+ All Categories
Home > Documents > Ph.D. Seminar

Ph.D. Seminar

Date post: 07-Apr-2015
Category:
Upload: sankhass
View: 48 times
Download: 0 times
Share this document with a friend
76
INVESTIGATION ON VISCOUS SYNERGY AND INVESTIGATION ON VISCOUS SYNERGY AND ANTAGONISM OF SOME LIQUID MIXTURES AND ANTAGONISM OF SOME LIQUID MIXTURES AND ION-SOLVENT INTERACTION OF ION-SOLVENT INTERACTION OF SOME COMPOUNDS IN VARIOUS SOME COMPOUNDS IN VARIOUS SOLVENT SYSTEMS SOLVENT SYSTEMS BY BY Anuradha Sinha Anuradha Sinha Supervisor : Dr. Mahendra Nath Roy Supervisor : Dr. Mahendra Nath Roy Department of Chemistry Department of Chemistry University of North Bengal University of North Bengal
Transcript
Page 1: Ph.D. Seminar

INVESTIGATION ON VISCOUS SYNERGY AND INVESTIGATION ON VISCOUS SYNERGY AND ANTAGONISM OF SOME LIQUID MIXTURES AND ANTAGONISM OF SOME LIQUID MIXTURES AND

ION-SOLVENT INTERACTION OF ION-SOLVENT INTERACTION OF SOME COMPOUNDS IN VARIOUS SOME COMPOUNDS IN VARIOUS

SOLVENT SYSTEMSSOLVENT SYSTEMS

BYBY

Anuradha SinhaAnuradha Sinha Supervisor : Dr. Mahendra Nath RoySupervisor : Dr. Mahendra Nath Roy

Department of ChemistryDepartment of ChemistryUniversity of North BengalUniversity of North Bengal

Page 2: Ph.D. Seminar

Contents Contents

CHAPTER I : Necessity of the Research CHAPTER I : Necessity of the Research WorkWork

CHAPTER II : General IntroductionCHAPTER II : General Introduction CHAPTER III : Experimental SectionCHAPTER III : Experimental Section CHAPTER IV : Viscous Synergy and CHAPTER IV : Viscous Synergy and

Antagonism and Isentropic Compressibility Antagonism and Isentropic Compressibility of Ternary Mixtures Containing 1,3-of Ternary Mixtures Containing 1,3-Dioxolane, Water and Monoalkanols at Dioxolane, Water and Monoalkanols at 303.15 K303.15 K

Page 3: Ph.D. Seminar

CHAPTER V : Solute-Solvent and Solute-Solute CHAPTER V : Solute-Solvent and Solute-Solute Interactions of Resorcinol in Mixed 1,4-Interactions of Resorcinol in Mixed 1,4-DioxaneDioxaneWater Systems at Different Water Systems at Different TemperaturesTemperatures

CHAPTER VI : Investigation on Viscous CHAPTER VI : Investigation on Viscous Antagonism of Binary and Ternary Liquid Antagonism of Binary and Ternary Liquid Mixtures and its Relation to Concentration at Mixtures and its Relation to Concentration at (303.15, 313.15 and 323.15) K(303.15, 313.15 and 323.15) K

CHAPTER VII : Excess Molar Volumes, Viscosity CHAPTER VII : Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Deviations and Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols at 303.15 KMonoalcohols at 303.15 K

Page 4: Ph.D. Seminar

CHAPTER VIII : Ion-Solvent and Ion-Ion CHAPTER VIII : Ion-Solvent and Ion-Ion Interactions of some Tetraalkylammonium, Interactions of some Tetraalkylammonium,

Alkali Metals and Ammonium Halides in Alkali Metals and Ammonium Halides in

i-Amyl Alcohol at 298.15 K by Conductometric i-Amyl Alcohol at 298.15 K by Conductometric TechniqueTechnique

CHAPTER IX : Studies of Viscous Antagonism, CHAPTER IX : Studies of Viscous Antagonism, Excess Molar Volume and Isentropic Excess Molar Volume and Isentropic Compressibility in Aqueous Mixed Solvent Compressibility in Aqueous Mixed Solvent Systems at Different TemperaturesSystems at Different Temperatures

Page 5: Ph.D. Seminar

CHAPTER X : Densities, Viscosities and CHAPTER X : Densities, Viscosities and Sound Speeds of some Acetate Salts in Sound Speeds of some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15 and 323.15) KMethanol at (303.15, 313.15 and 323.15) K

CHAPTER XI : Concluding RemarksCHAPTER XI : Concluding Remarks

Page 6: Ph.D. Seminar

Necessity of the Research WorkNecessity of the Research Work

Object and Application of the WorkObject and Application of the Work

The molecular interactions play a very The molecular interactions play a very important role in various physico-chemical processes important role in various physico-chemical processes occurring in nature. occurring in nature.

Synergy and antagonism give the mutual Synergy and antagonism give the mutual enhancement or decrement of the physico-chemical, enhancement or decrement of the physico-chemical, biological or pharmaceutical activity between biological or pharmaceutical activity between different components of a given mixture.different components of a given mixture.

Page 7: Ph.D. Seminar

Applicable in manufacture of pharmaceuticals, Applicable in manufacture of pharmaceuticals, foodstuffs, cosmetics, industrial products. foodstuffs, cosmetics, industrial products.

High-energy primary and secondary batteries, High-energy primary and secondary batteries, wet double-layer capacitors and super capacitors, wet double-layer capacitors and super capacitors, electro-deposition and electroplating.electro-deposition and electroplating.

Non-aqueous electrolyte solutions are broadly Non-aqueous electrolyte solutions are broadly used in electrochromic displays and smart windows, used in electrochromic displays and smart windows, photoelectrochemical cells, electromachining, photoelectrochemical cells, electromachining, etching, polishing and electro-synthesis. etching, polishing and electro-synthesis.

Page 8: Ph.D. Seminar

Organic and inorganic synthesis, studies Organic and inorganic synthesis, studies

of reaction mechanisms and extraction. of reaction mechanisms and extraction.

Energy transport, heat transport, mass Energy transport, heat transport, mass transport and fluid flow. transport and fluid flow.

Non-aqueous systems have been of Non-aqueous systems have been of immense importance to the technologist and immense importance to the technologist and theoretician as many chemical processes occur theoretician as many chemical processes occur in these systems. in these systems.

Page 9: Ph.D. Seminar

Main Solvents usedMain Solvents used

1,3-Dioxolane 1,3-Dioxolane 1,4-Dioxane (DO)1,4-Dioxane (DO) Tetrahydrofuran (THF)Tetrahydrofuran (THF) Ethylene GlycolEthylene Glycol N,N-Dimethylformamide (DMF)N,N-Dimethylformamide (DMF) Dimethyl Sulphoxide (DMSO)Dimethyl Sulphoxide (DMSO) Benzene, n-HexaneBenzene, n-Hexane Monoalcohols viz. Methanol, Ethanol, 1-Propanol, 2-Monoalcohols viz. Methanol, Ethanol, 1-Propanol, 2-

Propanol, 1-Butanol, 2-Butanol, t-Butanol, i-Amyl Propanol, 1-Butanol, 2-Butanol, t-Butanol, i-Amyl alcohol alcohol

Water Water

Page 10: Ph.D. Seminar

Method of InvestigationsMethod of Investigations

DensitometryDensitometry

ViscometryViscometry

Ultrasonic InterferometryUltrasonic Interferometry

Conductometry Conductometry

Page 11: Ph.D. Seminar

General IntroductionGeneral Introduction Investigation on Viscous Synergy and Antagonism Investigation on Viscous Synergy and Antagonism

Viscous synergy is the term used in application to the Viscous synergy is the term used in application to the interaction between the components of a system that causes interaction between the components of a system that causes the total viscosity of the system to be greater than the sum of the total viscosity of the system to be greater than the sum of the viscosities of each component considered separately.the viscosities of each component considered separately.

Investigation on Ion-Solvent InteractionInvestigation on Ion-Solvent Interaction

Density, Viscosity, Ultrasonic Speed, Correlating Equations, Density, Viscosity, Ultrasonic Speed, Correlating Equations, ConductanceConductance

Page 12: Ph.D. Seminar

Experimental SectionExperimental Section

Source and Purification of the Source and Purification of the Chemicals used Chemicals used

SolventsSolvents

1,3-Dioxolane (C1,3-Dioxolane (C33HH66OO22), M.W. 74.08, LR, India, was ), M.W. 74.08, LR, India, was

heated under reflux with PbOheated under reflux with PbO22 for 2 hrs., then cooled for 2 hrs., then cooled

and filtered. After adding xylene to the filtrate, the and filtered. After adding xylene to the filtrate, the mixture was distilled. mixture was distilled.

Page 13: Ph.D. Seminar

SolutesSolutes

Tetraalkylammonium salts viz. MeTetraalkylammonium salts viz. Me44NCl, EtNCl, Et44NBr, NBr,

PrPr44NBr, BuNBr, Bu44NBr, BuNBr, Bu44NI were purified by NI were purified by

recrystallisation. The crystallised salts were dried in recrystallisation. The crystallised salts were dried in vacuum. The salts were stored in glass bottles in vacuum. The salts were stored in glass bottles in darkened desiccator over fused CaCldarkened desiccator over fused CaCl22. .

LiBr, NHLiBr, NH44Br were dried at ~ 80-100ºC in vacuum Br were dried at ~ 80-100ºC in vacuum

oven for 48 hrs before use.oven for 48 hrs before use.

Page 14: Ph.D. Seminar

Experimental MethodExperimental Method

Measurement of Density Measurement of Density

Ostwald-Sprengel type pycnometer Ostwald-Sprengel type pycnometer Calibration at different temperatures with doubly distilled Calibration at different temperatures with doubly distilled

water and THF. water and THF. The precision of the density measurement was The precision of the density measurement was 0.0003 %. 0.0003 %.

Thermostatic water bath maintained with an accuracy ofThermostatic water bath maintained with an accuracy of 0.01 K. 0.01 K.

Measurement of ViscosityMeasurement of Viscosity

Ubbelohde viscometer Ubbelohde viscometer The precision of the viscosity measurement was The precision of the viscosity measurement was 0.004 %. 0.004 %.

Page 15: Ph.D. Seminar

Measurement of Ultrasonic SpeedMeasurement of Ultrasonic Speed

Ultrasonic speeds were measured, with an accuracy Ultrasonic speeds were measured, with an accuracy of ± 0.2 %, using a single-crystal variable-path of ± 0.2 %, using a single-crystal variable-path ultrasonic interferometer operating at 4 MHz. ultrasonic interferometer operating at 4 MHz.

Measurement of ConductanceMeasurement of Conductance

Systronics Conductivity-TDS meter 308 Systronics Conductivity-TDS meter 308 Dip-type immersion conductivity cell Dip-type immersion conductivity cell The entire conductance data was found to be ± 0.3 % The entire conductance data was found to be ± 0.3 %

precise. precise.

Page 16: Ph.D. Seminar

Viscous Synergy and Antagonism and Isentropic Viscous Synergy and Antagonism and Isentropic Compressibility of Ternary Mixtures Containing Compressibility of Ternary Mixtures Containing

1,3-Dioxolane, Water and Monoalkanols at 303.15 K1,3-Dioxolane, Water and Monoalkanols at 303.15 Kcalccalc == ∑∑ w w ii ii ; ; ρ ρ calccalc == ∑∑ w w ii ρ ρ ii

I I SS = (= (expexp – – calccalc ) / ) / calccalc = = / / calccalc

The negative value of IThe negative value of ISS gives I gives IAA..

FF = = maxmax / / 00

KKSS = = 11/ (/ (uu22 ρ ρ))

nn

KKSS EE == K KSS –– x xi i K KS,iS,i

i = 1i = 1

Page 17: Ph.D. Seminar

Experimental (expt.) and literature (lit.) values of densities (ρ) and

viscosities (η) along with the expt. speeds of sound (u) of the pure solvents

at 303.15 K.

x 10-3/ (kg. m-3) x 102/ (P)

Solvents expt. lit. expt. lit.

u /

(m. s-1

1,3-Dioxolane

1.0518

1.0494

0.5487

0.5436

1288.5

Water 0.9957 0.9957 0.7975 0.8007 1505.2

Methanol 0.7824 0.7829 0.5041 0.5100 1088.5

Ethanol 0.7844 0.7807 0.9675 0.9930 1144.3

1-Propanol 0.7958 0.7958 1.6626 1.7843 1182.6

2-Propanol 0.7773 0.7779 1.6142 1.7732 1126.6

1-Butanol 0.8021 0.8019 2.5396 2.2853 1196.6

2-Butanol 0.7992 0.7959 2.3394 2.4170 1168.9

t-Butanol 0.7751 0.7762 3.0986 3.3211 1078.8

i-Amyl alcohol 0.8032 – 3.1111 – 1197.0

Page 18: Ph.D. Seminar

AmOH > BuOH > PrOH > EtOH > MeOHAmOH > BuOH > PrOH > EtOH > MeOH

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w A

x

10

2 / (

P )

Fig. 1(a): Calculated (…) and experimental (—) viscosity values () for 1,3-

dioxolane + water + monoalkanol mixtures with weight fraction of 1,3-

dioxolane (wA) at 303.15 K. Graphical points: monoalkanols, CH3OH (■);

C2H5OH (); 1-C3H7OH (●); 1 -C4H9OH (+); i-C5H11OH (□).

Page 19: Ph.D. Seminar

MeOH > EtOH > 2-PrOH > 1-PrOH > t-BuOH > 2-MeOH > EtOH > 2-PrOH > 1-PrOH > t-BuOH > 2-

BuOH> 1-BuOH > i-AmOHBuOH> 1-BuOH > i-AmOH

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w A

I S

Fig. 2: Synergic index values (IS) for 1,3-dioxolane + water + monoalkanols

with weight fraction of 1,3-dioxolane (wA) at 303.15 K. Graphical points:

monoalkanols, CH3OH (■); C 2H5OH (); 1-C3H7OH (●); 2 -C3H7OH (ο); 1-

C4H9OH (+); 2-C4H9OH (▲); t - C4H9OH (); i-C5H11OH (□).

Page 20: Ph.D. Seminar

Pure state viscosity ( ), maximum viscosity (max ) and enhancement or

power factor (F) for the monoalkanols at 303.15 K.

Monoalkanols

x 102 /

(P)

max x 102 /

(P)

F

Methanol

0.5041

1.2414

2.463

Ethanol 0.9675 1.6259 1.681

1-Propanol 1.6626 2.1641 1.302

2-Propanol 1.6142 2.1474 1.330

1-Butanol 2.5396 2.3109 0.909

2-Butanol 2.3394 2.4546 1.049

t-Butanol 3.0986 3.2107 1.036

i-Amyl alcohol 3.1111 2.5713 0.827

Page 21: Ph.D. Seminar

i-AmOH > 1-BuOH > 2-BuOH > t-BuOH > 1-PrOH i-AmOH > 1-BuOH > 2-BuOH > t-BuOH > 1-PrOH > 2-PrOH > EtOH > MeOH> 2-PrOH > EtOH > MeOH

-200

-150

-100

-50

0

50

100

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x A

K SE

x

10

12

/ (

Pa

-1 )

Fig. 3: Excess isentropic compressibility (KSE ) for 1,3-dioxolane + water +

monoalkanols with mole fraction of 1,3-dioxolane (xA) at 303.15 K.

Graphical points: monoalkanols, CH3OH (■); C 2H5OH (); 1-C3H7OH (●); 2 -

C3H7OH (ο); 1-C4H9OH (+); 2-C4H9OH (▲); t - C4H9OH (); i-C5H11OH (□).

Page 22: Ph.D. Seminar

((1,3-dioxolane)1,3-dioxolane)

HH22O...H-O-R HO...H-O-R H22O.....H-O-R HO.....H-O-R H22O........H-O-RO........H-O-R

Synergy prevails in absence of 1,3-dioxolaneSynergy prevails in absence of 1,3-dioxolane

HH22O...H-O-CHO...H-O-CH3 3 HH22O........H-O-CO........H-O-C55HH1111

Lower monoalkanols associate very strongly with water Lower monoalkanols associate very strongly with water moleculesmolecules

CHCH33

HH33C-C-OH…OHC-C-OH…OH2 2 HH22O...H-O-CO...H-O-C44HH9 9

CHCH33

1,3-dioxolane cannot easily disrupt the molecukar package between branched isomers and water1,3-dioxolane cannot easily disrupt the molecukar package between branched isomers and water

Page 23: Ph.D. Seminar

Investigation on Viscous Antagonism of Binary and Investigation on Viscous Antagonism of Binary and Ternary Liquid Mixtures and Its Relation to Ternary Liquid Mixtures and Its Relation to

Concentration at (303.15, 313.15 and 323.15) KConcentration at (303.15, 313.15 and 323.15) K Calculated (calc) and experimental (expdensities of ethylene glycol +

tetrahydrofuran and ethylene glycol + 1,4-dioxane against the respective

mass% of glycol at (303.15, 313.15 and 323.15) K.

calcx 10-3/ ( kg. m-3 ) expx 10-3/ ( kg. m-3 )

Mass %

of glycol

303.15

(K)

313.15

(K)

323.15

(K)

303.15

(K)

313.15

(K)

323.15

(K)

ethylene glycol + tetrahydrofuran

10 0.8968 0.8895 0.8817 0.8994 0.8903 0.8825

20 0.9200 0.9128 0.9051 0.9201 0.9128 0.9054

30 0.9433 0.9361 0.9285 0.9434 0.9375 0.9287

40 0.9666 0.9594 0.9519 0.9674 0.9597 0.9525

50 0.9859 0.9827 0.9753 0.9899 0.9837 0.9759

60 1.0132 1.0059 0.9987 1.0141 1.0063 0.9989

70 1.0364 1.0293 1.0221 1.0372 1.0288 1.0223

80 1.0597 1.0526 1.0455 1.0601 1.0539 1.0468

90 1.0829 1.0759 1.0689 1.0853 1.0779 1.0716

ethylene glycol + 1,4-dioxane

10 1.0285 1.0228 1.0122 1.0289 1.0231 1.0133

20 1.0372 1.0313 1.0211 1.0397 1.0326 1.0227

30 1.0458 1.0398 1.0299 1.0487 1.0409 1.0345

40 1.0544 1.0482 1.0389 1.0562 1.0506 1.0431

50 1.0631 1.0567 1.0478 1.0678 1.0600 1.0532

60 1.0717 1.0652 1.0567 1.0756 1.0709 1.0638

70 1.0804 1.0737 1.0656 1.0838 1.0780 1.0684

80 1.0890 1.0822 1.0745 1.0924 1.0858 1.0793

90 1.0976 1.0907 1.0834 1.1007 1.0955 1.0860

Page 24: Ph.D. Seminar

expexp > > calccalc , volume contraction , volume contraction

Calculated (ρcalc) and experimental (ρexpdensities of tetrahydrofuran + methanol +

benzene and i-propanol + n-hexane + benzene against the respective mass % of

THF, MeOH, i-PrOH and n-C6H14 at (303.15, 313.15 and 323.15) K.

ρcalc x 10-3/ (kg. m-3) ρexp x 10-3/ (kg. m-3)

Mass %

of

THF/

i-PrOH

Mass % of

MeOH/ n-

C6H14 303.15

(K)

313.15

(K)

323.15

(K)

303.15

(K)

313.15

(K)

323.15

(K)

tetrahydrofuran + methanol + benzene

10 10 0.8569 0.8528 0.8439 0.8599 0.8545 0.8496

20 15 0.8542 0.8493 0.8404 0.8570 0.8523 0.8459

30 30 0.8436 0.8375 0.8284 0.8452 0.8404 0.8349

35 35 0.8402 0.8337 0.8245 0.8415 0.8361 0.8296

40 40 0.8367 0.8299 0.8207 0.8390 0.8336 0.8257

45 45 0.8335 0.8261 0.8168 0.8352 0.8310 0.8230

50 50 0.8301 0.8222 0.8129 0.8306 0.8263 0.8166

55 40 0.8387 0.8309 0.8216 0.8375 0.8353 0.8269

60 30 0.8472 0.8396 0.8304 0.8491 0.8397 0.8345

65 20 0.8557 0.8482 0.8391 0.8576 0.8504 0.8430

70 10 0.8642 0.8569 0.8479 0.8658 0.8610 0.8527

75 00 0.8727 0.8656 0.8566 0.8752 0.8670 0.8634

80 00 0.8733 0.8659 0.8569 0.8743 0.8667 0.8596

90 00 0.8745 0.8666 0.8576 0.8743 0.8664 0.8607

i-propanol + n-hexane + benzene

00 65 0.7246 0.7190 0.7097 0.8798 0.8715 0.8686

05 80 0.6886 0.6818 0.6726 0.8950 0.8843 0.8813

10 10 0.8345 0.8296 0.8212 0.8585 0.8494 0.8430

20 15 0.8159 0.8098 0.8016 0.8517 0.8437 0.8390

30 25 0.7867 0.7790 0.7711 0.8552 0.8488 0.8427

40 35 0.7575 0.7482 0.7406 0.8637 0.8543 0.8496

50 45 0.7282 0.7175 0.7101 0.8688 0.8584 0.8556

60 40 0.7311 0.7194 0.7123 0.8565 0.8460 0.8397

70 20 0.7661 0.7539 0.7474 0.8257 0.8164 0.8114

80 00 0.8011 0.7884 0.7824 0.8128 0.8029 0.7988

90 05 0.7825 0.7685 0.7628 0.7946 0.7847 0.7408

Page 25: Ph.D. Seminar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 100

Mass % of ethylene glycol

I A

Fig. 1: Antagonic index values (IA) for ethylene glycol + tetrahydrofuran

against mass% of ethylene glycol at different temperatures. Graphical

points: 303.15 K (■); 313.15 K (●); 323.15 K (▲).

Page 26: Ph.D. Seminar

The trend observed in the binary mixtures for The trend observed in the binary mixtures for IIAA is: is:

Ethylene glycol + THF > Ethylene glycol + DOEthylene glycol + THF > Ethylene glycol + DO

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

Mass % of ethylene glycol

I A

Fig. 2: Antagonic index values (IA) for ethylene glycol + 1,4-dioxane against

mass% of ethylene glycol at different temperatures. Graphical points:

303.15 K (■); 313.15 K (●); 323.15 K (▲).

Page 27: Ph.D. Seminar

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

Mass % of tetrahydrofuran

I A

Fig. 3: Antagonic index values (IA) for tetrahydrofuran + methanol +

benzene against mass% of tetrahydrofuran at different temperatures.

Graphical points: 303.15 K (■); 313.15 K (●); 323.15 K (▲).

Page 28: Ph.D. Seminar

The trend observed in ternary mixtures for The trend observed in ternary mixtures for IIAA is: is:

i-PrOH + n-Ci-PrOH + n-C66HH1414 + C + C66HH66 > THF + MeOH + C > THF + MeOH + C66HH66

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Mass % of i-propanol

I A

Fig. 4: Antagonic index values (IA) for i-propanol + n-hexane + benzene

against mass% of i-propanol at different temperatures. Graphical

points: 303.15 K (■); 313.15 K (●); 323.15 K (▲).

Page 29: Ph.D. Seminar

CHCH22O..H CHO..H CH22O..H…….…..O..H…….…..

+ > ++ > +

CHCH22O..H ………. CHO..H ………. CH22O..H……..….O..H……..….

(THF) (DO)(THF) (DO)

Less interaction-decrease in molecular package-favourable Less interaction-decrease in molecular package-favourable antagonismantagonism

+ CH+ CH33OH + < CHOH + < CH22-CH-CH22OH + COH + C66HH14 14 ++

CHCH3 3

CC66HH66 favours antagonism favours antagonism

Page 30: Ph.D. Seminar

Studies of Viscous Antagonism, Excess Molar Studies of Viscous Antagonism, Excess Molar Volume and Isentropic Compressibility in Aqueous Volume and Isentropic Compressibility in Aqueous

Mixed Solvent Systems at Different TemperaturesMixed Solvent Systems at Different Temperatures

nn

Δη Δη = = η η – – Σ Σ xxii ηηii

ii =1 =1

nn

VVEE = Σ = Σ xxii MMii (1/ρ –1/ρ (1/ρ –1/ρii ) )

i=1i=1

Page 31: Ph.D. Seminar

water + ethylene glycol +water + ethylene glycol +

DMSO > DO > DMF > THF DMSO > DO > DMF > THF

-7

-6

-5

-4

-3

-2

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x A

Δ η

x

10

2

/ (

P )

Fig.1: Viscosity deviations (Δη) of : (■), water (A) + ethylene glycol (B) +

tetrahydrofuran (C); (▲), water (A) + ethylene glycol (B) + 1,4 -dioxane

(C); (∆), water (A) + ethylene glycol (B) + N,N -dimethylformamide (C);

and (□), water (A) + ethylene glycol (B) + dimethylsulphoxide (C)

mixtures with mole fraction of water (xA) at 298.15 K.

Page 32: Ph.D. Seminar

water + ethylene glycol +water + ethylene glycol +

THF > DMF > DO > DMSO THF > DMF > DO > DMSO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x A

I A

Fig.2: Antagonic Index (IA) values of : (■), water (A) + ethylene glycol (B)

+ tetrahydrofuran (C); (▲), water (A) + ethylene glycol (B) + 1,4 -

dioxane(C); (∆), wate r (A) + ethylene glycol (B) +N,N-dimethylformamide

(C); and (□), water (A) + ethylene glycol (B) + dimethylsulphoxide (C)

mixtures with mole fraction of water (xA) at 298.15 K.

Page 33: Ph.D. Seminar

water + ethylene glycol + water + ethylene glycol + THF > DMF > DO > DMSO THF > DMF > DO > DMSO

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x A

V E

x

10

3 /

( m

3.

mo

l -1

)

Fig.3: Excess molar volumes (VE) of : (■), wate r (A) + ethylene glycol (B) +

tetrahydrofuran (C); (▲), water (A) + ethylene glycol (B) + 1,4 -dioxane

(C); (∆), water(A) + ethylene glycol(B) + N,N -dimethylformamide (C); and

(□), water (A) + ethylene glycol (B) + dimethylsulphoxide (C) mixtures

with mole fraction of water (xA) at 298.15 K.

Page 34: Ph.D. Seminar

water + ethylene glycol + water + ethylene glycol + THF > DO > DMF > DMSOTHF > DO > DMF > DMSO

-160

-140

-120

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x A

K S

E x

1

0

12

/

( P

a-1 )

Fig.4: Excess isentropic compressibility (KSE) of : (■), water (A) +

ethylene glycol (B) + tetrahydrofuran (C); (▲), water (A) + ethylene glycol

(B) + 1,4-dioxane (C); (∆), water (A) + ethyl ene glycol (B) + N,N-

dimethylformamide (C); and, (□), water (A) + ethylene glycol (B) +

dimethylsulphoxide (C) mixtures with mole fraction of water (xA) at

298.15 K.

Page 35: Ph.D. Seminar

HH22O + CHO + CH22OH +OH +

CH CH22OHOH

ΔηΔη CH CH33

< N-C-H < < H< N-C-H < < H33C-S-CHC-S-CH33

CHCH33 O O O O

(THF) (DMF) (DO) (DMSO)(THF) (DMF) (DO) (DMSO)

IIAA and and VVE E ((weakest molecular interaction with THFweakest molecular interaction with THF)) CHCH33

> N-C-H > > H> N-C-H > > H33C-S-CHC-S-CH33

CHCH33 O O O O

Page 36: Ph.D. Seminar

Excess Molar Volumes, Viscosity Deviations and Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Binary Mixtures Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols Containing 1,3-Dioxolane and Monoalcohols

at 303.15 Kat 303.15 K nn

GG*E*E == R T R T [[ ln ln V V – ( – ( ΣΣ x xii ln ln ii V Vii ) ] ) ]

ii=1=1

nn nn

ln ln η η == Σ Σ xxii ln ln ηηi i ++ dd11 Π Π xxii i=1 i=1i=1 i=1

kk

YYEE == x x11 x x22 ∑ A ∑ A J -1J -1 ((xx11 –– x x22 )) J – 1J – 1

J=1J=1

σ = [ ( Yσ = [ ( YEEexp.exp. – Y – YEE

cal.cal. ) )22/ ( n – m ) ] / ( n – m ) ] 1 / 21 / 2

Page 37: Ph.D. Seminar

MeOH < EtOH < 1-PrOH < 2-PrOH < 1-BuOH < i-MeOH < EtOH < 1-PrOH < 2-PrOH < 1-BuOH < i-AmOH < 2-BuOH < t-BuOHAmOH < 2-BuOH < t-BuOH

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 1

VE x

10

3 / (

m 3 .

mo

l -1 )

Fig.1: Excess molar volumes (VE) for 1,3-dioxolane + monoalcohols with

mole fraction of 1,3-dioxolane (x1) at 303.15 K. Graphical points:

monoalcohols, methanol ( ); ethanol (□); 1 -propanol (▲); 2 -propanol (x);

1-butanol (o); 2-butanol (●); t -butanol (■); i -amyl alcohol (∆).

Page 38: Ph.D. Seminar

MeOH > EtOH > 1-PrOH > 2-PrOH > i-AmOH > 1-MeOH > EtOH > 1-PrOH > 2-PrOH > i-AmOH > 1-BuOH > 2-BuOH > t-BuOHBuOH > 2-BuOH > t-BuOH

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x 1

x 1

0 2 /

( P

)

Fig.2: Viscosity deviations (η) for 1,3-dioxolane + monoalcohols with

mole fraction of 1,3-dioxolane (x1) at 303.15 K. Graphical points:

monoalcohols, methanol ( ); ethanol (□); 1 -propanol (▲); 2 -propanol (x);

1-butanol (o); 2-butanol (●); t -butanol (■); i -amyl alcohol (∆).

Page 39: Ph.D. Seminar

MeOH > AmOH > EtOH > PrOH > BuOHMeOH > AmOH > EtOH > PrOH > BuOH

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 1

G *

E x

1

0 -3 /

(

J.

mo

l -1 )

Fig.3: Gibbs excess energy of activation for viscous flow (G*E) for 1,3-

dioxolane + monoalcohols with mole fraction of 1,3-dioxolane (x1) at

303.15 K. Graphical points: monoalcohols, methanol ( ); ethanol (□); 1 -

propanol (▲); 2 -propanol (x); 1-butanol (o); 2-butanol (●); t -butanol (■); i -

amyl alcohol (∆).

Page 40: Ph.D. Seminar

MeOH < EtOH < PrOH < BuOH < AmOHMeOH < EtOH < PrOH < BuOH < AmOH

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 1

K S

E x

1

0 12 /

(

Pa

-1 )

Fig.4: Excess Isentropic compressibility (KSE) for 1,3-dioxolane +

monoalcohols with mole fraction of 1,3-dioxolane (x1) at 303.15 K.

Graphical points: monoalcohols, methanol ( ); ethanol (□); 1 -propanol

(▲); 2 -propanol (x); 1-butanol (o); 2-butanol (●); t -butanol (■); i -amyl

alcohol (∆).

Page 41: Ph.D. Seminar

CHCH33OH…….OH…….

(1,3-dioxolane)(1,3-dioxolane) most favorable intermolecular complexation through H-bonding most favorable intermolecular complexation through H-bonding

alcohols as Lewis acids and the cyclic diether as a Lewis basealcohols as Lewis acids and the cyclic diether as a Lewis base

The negative The negative VVEE andand K KSSEE values indicate the presence of strong donor- values indicate the presence of strong donor-

acceptor interaction between the oxygen and hydrogen atoms of the acceptor interaction between the oxygen and hydrogen atoms of the cyclic diether and the alcohols.cyclic diether and the alcohols.

The branched isomers fit into the structure of cyclic diether more easily The branched isomers fit into the structure of cyclic diether more easily compared to the linear isomer. compared to the linear isomer.

∆∆ηη and and GG*E*E and and dd1 1 values are found to be positive where charge-transfer values are found to be positive where charge-transfer and hydrogen-bonding interactions lead to the formation of complex and hydrogen-bonding interactions lead to the formation of complex species between unlike molecules.species between unlike molecules.

Page 42: Ph.D. Seminar

Ion-Solvent and Ion-Ion Interactions of some Ion-Solvent and Ion-Ion Interactions of some Tetraalkylammonium, Alkali Metals and Tetraalkylammonium, Alkali Metals and

Ammonium Halides in i-Amyl Alcohol at 298.15 K Ammonium Halides in i-Amyl Alcohol at 298.15 K

by Conductometric Techniqueby Conductometric Technique

d d == (( M M // N. N. )) 1/31/3 = 1.183= 1.183 (( M M // ) ) 1/31/3

== p p [[ 00 ( (1 1 + + RRXX ) +) + E ELL ]] p p = = 1 1 –– a a ((1 1 -- ) ) == 1 1 –– K KAA c c 22 f f 22

– – ln f ln f = = k k //2 2 ((1 1 ++ k R k R )) == e e22//ε kε kBB T T

KKAA = = KKRR / (/ (1 1 –– a a ) = ) = KKRR ((1 1 ++ K KSS))

00 == 1 1 / / 6 П r T6 П r T

Page 43: Ph.D. Seminar

MeMe44 N N++ > Et > Et44 N N++ > Bu > Bu44 N N++ > Pr > Pr44 N N++

However, in case of alkali metal and ammonium halides the trend However, in case of alkali metal and ammonium halides the trend is:is:

LiLi++ > NH > NH44+ + > Na> Na++

LiBr NaI NH4Br

Bu4NI

Bu4NBr

Pr4NBr

Et4NBr

Me4NCl

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Electrolytes

K A

/

( d

m

3 . m

ol -1

)

Fig.1: The electrolytes; tetraalkylammonium, alkali metals and

ammonium halides with their association constant (KA) values in pure i-

amyl alcohol at 298.15 K.

Page 44: Ph.D. Seminar

MeMe44 NCl > Et NCl > Et4 4 NBr > BuNBr > Bu44 NI > Pr NI > Pr4 4 NBr > BuNBr > Bu44 NBr NBr

and, LiBr > NaI > NHand, LiBr > NaI > NH44 Br Br

LiBr

NaI

NH4Br

Bu4NI

Bu4NBrPr4NBr

Et4NBrMe4NCl

0

2

4

6

8

10

12

14

16

18

Electrolytes

Λ o

x

10

4 /

( S

. m

2 .

mo

l -1 )

Fig.2: The electrolytes; tetraalkylammonium, alkali metals and

ammonium halides with their limiting molar conductance () values in

pure i-amyl alcohol at 298.15 K.

Page 45: Ph.D. Seminar

LiBr

NaI

NH4Br

Bu4NI

Bu4NBrPr4NBr

Et4NBrMe4NCl

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Electrolytes

Λ o

η

x

10

6 /

( S

. m

2.

mo

l -1.

P )

Fig.3: The electrolytes; tetraalkylammonium, alkali metals and

ammonium halides with their Walden’s product () in pure i-amyl

alcohol at 298.15 K.

Page 46: Ph.D. Seminar

KKA A Ion-dipole interactionIon-dipole interaction

RR44NN+……+……HO-CH-CHHO-CH-CH22-CH-CH22-CH-CH33

CHCH33

(i-amyl alcohol)(i-amyl alcohol)

BuBu44NI > BuNI > Bu44NBr NHNBr NH44++ > Na > Na++ Li Li++ > Na > Na++

size of Isize of I-- > Br > Br – – size of Lisize of Li++ < Na < Na++

increase of the Walden product indicates the weak solvation of the ions increase of the Walden product indicates the weak solvation of the ions in the pure solvent OR higher is the limiting molar conductance value, in the pure solvent OR higher is the limiting molar conductance value, lower is the solvationlower is the solvation

Walden’s product decreases in the increasing order of the radii:Walden’s product decreases in the increasing order of the radii:

MeMe44 N N++ > Et > Et4 4 NN++ > Pr > Pr4 4 NN++ > Bu > Bu44 N N+ + and Liand Li++ > Na > Na++ > NH > NH44++

Page 47: Ph.D. Seminar

Densities, Viscosities and Sound Speeds of some Densities, Viscosities and Sound Speeds of some Acetate Salts in Binary Mixtures of Tetrahydrofuran Acetate Salts in Binary Mixtures of Tetrahydrofuran

and Methanol at (303.15, 313.15 and 323.15) Kand Methanol at (303.15, 313.15 and 323.15) K VVφφ == M M // 00 –– 1000 (1000 ( - - 0 0 ) / () / (c c 00 ))

VVφ φ == V Vφφ00 ++ S SVV

** √c √c

EE22 == E Eφφ+ [(1000 –+ [(1000 – c E c Eφφ )( 2000 +)( 2000 + S SEE c c3/23/2 ))--11]]SSE E cc1/21/2

EEφφ = = αα00 V Vφφ + (+ (α α -- α α00 ) 1000) 1000 c c -1-1

EEφφ= E= Eφφ00+ S+ SEE √c √c

αα00 = - 1/ ρ = - 1/ ρ00 ( δρ ( δρ00 / δT ) and α = - 1/ ρ ( δρ / δT ) / δT ) and α = - 1/ ρ ( δρ / δT )

Page 48: Ph.D. Seminar

((η η // ηη00 –1) /–1) / c c1/21/2 == A A ++ B c B c1/21/2

∆∆μμ0*0*22 = = ∆μ∆μ0*0*

11+ ( R T + ( R T // V V1100 ) 1000) 1000 B B – (– (VV11

0 0 -- V V2200 ))

∆ ∆μμ0*0*11 = 2.303= 2.303 RT RT log (log ( η η00 V V11

00 / h N / h N ) )

KKSS = = 11/ (/ (uu22 ρ ρ) )

KKS,S,φφ == M K M KSS // ρρ00 + 1000 (+ 1000 (KKSS ρρ00 - - KKSS00 ρρ) / () / (m m ρ ρρ ρ00 ))

KKS,S,φφ == K K00S,S,φφ + + SS**

KK m m1/21/2

Page 49: Ph.D. Seminar

ZZ = = u ρu ρ bb = ( = (M M //ρρ) – ( ) – ( R T R T // ρ u ρ u22) {[1 + ( ) {[1 + ( M uM u22 //3 R T 3 R T )])] 1/21/2 -1 } -1 }

rr = (3 = (3 b b /16 /16 π Nπ N ) ) 1/31/3

L Lff = = KK / ( / (u ρu ρ1/21/2) )

B΄B΄ = (4/3) = (4/3)ππ rr33 NN YY = (36 = (36 π N B΄ π N B΄ 22 ) ) 1/3 1/3

VVaa = = VV – – VV00 = = V V ( 1 –( 1 – u u // u u ∞∞ ) )

R΄R΄ = = M u M u 1/31/3//ρρ

SS = = u Vu V / / u u ∞∞ B΄ B΄

r΄= 1 r΄= 1 - (- ( u / u u / u ∞∞ ) ) 22

rrf f = B΄/ V= B΄/ V

RRAA = ρ = ρSS // ρ ρ00 (( u u00 // u uSS )) 1/31/3

Page 50: Ph.D. Seminar

Limiting apparent molar volumes (Vφ0) and experimental slopes (SV*) for the acetate salts in different mass % of THF +

MeOH mixtures along with standard errors at (303.15, 313.15 and 323.15 ) K.

CH3COONH4 CH3COOK CH3COONa.3H2O CH3COOLi.2H2O Mass

% of

THF

T / K Vφ0 x 106

/ (m3.mol-1)

SV* x 106 /

(m9.mol-3)1/ 2

Vφ0 x 106 /

(m3.mol-1)

SV* x 106 /

(m9.mol-3)1/ 2

Vφ0 x 106

/ (m3.mol-1)

SV* x 106/

(m9.mol-3)1/ 2

Vφ0 x 106/

(m3.mol-1)

SV* x 106/

(m9.mol-3)1/ 2

303.15

33.4 0.02

63.8 0.01

21.2 0.01

86.5 0.04

3.2 0.03

135.6 0.07

-12.9 0.01

141.4 0.01

313.15 18.2 0.05 75.8 0.02 -5.5 0.02 68.8 0.02 -12.7 0.06 121.4 0.04 -26.2 0.02 159.7 0.02

10

323.15 8.4 0.01 86.5 0.03 -11.9 0.07 75.6 0.04 -26.2 0.04 128.3 0.07 -57.1 0.02 169.5 0.02

303.15 20.8 0.02 68.1 0.03 3.0 0.09 84.9 0.07 -21.4 0.02 215.9 0.01 -34.5 0.02 210.7 0.01

313.15 12.2 0.04 76.9 0.01 -14.7 0.02 113.6 0.09 -44.4 0.08 230.8 0.02 -102.8 0.05 328.2 0.02

20

323.15 4.3 0.04 63.1 0.02 -23.5 0.03 99.0 0.03 -63.2 0.05 233.1 0.02 -161.9 0.01 438.2 0.04

303.15 17.5 0.02 84.2 0.06 -6.3 0.01 109.3 0.09 -35.9 0.02 233.5 0.08 -85.5 0.02 289.9 0.02

313.15 10.6 0.08 88.9 0.06 -19.0 0.07 107.5 0.02 -94.4 0.02 339.3 0.08 -137.6 0.02 394.1 0.07

30

323.15 1.5 0.03 99.6 0.03 -31.2 0.02 126.1 0.06 -131.6 0.02 408.4 0.04 -227.1 0.03 572.4 0.02

Page 51: Ph.D. Seminar

-2.5

-2

-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3

c / ( mol. dm -3 )

E2 x

10

6 /

( m

3.

mo

l -1.

K -1

)

Fig.1(a): Variation of partial molar expansibility (E2) with concentration

(c) of acetate salts in 10 mass % THF at 303.15 K. Graphical points:

CH3COONH4 (■); CH 3COOK (); CH3COONa.3H2O (▲); CH 3COOLi.2H2O ().

Page 52: Ph.D. Seminar

J ones-Dole coefficients, (A) and (B) with standard errors along with the free energy of activation for viscous flow of

solution for solvent mixture (∆μ0*1) and salts, (∆μ0*2) in different mass % of THF + MeOH at (303.15, 313.15 and

323.15 ) K.

303.15 K 313.15 K 323.15 K

A /

(m3/ 2.

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

10 mass % THF

CH3COONH4

0.14

0.01

0.46

0.03

33.48 27.19

0.21

0.06

0.37

0.01

34.23 21.48

0.31

0.02

0.06

0.03

35.03

3.49

CH3COOK

0.29

0.03

0.50

0.06

33.34 29.41

0.28

0.01

0.43

0.01

34.23 25.05

0.45

0.02

0.19

0.05

34.96

10.96

CH3COONa.3H2O

0.51

0.04

0.71

0.01

33.48 41.96

0.41

0.07

0.62

0.02

34.23 35.97

0.58

0.03

0.49

0.04

35.03

28.28

CH3COOLi.2H2O

0.06

0.11

1.08

0.01

33.34 63.49

0.15

0.08

0.84

0.03

34.23 48.89

0.44

0.02

0.60

0.02

34.96

34.54

Contd…

Page 53: Ph.D. Seminar

303.15 K 313.15 K 323.15 K

A /

(m3/ 2.

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

20 mass % THF

CH3COONH4

0.05

0.01

0.50

0.06

33.39 28.03

0.07

0.02

0.42

0.12

34.27 23.29

0.30

0.09

0.15

0.01

35.04

8.23

CH3COOK

0.11

0.01

0.60

0.04

33.39 33.63

0.19

0.05

0.57

0.02

34.27 31.6

0.31

0.02

0.29

0.07

35.04

15.88

CH3COONa.3H2O

0.26

0.01

0.82

0.07

33.39 45.95

0.20

0.03

0.76

0.03

34.27 42.12

0.41

0.04

0.51

0.01

35.04

27.91

CH3COOLi.2H2O

0.11

0.03

1.12

0.04

33.39 62.75

0.23

0.03

0.88

0.01

34.27 48.77

0.44

0.08

0.72

0.02

35.04

39.38

Contd…

Page 54: Ph.D. Seminar

303.15 K 313.15 K 323.15 K

A /

(m3/ 2.

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

A /

(m3/ 2 .

mol-1/ 2)

B /

(m3.

mol-1)

∆μ0*1 /

(kJ .

mol-1)

∆μ0*2 x 10-3 /

(kJ . mol-1)

30 mass % THF

CH3COONH4

0.03

0.04

0.62

0.02

33.47 32.98

0.02

0.01

0.59

0.06

34.32 31.05

0.25

0.06

0.27

0.04

35.14

14.06

CH3COOK

0.01

0.01

0.76

0.05

33.47 40.42

0.02

0.10

0.68

0.01

34.32 35.78

0.19

0.04

0.49

0.05

35.14

25.49

CH3COONa.3H2O

0.11

0.01

0.94

0.01

33.47 49.98

0.12

0.04

0.86

0.07

34.32 45.25

0.27

0.04

0.68

0.02

35.14

35.37

CH3COOLi.2H2O

0.02

0.05

1.17

0.11

33.47 62.21

0.06

0.03

1.01

0.01

34.32 53.13

0.12

0.04

0.79

0.05

35.14

41.08

Page 55: Ph.D. Seminar

Derived values of specific acoustic impedance (Z), intermolecular free length (Lf), relaxation strength (r΄) and relative association

(RA) for the acetate salts in different mass % of THF + MeOH mixtures at 303.15 K.

Z x 10-3 /

(m3mol-1)

Lf /

(nm)

RA

Z x 10-3 /

(m3mol-1)

Lf /

(nm)

RA

Z x 10-3 /

(m3mol-1)

Lf /

(nm)

RA

Z x 10-3 /

(m3mol-1)

Lf /

(nm)

RA

CH3COONH4 CH3COOK CH3COONa.3H2O CH3COOLi.2H2O

10 mass % THF

881.58 0.066 0.52 1.02 835.20 0.069 0.57 1.02 874.54 0.067 0.53 1.02 830.29 0.070 0.57 1.02

750.54 0.078 0.65 1.08 722.72 0.081 0.68 1.08 739.50 0.079 0.67 1.09 714.35 0.082 0.68 1.08

722.22 0.081 0.68 1.10 703.72 0.083 0.69 1.09 723.06 0.081 0.69 1.11 709.53 0.083 0.69 1.09

736.35 0.079 0.67 1.09 739.00 0.079 0.67 1.07 761.26 0.078 0.65 1.10 772.02 0.076 0.64 1.06

812.28 0.072 0.59 1.06 827.75 0.071 0.58 1.04 889.19 0.067 0.53 1.05 959.47 0.061 0.44 0.99

1050.13 0.056 0.33 0.97 1171.41 0.050 0.17 0.93 985.30 0.060 0.43 1.01 1304.12 0.045 0.12 0.89

20 mass % THF

906.21 0.065 0.50 1.01 890.72 0.066 0.52 1.01 909.18 0.065 0.49 1.01 876.24 0.067 0.53 1.02

866.54 0.068 0.55 1.02 814.48 0.072 0.60 1.05 883.31 0.066 0.53 1.02 772.82 0.076 0.64 1.07

851.98 0.069 0.56 1.03 796.46 0.074 0.62 1.07 880.46 0.067 0.54 1.03 759.80 0.078 0.66 1.08

851.67 0.070 0.57 1.04 811.75 0.073 0.61 1.06 892.96 0.066 0.53 1.03 787.95 0.075 0.63 1.07

864.72 0.068 0.55 1.03 863.75 0.069 0.56 1.04 918.51 0.065 0.51 1.02 872.12 0.068 0.55 1.04

901.19 0.066 0.52 1.02 941.28 0.063 0.48 1.02 986.14 0.060 0.43 1.00 1051.82 0.056 0.34 0.97

30 mass % THF

938.41 0.063 0.48 1.00 936.56 0.063 0.48 1.00 949.63 0.062 0.47 0.99 941.55 0.063 0.47 1.00

983.26 0.060 0.43 0.99 973.29 0.061 0.44 0.99 1046.43 0.057 0.36 0.97 996.73 0.060 0.42 0.99

1005.33 0.059 0.41 0.98 991.62 0.060 0.43 0.99 1096.69 0.054 0.30 0.96 1017.51 0.058 0.40 0.98

1011.65 0.058 0.40 0.98 995.29 0.059 0.43 0.99 1105.33 0.054 0.29 0.96 1011.15 0.059 0.41 0.99

1000.14 0.059 0.41 0.99 989.84 0.060 0.44 1.00 1063.75 0.056 0.35 0.98 985.13 0.060 0.44 1.00

981.44 0.060 0.44 0.99 971.54 0.061 0.46 1.01 995.20 0.060 0.44 1.01 939.94 0.063 0.49 1.02

Page 56: Ph.D. Seminar

0

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

m / ( mol. kg -1 )

KS

x 1

0 10 /

( P

a

-1 )

Fig.2(a): Variation of isentropic compressibility (KS) with concentration

(m) of acetate salts in 10 mass % THF at 303.15 K. Graphical points:

CH3COONH4 (■); CH 3COOK (); CH3COONa.3H2O (▲); CH 3COOLi.2H2O ().

Page 57: Ph.D. Seminar

CHCH33OH…….OH…….

(THF)

CH3COONH4, CH3COOK,

CH3COONa.3H2O, CH3COOLi.2H2O

Vφ0 - ion-solvent interactions

Sv* - ion-ion interactions

strong ion-solvent interactions between NH4+ ion and THF +

MeOH molecules and Strong ion-ion interactions between Li+ ion and THF + MeOH molecules

Page 58: Ph.D. Seminar

The smaller ions show a stronger affinity towards the

ionic association while the larger ions seems to be responsible for the inability to ion-pair formation.

SV* values is found to increase as mass % of THF

increases along with the rise in temperature. This is reflected to accommodation of more and more solute molecules in the empty space left in the packing of associated solvent molecules resulting in an increased ion-pairing.

Rise in temperature is attributed to violent thermal agitation resulting in increasing the force of ion-ion interactions.

Page 59: Ph.D. Seminar

AA–coefficients - the ion-atmosphere effects –coefficients - the ion-atmosphere effects

BB–coefficients -solvation of the ions and their effects –coefficients -solvation of the ions and their effects on the structure of the solvent in the near on the structure of the solvent in the near environment of the solute particlesenvironment of the solute particles

small small AA values indicate weak ion-ion interactions and values indicate weak ion-ion interactions and positive positive BB values suggest the presence of strong ion- values suggest the presence of strong ion-solvent interactionssolvent interactions

BB–coefficients decreases from NH–coefficients decreases from NH44++ to Li to Li++ as mass % as mass %

of THF increases and decreases with rise in of THF increases and decreases with rise in temperature, thus, indicating weakest ionic solvation temperature, thus, indicating weakest ionic solvation for Lifor Li++-salt-salt

Page 60: Ph.D. Seminar

∆μ0*2 i.e. the contribution per mole of the solute to free energy of activation

for viscous flow of solution followed the order:

CH3COOLi.2H2O > CH3COONa.3H2O > CH3COOK > CH3COONH4

The change observed in Z (acoustic impedance) ) with conc. is attributed to change of ultrasonic speed. This behavior is due to association of molecules and formation of molecular aggregates.

The increase in Lf (intermolecular free length) implies increase in number of free ions showing the occurrence of ionic dissociation.

The change of r΄ (relaxation strength) with conc. may be interpreted in terms of increase in intermolecular forces due to increase in conc. and subsequent decrease in the relaxation of the molecules.

RA (relative association) is used to understand the interaction influenced by the breaking of the solvent structure on addition of solute and the solvation of the solute simultaneously produced.

Page 61: Ph.D. Seminar

Solute–Solvent and Solute–Solute Interactions of Solute–Solvent and Solute–Solute Interactions of Resorcinol in Mixed 1,4-Dioxane–Water Systems at Resorcinol in Mixed 1,4-Dioxane–Water Systems at

Different TemperaturesDifferent Temperatures

VVφφ00 == aa00 + a+ a11.T .T ++ aa22. T. T22

ΦΦ00EE = ( = ( δVδV

00// δT δT )) PP == aa00 + 2 a + 2 a22 T T

( ( δ cδ cPP / / δ P δ P )) TT == – (– ( δ δ 22 V Vφφ00// δ T δ T 22 )) PP

Page 62: Ph.D. Seminar

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

√ c / ( mol. dm - 3 ) 1 / 2

x

10

6 /

( m

3 . m

ol -

1 )

Fig.1(a): Apparent molar volumes (Vφ) against square root of molar

concentration (√c) of resorcinol in 1,4 -dioxane + water mixtures and pure

1,4-dioxane at 303.15 K. Graphical points: 10 mass % DO (▲); 20 mass %

DO (○); 30 mass % DO (●); 100 mass % DO (Δ).

Page 63: Ph.D. Seminar

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

√ c / ( mol. dm - 3 ) 1 / 2

(

/

0 –

1 )

÷ √

c /

( m

ol.

dm

- 3

) -

1 /

2

Fig. 2(a): (/ 0 –1) /√ c against square root of molar concentration (√c) of

resorcinol in 1,4-dioxane + water mixtures and pure 1,4-dioxane at 303.15

K. Graphical points: 10 mass % DO (▲); 20 mass % DO (○); 30 mass % DO

(●); 100 mass % DO (Δ).

Page 64: Ph.D. Seminar

Limiting apparent molar expansibilities (Φ0E) for resorcinol in 1,4-dioxane

+ water mixtures and pure 1,4-dioxane at (303.15, 313.15 and 323.15) K.

Standard errors are given in parenthesis.

Φ0E x 106 / ( m3. mol-1. K-1 ) Mass % of

1,4-Dioxane 303.15 K 313.15 K 323.15 K

( δΦ0E / δT ) P

10

1.00 (± 0.03)

0.79 (± 0.02)

0.59 (± 0.01)

Negative

20 0.29 (± 0.02) 0.27 (± 0.04) 0.24 (± 0.03) Negative

30 0.25 (± 0.01) 0.19 (± 0.03) 0.14 (± 0.02) Negative

100 0.28 (± 0.02) 0.18 (± 0.03) 0.09 (± 0.02) Negative

Page 65: Ph.D. Seminar

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

√ m / ( mol. kg - 1 ) 1 / 2

ΦK

x

10

10 /

( m

3.

mo

l - 1 .

Pa

- 1 )

Fig. 3: Apparent molal adiabatic compressibility (ΦK) against square root

of molal concentration (√ m) of resorcinol in 1,4-dioxane + water mixtures

at 303.15 K. Graphical points: 10 mass % DO (▲); 20 mass % DO (○); 30

mass % DO (●).

Page 66: Ph.D. Seminar

H OH…………......

…………….

O-H

O-H

(Resorcinol) (DO)

Vφ0 values indicates the presence of strong solute-solvent

interactions, and these interactions are strengthened with a rise in temperature and weakened with an increase in the amount of 1,4-dioxane in the mixed solvent under investigation, suggesting larger electrostriction at higher temperature and lower amount of 1,4-dioxane in the mixture.

Page 67: Ph.D. Seminar

SSVV** results indicate the presence of weak results indicate the presence of weak

solute-solute interactions which decrease with solute-solute interactions which decrease with a rise in temperature attributing to more a rise in temperature attributing to more violent thermal agitation that decreases the violent thermal agitation that decreases the ionic dissociation and it increases with an ionic dissociation and it increases with an increase in the amount of 1,4-dioxane in the increase in the amount of 1,4-dioxane in the mixture which results in a decrease in mixture which results in a decrease in solvation of ions. solvation of ions.

Negative ( Negative ( δδ22VVφφ00/ / δTδT2 2 ))PP values suggested that values suggested that

resorcinol acts as a structure breaker in these resorcinol acts as a structure breaker in these solvent mixtures solvent mixtures

Page 68: Ph.D. Seminar

Concluding RemarksConcluding Remarks Most of the present day knowledge on non-aqueous Most of the present day knowledge on non-aqueous

solutions have come from studies on various thermodynamic solutions have come from studies on various thermodynamic properties, e.gproperties, e.g.., density, transport properties, e.g, density, transport properties, e.g.., viscosity, , viscosity, conductance as well as acoustic properties, e.g., ultrasonic conductance as well as acoustic properties, e.g., ultrasonic speed.speed.

Molecular interactions are very complex in nature, if careful Molecular interactions are very complex in nature, if careful judgement is used, valid conclusions can be drawn in many judgement is used, valid conclusions can be drawn in many cases relating to degree of structure and order of the system.cases relating to degree of structure and order of the system.

Extensive studies of the different physico-chemical, Extensive studies of the different physico-chemical, biological or pharmaceutical activity between different biological or pharmaceutical activity between different components of a given mixture will be of sufficient help in components of a given mixture will be of sufficient help in understanding the nature of the different interactions prevailing understanding the nature of the different interactions prevailing in systems.in systems.

Page 69: Ph.D. Seminar

ReferencesReferences 1. J .V. Herraez, R. Belda, J . Solution Chem. 2004, 33, 117.

2. J . Ferguson, Z. Kamblonski, Applied Fluid Rheology, Elsevier Science, University Press, Cambridge, 1991.

3. C.K. Zeberg-Mikkelsen, S.E. Quinones-Cisneros, S.H. Stenby, Fluid Phase Equilibria, 2002, 194, 1191.

4. R. Shukla, M. Cheryan, J ournal of Membrane Science, 2002, 198, 104.

5. R. Voight, Tratado de Tecnologia Farmaceutica, Ed. S.A. Acribia, Zaragoza, 1982.

6. M.J . Assael, N.K. Dalaouti, I. Metaxa, Fluid Phase Equilibria, 2002, 199, 237.

7. A. Darr, Technologia Farmaceutica, Ed. S.A. Acribia, Zaragoza, 1979.

8. H.A. Barnes, J .F. Hutton, K. Walters, An Introduction to Rheology, Elsevier Science Publishers BV, Amsterdam, 1993.

9. J .M. Resa, C. Gonzalez, J . Lanz, J ournal of Food Engineering, 2002, 51, 113.

10. M. Garcia-Velarde, Revista Espanola de Fisica, 1995, 9, 12.

11. C.W. Macosk, Rheology: Principles, Measurements and Applications, VCH Publishers, New York, 1994.

12. C. Fauli-Trillo, Tratado de Farmacia Galencia, Ed. S.A. Lujan, Madrid, 1993.

13. J . Swarbrik, J .C. Boyland, Encyclopedia of Pharmaceutical Technology, Marcel Dekker, New York, 1993.

14. J . Pellicer, Sinergia Viscosa, Valencia, Spain, October 1997.

15. G. Copetti, R. Lapasin, E.R. Morris, Proceedings of the 4th European Rheology Conference, Seville, Spain, 1994, 215.

16. G. Kaletunc-Gencer, M.Peleg, J . of Texture Studies, 1986, 17, 61.

17. D.D. Christianson, Hydrocolloidal Interactions with Starches, Wesport. Conn., 1982, 399.

18. N.K. Howell, Proceedings of the 7th International Conference, Wales, 1993.

19. H.S. Harned, B.B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1958, 3rd ed.

20. J .J . Lagowski, The Chemistry of Non-Aqueous Solvents, Academic, New York, 1966.

Page 70: Ph.D. Seminar

21. B.E. Conway, R.G. Barradas, Chemical Physics of Ionic Solutions, Wiley, New York, 1966.

22. J .S. Muishead-Gould, K.J . Laidler, Chemical Physics of Ionic Solutions, Wiley, New York, 1966, 75.

23. J .F. Coetzee, C.D. Ritchie, Solute-Solvent Interactions, Marcel Dekker, New York, 1969.

24. R.G. Bates, J . Electroanal. Chem., 1972, 29, 1.

25. G.S. Kell, C.M. Daries, J . J arynski, Water and Aqueous Solutions, Structure, Thermodynamics and Transport process, Ed.

R.A. Horne, Wiley, 1972, Chapters 9 &10.

26. E.S. Amis, J .F. Hinton, Solvent effects on Chemical Phenomena, Academic, New York, 1973.

27. A.K. Covington, T. Dickinson, Physical Chemistry of Organic Solvent Systems, Plenum, New York, 1973.

28. J .E. Gordon, The Organic Chemistry of Electrolyte Solutions, Wiley-Interscience, 1975.

29. F. Franks, Physico-Chemical processes in Mixed Aqueous Solvents, Heinemann, 1967, 141.

30. F. Franks, Water–A Comprehensive Treatise, Plenum, New York, 1973, 1.

31. V. Gutmann, Electrochim. Acta, 1976, 21, 661.

32. U. Mayer, V. Gutmann, Adv. Inorg.Chem. Radiochem. 1975, 17, 189.

33. R.G. Pearson, Hard and Soft Acids and Bases, Dowdon, Hutchinson and Ross, Strondsburgh, 1973.

34. H.S. Harned, B.B. Owen, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York, 1943, Chapter 8.

35. C. Tanford, Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Interscience, New York, 1980, 2nd

ed.

36. E. Vikingstad, Aggregation Process in Solutions, Eds. E. Wyn-J ones and J . Gormally, Elsevier, Amsterdam, 1983, 100.

37. J .E. Desnoyers, M. Arel, H. Perron, C. J olicoenn, J . Phys. Chem. 1969, 73, 3347.

38. A.K. Covington, T. Dickinson, Physical Chemistry of Organic Solvent Systems, Plenum, New York, 1973, Chapter 2.

39. D.K. Hazra, B. Das, J . Chem. Eng. Data, 1991, 36, 403.

Page 71: Ph.D. Seminar

40. D.O. Masson, Phil. Mag. 1929, 8, 218.

41. O. Redlich, D.M. Meyer, Chem. Rev. 1964, 64, 221.

42. B.B. Owen, S.R. Brinkley, J r. Ann. N. Y. Acad. Sci. 1949, 51, 753.

43. K.S. Pitzer, G. Mayorga, J . Phys. Chem. 1973, 77, 2300.

44. F.J . Millero, In Water and Aqueous Solutions: Structure, Thermo-dynamics and Transport Processes, Ed. R.A. Horne, Wiley-

Interscience, New York, 1972.

45. R. Gopal, M.A. Siddiqi, J . Phys. Chem. 1969, 73, 3390.

46. J . Padova, I. Abrahmen, J . Phys. Chem. 1967, 71, 2112.

47. R. Gopal, D.K. Agarwal, R. Kumar, Bull. Chem. Soc. J pn. 1973, 46, 1973.

48. R. Gopal, P.P. Rastogi, Z. Phys. Chem. (N.F.), 1970, 69, 1.

49. B. Das, D.K. Hazra, J . Chem. Eng. Data. 1991, 36, 403.

50. L.G. Hepler, Can. J . Chem. 1969, 47, 4617.

51. L.G. Hepler, J .M. Stokes, R.H. Stokes. Trans. Faraday Soc. 1965, 61, 20.

52. F.H. Spedding, M.J . Pikal, B.O. Ayres. J . Phys. Chem. 1966, 70, 2440.

53. L.A. Dunn, Trans. Faraday Soc. 1968, 64, 2951.

54. R. Pogne, G. Atkinson, J . Chem. Eng. Data. 1988, 33, 370.

55. B.E. Conway, R.E. Verral, J .E. Desnoyers. Trans. Faraday Soc. 1966, 62, 2738.

56. K. Uosaki, Y. Koudo, N. Tokura, Bull. Chem. Soc. J pn., 1972, 45, 871.

57. B.S. Krumgalz, J . Chem. Soc. Faraday Trans. I. 1980, 76, 1887.

58. A.W. Quin, D.F. Hoffmann, P. Munk, J . Chem. Eng. Data, 1992, 37, 55.

59. Z. Atik, J . Solution Chem. 2004, 33, 1447.

Page 72: Ph.D. Seminar

Symposium/Seminar/Convention Symposium/Seminar/Convention AttendedAttended

The The National SymposiumNational Symposium on Current Trends in Chemical on Current Trends in Chemical Research, organized and hosted by the Department of Research, organized and hosted by the Department of Chemistry, Gauhati University, Guwahati, Assam, India Chemistry, Gauhati University, Guwahati, Assam, India from 27th to 28th February, from 27th to 28th February, 20042004 on the topic “ on the topic “Studies on Studies on Viscous Synergy and Antagonism of Liquid Mixtures at Viscous Synergy and Antagonism of Liquid Mixtures at Various TemperaturesVarious Temperatures”.”.

The 42nd The 42nd Annual ConventionAnnual Convention of Chemists, organized by of Chemists, organized by the Indian Chemical Society, Kolkata, and hosted by Visva-the Indian Chemical Society, Kolkata, and hosted by Visva-Bharati University, Santiniketan, India during 9th to 13th Bharati University, Santiniketan, India during 9th to 13th February, February, 20062006 on the topic “ on the topic “Viscous Synergy and Viscous Synergy and Antagonism and Isentropic Compressibility of Ternary Antagonism and Isentropic Compressibility of Ternary Mixtures containing 1,3-Dioxolane, Water and Mixtures containing 1,3-Dioxolane, Water and Monoalkanols at 303.15 KMonoalkanols at 303.15 K”.”.

Page 73: Ph.D. Seminar

List of PublicationsList of Publications Investigations of Viscous Antagonism of Binary Liquid Mixtures in Investigations of Viscous Antagonism of Binary Liquid Mixtures in

the Temperature Range, 303.15 K to 323.15 K, the Temperature Range, 303.15 K to 323.15 K, Journal of Teaching Journal of Teaching and Research in Chemistryand Research in Chemistry, , 20042004, , 1111, 12-20., 12-20.

Excess Molar Volumes, Viscosity Deviations and Isentropic Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols at 303.15 K, Monoalcohols at 303.15 K, Journal of Solution ChemistryJournal of Solution Chemistry, , 20052005, , 3434, , 1311-1325.1311-1325.

Investigation on Viscous Antagonism of Ternary Liquid Mixtures Investigation on Viscous Antagonism of Ternary Liquid Mixtures and its Relation to Concentration, and its Relation to Concentration, Journal of the Indian Chemical Journal of the Indian Chemical SocietySociety, , 20052005, , 8282, 814-818., 814-818.

Solute-Solvent and Solute-Solute Interactions of Resorcinol in Mixed 1,4-Solute-Solvent and Solute-Solute Interactions of Resorcinol in Mixed 1,4-Dioxane-Water Systems at Different Temperatures, Dioxane-Water Systems at Different Temperatures, International International Journal of Thermo-physicsJournal of Thermo-physics, , 20052005, , 2626, 1549-1563., 1549-1563.

Ion-Solvent and Ion-Ion Interactions of some Tetraalkylammonium, Ion-Solvent and Ion-Ion Interactions of some Tetraalkylammonium, Alkali metals and Ammonium Halides in Isoamyl Alcohol at 298.15 K by Alkali metals and Ammonium Halides in Isoamyl Alcohol at 298.15 K by Conductometric Technique, Conductometric Technique, Journal of the Indian Chemical SocietyJournal of the Indian Chemical Society, , 20062006, , 8383, 160-164., 160-164.

Page 74: Ph.D. Seminar

Viscous Synergy and Antagonism and Isentropic Compressibility of Viscous Synergy and Antagonism and Isentropic Compressibility of Ternary Mixtures containing 1,3-Dioxolane, Water and Monoalkanols at Ternary Mixtures containing 1,3-Dioxolane, Water and Monoalkanols at 303.15 K, 303.15 K, Fluid Phase EquilibriaFluid Phase Equilibria, , 20062006, , 243243, 133-141., 133-141.

Studies of Viscous Antagonism, Excess Molar Volume and Isentropic Studies of Viscous Antagonism, Excess Molar Volume and Isentropic Compressibility in Aqueous Mixed Solvent Systems at Different Compressibility in Aqueous Mixed Solvent Systems at Different Temperatures, Temperatures, Physics and Chemistry of LiquidsPhysics and Chemistry of Liquids, , 20062006, , 4444, 303-314., 303-314.

Densities, Viscosities and Sound Speeds of some Acetate Salts in Binary Densities, Viscosities and Sound Speeds of some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15 and Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15 and 323.15) K, 323.15) K, Journal of Chemical and Engineering DataJournal of Chemical and Engineering Data, , 20062006, , 51, 51, 1415-1423.1415-1423.

Electrical Conductances of Some Ammonium and Electrical Conductances of Some Ammonium and Tetraalkylammonium Halides in Aqueous Binary Mixtures of 1,4-Tetraalkylammonium Halides in Aqueous Binary Mixtures of 1,4-Dioxane at 298.15 K, Dioxane at 298.15 K, Pakistan Journal of Scientific and Industrial Pakistan Journal of Scientific and Industrial ResearchResearch, , 20062006, , 4949, 153-159., 153-159.

Conductivity Studies of Sodium Iodide in Pure Tetrahydrofuran Conductivity Studies of Sodium Iodide in Pure Tetrahydrofuran and Aqueous Binary Mixtures of Tetrahydrofuran and 1,4-Dioxane and Aqueous Binary Mixtures of Tetrahydrofuran and 1,4-Dioxane at 298.15 K, at 298.15 K, Physics and Chemistry of LiquidsPhysics and Chemistry of Liquids, in press. , in press.

Page 75: Ph.D. Seminar

AcknowledgementAcknowledgement

Page 76: Ph.D. Seminar

THANK YOUTHANK YOU


Recommended