+ All Categories
Home > Documents > Ph_manual_s

Ph_manual_s

Date post: 06-Oct-2015
Category:
Upload: hemanth5a5
View: 217 times
Download: 0 times
Share this document with a friend
Description:
graphic art
53
 PICO HYDRO FOR VILLAGE POWER A Practical Manual for Schemes up to 5 kW in Hilly Areas Phillip Maher and Nigel Smith Edition 2.0 May 2001 This manual is an output from a project funded by the UK Department for International Development (DfID) for the benefit of developing countries. The views expressed are not necessarily those of DfID. Disclaimer The authors accept no responsibility for injury or death resulting from incorrect manufacturing, installation or operation of equipment described in this manual. All electrical and mechanical installation and repair work should always be supervised and checked by a qualified and experienced technician or engineer.
Transcript
PICO HYDRO FOR VILLAGE POWER
A Practical Manual for Schemes up to 5 kW in Hilly Areas
Phillip Maher and Nigel Smith
Edition 2.0 May 2001
This manual is an output from a project funded by the UK Department for International Development (DfID) for the benefit of developing countries. The views expressed are not necessarily those of DfID.
Disclaimer
 
 pmaher 31/05/01 7-8
reached at least twice the background level, then the procedure must be repeated with a greater quantity of salt. Readings continue to be recorded every five seconds until the conductivity has returned to its background level. This will normally be after a further 10 to 15 minutes. If possible select a scale on the meter that is just sufficient for the maximum conductivity to be read. This may mean loss of the first set of results.
The meter readings are typically given in micro Siemens (µS) which are units of conductivity (ohms-1 x 10-6).
STEP 4:Plot a graph of changing salt
concentration against time
These readings should be plotted on squared paper as a graph of conductivity against time. The shape of the graph allows the results to be evaluated. A smooth curve with a peak value at least twice the level of the background conductivity, indicates that the procedure has been successful. If the curve is badly skewed or the readings are uneven then the procedure will need to be repeated.
STEP 5: Calculate the area under the curve
The area under the curve must be established in order to calculate the flow rate. This is done either by counting the squares underneath the curve or by summing the results using a spreadsheet. If you count the squares then the axis scale must be taken into account.
STEP 6: Calculate the flow rate
The equation for calculating the flow rate is as follows:
Q   M k 
 A =
  ×   −1
where: Q = flow rate (l/s) M = mass of salt (mg) k-1= conversion factor (ohm-1/mg l-1) A= area under curve (s x 10-6 x ohm-1)
The conductivity is converted into salt concentration by multiplying by a conversion factor that takes water temperature into account. The conversion factor, k-1 has units ohm-
1/mg l-1  and assuming a water temperature of 22°C, the value of k-1= 2.04.
Note: The mass of salt must be converted to milligrams (grams x 103) before being used in the equation.
   S    i   t   e
   i  n   g
  p   m   a    h   e   r    3    1    /   0    5    /   0    1
       7    -
       9
  7  -
  8
  R   e   s   u   l  t   s   f   r   o   m
    t   h   e
  ‘  s   a   l  t   g   u   l  p   ’    m   e   t   h   o   d
  o   f   f   l  o   w
  m   e   a   s   u   r   e   m   e   n   t   c   a   n
  b   e
  q   u   i  c   k   l  y
  u   s   i  n   g
  a
  s   p   r   e   a   d   s   h   e   e   t  .
   T    i  m   e
   C   o   n    d   u   c    t   i  v    i   t  y
   C   o   n    d   u   c    t   i  v    i   t  y
   T    i  m   e
   C   o   n    d   u   c    t   i  v    i   t  y
   C   o   n    d   u   c    t   i  v    i   t  y
   R   e   a    d    i  n   g
   I  n   c   r  e   a   s   e
   R   e   a    d    i  n   g
   C    h   a   n   g   e
   (  s   e   c   o   n    d   s    )    O    h   m
  -   1    x
   (  s   e   c   o   n    d   s    )    O    h   m
  -   1    x
   2    1    4    0
   M   e   a   s   u   r  e   m   e   n
   t
   T    h   u
   k   o  ,
   E   a   s
   1    9    9    8
   T    i  m   e   :
   0   a   m
   W   a    t  e   r    T   e   m   p   e   r  a    t  u   r  e   :
   2    2    °    C
   5    0   m   e
   t  r  e   s
   M   a   s   s   o    f   s   a    l   t   u   s   e    d   :
   2    5    0    0    0   m
   i   l   l   i  g   r  a   m   e   s
   B   a   c    k   g   r  o   u   n    d    C   o   n    d   u   c    t   i  v    i   t  y
   2    9
 .   2   m
   S    i  e   m   e   n   s
   T    i  m   e   p   e   r   i  o    d    b   e    t  w   e   e   n   r  e   s   u    l   t  s
   5    S   e   c   o   n
   d   s
   C   o   n   v   e   r  s    i  o   n    F   a   c    t  o   r    k
   2  .   0
   4   o
   /  m   g
   l  -   1
   F    l  o   w    R   a    t  e   =   m   a   s   s   o    f   s   a    l   t    i  n   m   g   x    f  a   c    t  o   r    k    /   a   r  e   a   u   n    d   e   r   c   u   r  v   e
   A   r  e   a   u   n    d   e   r   c   u   r  v   e   =    T   o    t  a    l   o    f   c   o   n    d   u    t   i  v    i   t  y   c    h   a   n   g   e   x    t   i  m   e   p   e   r   i  o    d
   A   r  e   a   u   n    d   e   r   c   u   r  v   e   =
   1    0    6    9    8
   F    l  o   w    R   a    t  e   =
   4  .   7
   7    l   i   t  r  e   s   p   e   r   s   e   c   o   n
   d
   P   o   w   e   r    A   v   a    i   l  a    b    l  e   =    F    l  o   w    R   a    t  e   x    H   e   a    d   x    G   r  a   v    i   t  y
   P   o   w   e   r    A   v   a    i   l  a    b    l  e   =
   2    3    3    8   w   a
   t   t  s
   b   a   y  ,
   T    h   u
   k   o  ,
   0    2    0
   )
 
1000 0.15 0.39 0.81
1500 0.23 0.58 1.21
3000 0.46 1.17 2.42
Table 19-3 Additional kW per belt if Ratio is 1.95 or greater and turbine pulley smaller than the load pulley
If the pulley ratio is 1.95 (1.95:1) or greater, then the power can be increased by the amount shown in Table 19-3. For example, if an SPA belt is chosen and the turbine speed is around 1500 rpm, the power which that belt can deliver increases by 0.58 kW if the ratio is 1.95 or more.
 pmaher 31/05/01 20-1
References:
1.  Harvey, A. et al. ‘Micro Hydro Design Manual,’ Intermediate Technology Publications, 1993.
2.  Inversin, A. ‘Mini Grid Design Manual,’ ESMAP, World Bank, 2000.
Editorial Address
Micro Hydro Research Group Department of Electrical and Electronic Engineering The Nottingham Trent University Burton Street Nottingham NG7 4BU
Tel. +44 (0) 115 848 2885 Fax: +44 (0) 115 948 6567 Email: [email protected] Web: http://eee.ntu.ac.uk/research/microhydro/picosite
Intermediate Technology Publications
103-105 Southampton Row London WC1B 4HH
Tel: +44(0) 171 436 9761 Fax: +44(0) 171 436 2013 Email: [email protected] Web: http://www.oneworld.org/itdg/publications.html
ESMAP