int Immunol. 2001;13:459‐463. 

89.  Birkeland SA, Storm HH, Lamm LU, et al. Cancer risk after renal transplantation in the Nordic countries, 1964‐1986. Int J Cancer. 1995;60:183‐189. 

90.  Pham SM, Kormos RL, Landreneau RJ, et al. Solid tumors after heart transplantation: lethality of lung cancer. Ann Thorac Surg. 1995;60:1623‐1626. 

91.  Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77:1303‐1310. 

92.  Mihm MC, Jr., Clemente CG, Cascinelli N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest. 1996;74:43‐47. 

93.  Zhang L, Conejo‐Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203‐213. 

94.  Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T‐cell tolerance. Nature. 2005;437:141‐146. 

95.  Quadrivalent vaccine against human papillomavirus to prevent high‐grade cervical lesions. N Engl J Med. 2007;356:1915‐1927. 

96.  Cresswell AC, Sisley K, Laws D, Parsons MA, Rennie IG, Murray AK. Reduced expression of TAP‐1 and TAP‐2 in posterior uveal melanoma is associated with progression to metastatic disease. Melanoma Res. 2001;11:275‐281. 

97.  Romero JM, Jimenez P, Cabrera T, et al. Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2‐microglobulin complex is responsible for HLA‐ABC loss in bladder cancer. Int J Cancer. 2005;113:605‐610. 

98.  Norell H, Carlsten M, Ohlum T, et al. Frequent loss of HLA‐A2 expression in metastasizing ovarian carcinomas associated with genomic haplotype loss and HLA‐A2‐restricted HER‐2/neu‐specific immunity. Cancer Res. 2006;66:6387‐6394. 

 

54 

99.  Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2‐microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88:100‐108. 

100.  Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol. 2002;3:999‐1005. 

101.  Mahoney JA, Rosen A. Apoptosis and autoimmunity. Curr Opin Immunol. 2005;17:583‐588. 

102.  Cheng J, Zhou T, Liu C, et al. Protection from Fas‐mediated apoptosis by a soluble form of the Fas molecule. Science. 1994;263:1759‐1762. 

103.  Hallermalm K, De Geer A, Kiessling R, Levitsky V, Levitskaya J. Autocrine secretion of Fas ligand shields tumor cells from Fas‐mediated killing by cytotoxic lymphocytes. Cancer Res. 2004;64:6775‐6782. 

104.  Golstein P. Cell death: TRAIL and its receptors. Curr Biol. 1997;7:R750‐753. 

105.  Medema JP, Schuurhuis DH, Rea D, et al. Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte‐induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp Med. 2001;194:657‐667. 

106.  Campos L, Rouault JP, Sabido O, et al. High expression of bcl‐2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81:3091‐3096. 

107.  Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel RM. Dendritic cells efficiently induce protective antiviral immunity. J Virol. 1998;72:3812‐3818. 

108.  Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow‐derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 1995;1:1297‐1302. 

109.  Maldonado‐Lopez R, De Smedt T, Michel P, et al. CD8alpha+ and CD8alpha‐ subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med. 1999;189:587‐592. 

110.  Schuler‐Thurner B, Schultz ES, Berger TG, et al. Rapid induction of tumor‐specific type 1 T helper cells in metastatic 

melanoma patients by vaccination with mature, cryopreserved, peptide‐loaded monocyte‐derived dendritic cells. J Exp Med. 2002;195:1279‐1288. 

111.  Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673‐680. 

112.  Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N. Mature dendritic cells boost functionally superior CD8(+) T‐cell in humans without foreign helper epitopes. J Clin Invest. 2000;105:R9‐R14. 

113.  Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685‐711. 

114.  De Smedt T, Pajak B, Muraille E, et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med. 1996;184:1413‐1424. 

115.  Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpG‐DNA activates dendritic cells in vivo: T helper cell‐independent cytotoxic T cell responses to soluble proteins. Eur J Immunol. 2000;30:3591‐3597. 

116.  Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony‐stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109‐1118. 

117.  Ghiringhelli F, Puig PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF‐beta‐secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med. 2005;202:919‐929. 

118.  Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen‐specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193:233‐238. 

119.  Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6:1755‐1766. 

120.  Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev. 2001;182:68‐79. 

121.  Zou W. Immunosuppressive networks in the tumour environment and their 

 

    55 

therapeutic relevance. Nat Rev Cancer. 2005;5:263‐274. 

122.  Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942‐949. 

123.  Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti‐CD25 (interleukin‐2 receptor alpha) monoclonal antibody. Cancer Res. 1999;59:3128‐3133. 

124.  Thomas DA, Massague J. TGF‐beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369‐380. 

125.  Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267‐296. 

126.  Ahmadzadeh M, Rosenberg SA. TGF‐beta 1 attenuates the acquisition and expression of effector function by tumor antigen‐specific human memory CD8 T cells. J Immunol. 2005;174:5215‐5223. 

127.  Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756‐2761. 

128.  Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M. The multifaceted relationship between IL‐10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev. 2004;15:61‐76. 

129.  Cottrez F, Groux H. Regulation of TGF‐beta response during T cell activation is modulated by IL‐10. J Immunol. 2001;167:773‐778. 

130.  Gerlini G, Tun‐Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic melanoma secreted IL‐10 down‐regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am J Pathol. 2004;165:1853‐1863. 

131.  Wittke F, Hoffmann R, Buer J, et al. Interleukin 10 (IL‐10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma. Br J Cancer. 1999;79:1182‐1184. 

132.  Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS. Induction of a CD4+ T 

regulatory type 1 response by cyclooxygenase‐2‐overexpressing glioma. J Immunol. 2004;173:4352‐4359. 

133.  Whiteside TL. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy. Vaccine. 2002;20 Suppl 4:A46‐51. 

134.  Reichert TE, Rabinowich H, Johnson JT, Whiteside TL. Mechanisms responsible for signaling and functional defects. J Immunother (1997). 1998;21:295‐306. 

135.  Nakagomi H, Petersson M, Magnusson I, et al. Decreased expression of the signal‐transducing zeta chains in tumor‐infiltrating T‐cells and NK cells of patients with colorectal carcinoma. Cancer Res. 1993;53:5610‐5612. 

136.  Matsuda M, Petersson M, Lenkei R, et al. Alterations in the signal‐transducing molecules of T cells and NK cells in colorectal tumor‐infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer. 1995;61:765‐772. 

137.  Kono K, Ressing ME, Brandt RM, et al. Decreased expression of signal‐transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res. 1996;2:1825‐1828. 

138.  Reichert TE, Day R, Wagner EM, Whiteside TL. Absent or low expression of the zeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res. 1998;58:5344‐5347. 

139.  Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor‐infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res. 2002;8:3137‐3145. 

140.  Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762‐774. 

141.  Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. 2006;364:82‐90. 

142.  Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen‐Mersh TG. Serum tryptophan decrease correlates with immune activation and impaired quality 

 

56 

of life in colorectal cancer. Br J Cancer. 2002;86:1691‐1696. 

143.  Giusti RM, Maloney EM, Hanchard B, et al. Differential patterns of serum biomarkers of immune activation in human T‐cell lymphotropic virus type I‐associated myelopathy/tropical spastic paraparesis, and adult T‐cell leukemia/lymphoma. Cancer Epidemiol Biomarkers Prev. 1996;5:699‐704. 

144.  Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3‐dioxygenase. Nat Med. 2003;9:1269‐1274. 

145.  Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069‐1077. 

146.  Rodriguez PC, Quiceno DG, Zabaleta J, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T‐cell receptor expression and antigen‐specific T‐cell responses. Cancer Res. 2004;64:5839‐5849. 

147.  Zea AH, Rodriguez PC, Culotta KS, et al. L‐Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol. 2004;232:21‐31. 

148.  Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid‐derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721s‐726s. 

149.  Cederbaum SD, Yu H, Grody WW, Kern RM, Yoo P, Iyer RK. Arginases I and II: do their functions overlap? Mol Genet Metab. 2004;81 Suppl 1:S38‐44. 

150.  Zea AH, Rodriguez PC, Atkins MB, et al. Arginase‐producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65:3044‐3048. 

151.  Munder M, Schneider H, Luckner C, et al. Suppression of T‐cell functions by human granulocyte arginase. Blood. 2006;108:1627‐1634. 

152.  Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross‐talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56:1687‐1700. 

153.  Ryan AE, Shanahan F, O'Connell J, Houston AM. Addressing the "Fas counterattack" controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res. 2005;65:9817‐9823. 

154.  Niehans GA, Brunner T, Frizelle SP, et al. Human lung carcinomas express Fas ligand. Cancer Res. 1997;57:1007‐1012. 

155.  Bennett MW, O'Connell J, O'Sullivan GC, et al. The Fas counterattack in vivo: apoptotic depletion of tumor‐infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol. 1998;160:5669‐5675. 

156.  Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T. Caspase 1‐independent IL‐1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med. 1998;4:1287‐1292. 

157.  Groh V, Wu J, Yee C, Spies T. Tumour‐derived soluble MIC ligands impair expression of NKG2D and T‐cell activation. Nature. 2002;419:734‐738. 

158.  Salih HR, Rammensee HG, Steinle A. Cutting edge: down‐regulation of MICA on human tumors by proteolytic shedding. J Immunol. 2002;169:4098‐4102. 

159.  Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002;23:313‐320. 

160.  Danguy A, Camby I, Kiss R. Galectins and cancer. Biochim Biophys Acta. 2002;1572:285‐293. 

161.  Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5:29‐41. 

162.  Le QT, Shi G, Cao H, et al. Galectin‐1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23:8932‐8941. 

163.  Matarrese P, Tinari A, Mormone E, et al. Galectin‐1 sensitizes resting human T lymphocytes to Fas (CD95)‐mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem. 2005;280:6969‐6985. 

164.  Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin‐1 induces partial TCR zeta‐chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol. 2000;165:3722‐3729. 

 

    57 

165.  Rabinovich GA, Daly G, Dreja H, et al. Recombinant galectin‐1 and its genetic delivery suppress collagen‐induced arthritis via T cell apoptosis. J Exp Med. 1999;190:385‐398. 

166.  Dahlgren C, Karlsson A. Respiratory burst in human neutrophils. J Immunol Methods. 1999;232:3‐14. 

167.  Rossi F, Zabucchi G, Dri P, Bellavite P, Berton G. O2‐ and H2O2 production during the respiratory burst in alveolar macrophages. Adv Exp Med Biol. 1979;121:53‐74. 

168.  Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor‐derived macrophages suppresses the expression of CD3 zeta chain of T‐cell receptor complex and antigen‐specific T‐cell responses. Proc Natl Acad Sci U S A. 1996;93:13119‐13124. 

169.  Kono K, Salazar‐Onfray F, Petersson M, et al. Hydrogen peroxide secreted by tumor‐derived macrophages down‐modulates signal‐transducing zeta molecules and inhibits tumor‐specific T cell‐and natural killer cell‐mediated cytotoxicity. Eur J Immunol. 1996;26:1308‐1313. 

170.  Schmielau J, Finn OJ. Activated granulocytes and granulocyte‐derived hydrogen peroxide are the underlying mechanism of suppression of t‐cell function in advanced cancer patients. Cancer Res. 2001;61:4756‐4760. 

171.  Malmberg KJ, Arulampalam V, Ichihara F, et al. Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NF‐kappaB activation. J Immunol. 2001;167:2595‐2601. 

172.  Bhattacharyya S, Mandal D, Sen GS, et al. Tumor‐induced oxidative stress perturbs nuclear factor‐kappaB activity‐augmenting tumor necrosis factor‐alpha‐mediated T‐cell death: protection by curcumin. Cancer Res. 2007;67:362‐370. 

173.  Flescher E, Ledbetter JA, Schieven GL, et al. Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J Immunol. 1994;153:4880‐4889. 

174.  Flescher E, Tripoli H, Salnikow K, Burns FJ. Oxidative stress suppresses transcription factor activities in stimulated lymphocytes. Clin Exp Immunol. 1998;112:242‐247. 

175.  Lahdenpohja N, Savinainen K, Hurme M. Pre‐exposure to oxidative stress decreases the nuclear factor‐kappa B‐dependent transcription in T lymphocytes. J Immunol. 1998;160:1354‐1358. 

176.  Uzzo RG, Clark PE, Rayman P, et al. Alterations in NFkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Natl Cancer Inst. 1999;91:718‐721. 

177.  Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166:678‐689. 

178.  Bronte V, Apolloni E, Cabrelle A, et al. Identification of a CD11b+/Gr‐1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood. 2000;96:3838‐3846. 

179.  Horiguchi S, Petersson M, Nakazawa T, et al. Primary chemically induced tumors induce profound immunosuppression concomitant with apoptosis and alterations in signal transduction in T cells and NK cells. Cancer Res. 1999;59:2950‐2956. 

180.  Brar SS, Kennedy TP, Sturrock AB, et al. An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol Cell Physiol. 2002;282:C1212‐1224. 

181.  del Bello B, Paolicchi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during gamma‐glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells. Faseb J. 1999;13:69‐79. 

182.  Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794‐798. 

183.  Hansson M, Asea A, Ersson U, Hermodsson S, Hellstrand K. Induction of apoptosis in NK cells by monocyte‐derived reactive oxygen metabolites. J Immunol. 1996;156:42‐47. 

184.  Romero AI, Thoren FB, Brune M, Hellstrand K. NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: regulation by histamine and reactive oxygen species. Br J Haematol. 2006;132:91‐98. 

185.  Hellstrand K, Asea A, Dahlgren C, Hermodsson S. Histaminergic regulation 

 

58 

of NK cells. Role of monocyte‐derived reactive oxygen metabolites. J Immunol. 1994;153:4940‐4947. 

186.  Seaman WE, Gindhart TD, Blackman MA, Dalal B, Talal N, Werb Z. Suppression of natural killing in vitro by monocytes and polymorphonuclear leukocytes: requirement for reactive metabolites of oxygen. J Clin Invest. 1982;69:876‐888. 

187.  Thoren FB, Romero AI, Hellstrand K. Oxygen radicals induce poly(ADP‐ribose) polymerase‐dependent cell death in cytotoxic lymphocytes. J Immunol. 2006;176:7301‐7307. 

188.  Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell‐triggering receptors in patients with acute myeloid leukemia. Blood. 2002;99:3661‐3667. 

189.  Nattermann J, Feldmann G, Ahlenstiel G, Langhans B, Sauerbruch T, Spengler U. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut. 2006;55:869‐877. 

190.  De Maria A, Fogli M, Costa P, et al. The impaired NK cell cytolytic function in viremic HIV‐1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur J Immunol. 2003;33:2410‐2418. 

191.  Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr‐1+ myeloid cells. J Immunol. 2001;166:5398‐5406. 

192.  Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen‐specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172:989‐999. 

193.  Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2007;27:317‐352. 

194.  Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149‐156. 

195.  Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002;12:311‐320. 

196.  Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their 

reactions with DNA and protein. J Clin Invest. 2003;111:583‐593. 

197.  Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;140‐141:105‐112. 

198.  Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72:41‐44. 

199.  Ambs S, Merriam WG, Bennett WP, et al. Frequent nitric oxide synthase‐2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58:334‐341. 

200.  Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros‐Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 1994;54:1352‐1354. 

201.  Massi D, Franchi A, Sardi I, et al. Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001;194:194‐200. 

202.  Hegardt P, Widegren B, Sjogren HO. Nitric‐oxide‐dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell Immunol. 2000;200:116‐127. 

203.  Zhang XM, Xu Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res. 2001;11:559‐567. 

204.  Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage‐derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol. 1998;160:5729‐5734. 

205.  Gackowski D, Banaszkiewicz Z, Rozalski R, Jawien A, Olinski R. Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer. 2002;101:395‐397. 

206.  Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456‐1462. 

207.  Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205‐219. 

208.  Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium‐apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552‐565. 

 

    59 

209.  Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312‐1316. 

210.  Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5:897‐907. 

211.  Kroemer G, Martin SJ. Caspase‐independent cell death. Nat Med. 2005;11:725‐730. 

212.  Cory S, Huang DC, Adams JM. The Bcl‐2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22:8590‐8607. 

213.  Adams JM, Cory S. The Bcl‐2 protein family: arbiters of cell survival. Science. 1998;281:1322‐1326. 

214.  Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727‐730. 

215.  Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl‐2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348:334‐336. 

216.  Cheng EH, Wei MC, Weiler S, et al. BCL‐2, BCL‐X(L) sequester BH3 domain‐only molecules preventing BAX‐ and BAK‐mediated mitochondrial apoptosis. Mol Cell. 2001;8:705‐711. 

217.  Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three‐dimensional structure of the apoptosome: implications for assembly, procaspase‐9 binding, and activation. Mol Cell. 2002;9:423‐432. 

218.  Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c‐dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33‐42. 

219.  Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94:491‐501. 

220.  Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391:96‐99. 

221.  Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770‐776. 

222.  Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF‐mediated signal transduction. J Biol Chem. 2001;276:42728‐42736. 

223.  Hildeman DA, Mitchell T, Teague TK, et al. Reactive oxygen species regulate activation‐induced T cell apoptosis. Immunity. 1999;10:735‐744. 

224.  Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS. T cells express a phagocyte‐type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol. 2004;5:818‐827. 

225.  Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen‐activated protein kinase activation and fas ligand expression. J Exp Med. 2002;195:59‐70. 

226.  Weber GF, Abromson‐Leeman S, Cantor H. A signaling pathway coupled to T cell receptor ligation by MMTV superantigen leading to transient activation and programmed cell death. Immunity. 1995;2:363‐372. 

227.  Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003;5:1307‐1315. 

228.  Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation‐induced carcinogenesis. Arch Biochem Biophys. 2003;417:3‐11. 

229.  Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77:598‐625. 

230.  Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173‐182. 

231.  Patel RP, McAndrew J, Sellak H, et al. Biological aspects of reactive nitrogen species. Biochim Biophys Acta. 1999;1411:385‐400. 

232.  Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxide‐induced apoptosis is CD95‐independent, requires the release of mitochondria‐derived reactive oxygen species and the activation of NF‐kappaB. Oncogene. 1999;18:747‐757. 

233.  Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 1997;414:552‐556. 

234.  Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide‐ and tributyltin‐induced apoptosis. FEBS Lett. 1998;429:351‐355. 

 

60 

235.  Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139‐176. 

236.  Sade H, Sarin A. Reactive oxygen species regulate quiescent T‐cell apoptosis via the BH3‐only proapoptotic protein BIM. Cell Death Differ. 2004;11:416‐423. 

237.  Saito Y, Nishio K, Ogawa Y, et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res. 2006;40:619‐630. 

238.  Hayes JD, McLellan LI. Glutathione and glutathione‐dependent enzymes represent a co‐ordinately regulated defence against oxidative stress. Free Radic Res. 1999;31:273‐300. 

239.  Arrigoni O, De Tullio MC. Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta. 2002;1569:1‐9. 

240.  Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26:459‐516. 

241.  Singh U, Devaraj S. Vitamin E: inflammation and atherosclerosis. Vitam Horm. 2007;76:519‐549. 

242.  Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med. 2007;42:1465‐1469. 

243.  Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post‐translational modification. Antioxid Redox Signal. 2005;7:619‐626. 

244.  Buttke TM, Sandstrom PA. Redox regulation of programmed cell death in lymphocytes. Free Radic Res. 1995;22:389‐397. 

245.  Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB. Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood. 1998;92:4808‐4818. 

246.  Hohmeier HE, Tran VV, Chen G, Gasa R, Newgard CB. Inflammatory mechanisms in diabetes: lessons from the beta‐cell. Int J Obes Relat Metab Disord. 2003;27 Suppl 3:S12‐16. 

247.  Patel M, Day BJ, Crapo JD, Fridovich I, McNamara JO. Requirement for superoxide in excitotoxic cell death. Neuron. 1996;16:345‐355. 

248.  Tran VV, Chen G, Newgard CB, Hohmeier HE. Discrete and complementary 

mechanisms of protection of beta‐cells against cytokine‐induced and oxidative damage achieved by bcl‐2 overexpression and a cytokine selection strategy. Diabetes. 2003;52:1423‐1432. 

249.  Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413‐2417. 

250.  Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410:101‐105. 

251.  Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708‐712. 

252.  Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T‐cell priming by type‐1 and type‐2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20:561‐567. 

253.  Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745‐763. 

254.  Yokoyama T, Tanahashi M, Kobayashi Y, et al. The expression of Bcl‐2 family proteins (Bcl‐2, Bcl‐x, Bax, Bak and Bim) in human lymphocytes. Immunol Lett. 2002;81:107‐113. 

255.  Akbar AN, Borthwick N, Salmon M, et al. The significance of low bcl‐2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J Exp Med. 1993;178:427‐438. 

256.  Mitchell T, Kappler J, Marrack P. Bystander virus infection prolongs activated T cell survival. J Immunol. 1999;162:4527‐4535. 

257.  Salmon M, Pilling D, Borthwick NJ, et al. The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur J Immunol. 1994;24:892‐899. 

258.  Powell DJ, Jr., Dudley ME, Robbins PF, Rosenberg SA. Transition of late‐stage effector T cells to CD27+ CD28+ tumor‐reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood. 2005;105:241‐250. 

259.  Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the 

 

    61 

CD56(bright) subset. Blood. 2001;97:3146‐3151. 

260.  Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329‐339. 

261.  Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol. 2004;173:6418‐6426. 

262.  Katchar K, Soderstrom K, Wahlstrom J, Eklund A, Grunewald J. Characterisation of natural killer cells and CD56+ T‐cells in sarcoidosis patients. Eur Respir J. 2005;26:77‐85. 

263.  Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol. 2004;5:996‐1002. 

264.  Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM. Natural killer cell depletion enhances virus synthesis and virus‐induced hepatitis in vivo. J Immunol. 1983;131:1531‐1538. 

265.  Diefenbach A, Raulet DH. The innate immune response to tumors and its role in the induction of T‐cell immunity. Immunol Rev. 2002;188:9‐21. 

266.  Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225‐274. 

267.  Raulet DH, Vance RE. Self‐tolerance of natural killer cells. Nat Rev Immunol. 2006;6:520‐531. 

268.  Ljunggren HG, Karre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 1990;11:237‐244. 

269.  Thoren FB, Romero AI, Hermodsson S, Hellstrand K. The CD16‐/CD56bright subset of NK cells is resistant to oxidant‐induced cell death. J Immunol. 2007;179:781‐785. 

270.  Hanna J, Bechtel P, Zhai Y, Youssef F, McLachlan K, Mandelboim O. Novel insights on human NK cells' immunological modalities revealed by gene expression profiling. J Immunol. 2004;173:6547‐6563. 

271.  Serafini M. Dietary vitamin E and T cell‐mediated function in the elderly: effectiveness and mechanism of action. Int J Dev Neurosci. 2000;18:401‐410. 

272.  Malmberg KJ, Lenkei R, Petersson M, et al. A short‐term dietary supplementation of high doses of vitamin E increases T 

helper 1 cytokine production in patients with advanced colorectal cancer. Clin Cancer Res. 2002;8:1772‐1778. 

273.  Ashfaq MK, Zuberi HS, Anwar Waqar M. Vitamin E and beta‐carotene affect natural killer cell function. Int J Food Sci Nutr. 2000;51 Suppl:S13‐20. 

274.  Ferrandez MD, Correa R, Del Rio M, De la Fuente M. Effects in vitro of several antioxidants on the natural killer function of aging mice. Exp Gerontol. 1999;34:675‐685. 

275.  Fabiani R, De Bartolomeo A, Rosignoli P, Morozzi G. Antioxidants prevent the lymphocyte DNA damage induced by PMA‐stimulated monocytes. Nutr Cancer. 2001;39:284‐291. 

276.  Chandra RK. Effect of vitamin and trace‐element supplementation on immune responses and infection in elderly subjects. The Lancet. 1992;340:1124‐1127. 

277.  Lindner P, Rizell M, Mattsson J, Hellstrand K, Naredi P. Combined treatment with histamine dihydrochloride, interleukin‐2 and interferon‐alpha in patients with metastatic melanoma. Anticancer Res. 2004;24:1837‐1842. 

278.  Asemissen AM, Scheibenbogen C, Letsch A, et al. Addition of histamine to interleukin 2 treatment augments type 1 T‐cell responses in patients with melanoma in vivo: immunologic results from a randomized clinical trial of interleukin 2 with or without histamine (MP 104). Clin Cancer Res. 2005;11:290‐297. 

279.  Evans LS, Witte PR, Feldhaus AL, et al. Expression of chimeric granulocyte‐macrophage colony‐stimulating factor/interleukin 2 receptors in human cytotoxic T lymphocyte clones results in granulocyte‐macrophage colony‐stimulating factor‐dependent growth. Hum Gene Ther. 1999;10:1941‐1951. 

280.  Topp MS, Riddell SR, Akatsuka Y, Jensen MC, Blattman JN, Greenberg PD. Restoration of CD28 expression in CD28‐ CD8+ memory effector T cells reconstitutes antigen‐induced IL‐2 production. J Exp Med. 2003;198:947‐955. 

281.  Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM. Transfer of the human telomerase reverse transcriptase (TERT) gene into T 

 

62 

lymphocytes results in extension of replicative potential. Blood. 2001;98:597‐603. 

282.  Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126‐129. 

283.  Danel C, Erzurum SC, Prayssac P, et al. Gene therapy for oxidant injury‐related diseases: adenovirus‐mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia‐reperfusion lung injury. Hum Gene Ther. 1998;9:1487‐1496. 

284.  Benhamou PY, Moriscot C, Richard MJ, et al. Adenovirus‐mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia. 1998;41:1093‐1100. 

285.  Mann H, McCoy MT, Subramaniam J, Van Remmen H, Cadet JL. Overexpression of superoxide dismutase and catalase in immortalized neural cells: toxic effects of hydrogen peroxide. Brain Res. 1997;770:163‐168. 

286.  Cheng F, Wang HW, Cuenca A, et al. A critical role for Stat3 signaling in immune tolerance. Immunity. 2003;19:425‐436. 

287.  Wang H, Cheng F, Cuenca A, et al. Imatinib mesylate (STI‐571) enhances antigen‐presenting cell function and overcomes tumor‐induced CD4+ T‐cell tolerance. Blood. 2005;105:1135‐1143. 

288.  Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte‐associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100:8372‐8377. 

289.  Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD‐L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD‐L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293‐12297. 

290.  Waldmann TA. Effective cancer therapy through immunomodulation. Annu Rev Med. 2006;57:65‐81. 

291.  Muller AJ, DuHadaway JB, Donover PS, Sutanto‐Ward E, Prendergast GC. Inhibition of indoleamine 2,3‐dioxygenase, an immunoregulatory target of the cancer suppression gene 

Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312‐319. 

292.  Bronte V, Serafini P, De Santo C, et al. IL‐4‐induced arginase 1 suppresses alloreactive T cells in tumor‐bearing mice. J Immunol. 2003;170:270‐278. 

  


Recommended