+ All Categories
Home > Documents > Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte...

Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte...

Date post: 14-Jan-2016
Category:
Upload: loren-davidson
View: 222 times
Download: 6 times
Share this document with a friend
20
Photonic Topological Insulators Y. Plotnik 1 , J.M. Zeuner 2 , M.C. Rechtsman 1 , Y. Lumer 1 , S. Nolte 2 , M. Segev 1 , A. Szameit 2 1 Department of Physics, Technion – Israel Institute of Technology, Haifa, Israel 2 Institute of Applied Physics, Friedrich-Schiller-Universität, Jena, Germany
Transcript
Page 1: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Photonic Topological InsulatorsY. Plotnik1, J.M. Zeuner2, M.C. Rechtsman1, Y. Lumer1, S. Nolte2, M. Segev1, A. Szameit21Department of Physics, Technion – Israel Institute of Technology, Haifa, Israel2Institute of Applied Physics, Friedrich-Schiller-Universität, Jena, Germany

Page 2: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Outline-What are Topological Insulators?-Topological protection of photons?-How can we get unidirectional edge states in photonics? Floquet! -Description of our experimental system: photonic lattices-First observation of topological insulators-This is also the first observation of optical unidirectional edge states in optics! -Future directions

Page 3: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

What are Topological insulators?

Valance band

Conduction band

Ef

Regular insulatorSpin Orbit Interaction:Topological Insulator

Scattering protectedEdge states

Kane and Mele, PRL (2005)

Magnetic field:Quantum Hall Effect

Unidirectional edge state

Von Klitzing et al. PRL (1980)

Main characteristics:•Edge conductance only•Immune to scattering/defects:

• No back-scattering• No scattering into the bulk

Only for Topological insulators:•No need for external fields

Page 4: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Motivation: No back scattering

No back scattering → Robust Photon transport!

Page 5: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Topological?

( ). .

i ik k k k

B z

u u dk Berry curvature dsp pg= Ñ =ò òòrr

Ef Ef

Page 6: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Background: photonic topological protectionby magnetic field

Raghu, Haldane PRL (2008)

Wang et. al., PRL (2008)

Unidirectional edge state:

Wang et. al. Nature (2009)

For optical frequencies, magnetic response is weak

Page 7: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

von Klitzing et. al., PRL (1980) Kane and Mele, PRL (2005) We need a type of Kane-Mele transition,but how, without Kramers’ degeneracy ?

We need a solution without a magnetic field

(1) Hafezi, Demler, Lukin, Taylor, Nature Phys. (2011): aperiodic coupled resonator system (2) Umucalilar and Carusotto, PRA (2011): using polarization as spin in PCs(3) Fang, Yu, Fan, Nature Photon. (2012): electrical modulation of refractive index in PCs(4) Khanikev et. al. Nature Mat. (2012): birefringent metamaterials

Quantum hall No magnetic field Topological Insulator

Page 8: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Enter Floquet Topological Insulators

Lindner, Refael, Galitski, Nature Phys. (2011).

We can explicitly break TR by modulating! New Floquet eigenvalue equation:

Gu, Fertig, Arovas, Auerbach, PRL (2011).

Kitagawa, Berg, Rudner, Demler, PRB (2010).

+

( ) ( )H t H t T= +

ß

Page 9: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Experimental system: photonic lattices

Peleg et. al., PRL (2007)

Paraxial Schrödinger equation:

Array of coupled waveguides

·

· 0t

t

E E B

B B B

re

me

¶¶

¶¶

Ñ Ñ

Ñ ´ =Ñ

= ´ =-

=( )0i k x teE wy -=+ + ParaxialapproximationField envelopeMaxwell

=

Page 10: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Helical rotation induces a gauge field

' cos

' sin

'

x x R z

y y R z

z z

= + W

= + W

=

Paraxial Schrödingerequation

Coordinate Transformation

+

( )( ) ( ) 2 20 0

0 0

2 ,12 2

k n x y k Rz k ni i zAy y y yD W¶ = Ñ+ - -

( ) ( )0 sin ,cosz k R z zA = W W W

( ) ( )· †

,

nmi zn m

n m

z te rAH y y=å

Tight Binding Model (Peierls substitution)

Page 11: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Graphene opens a Floquet gap for helical waveguides

kx

ky

Band gap

kxa

Top edge

Edge states

Bottom edge

kxa

Page 12: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Experimental results: rectangular arraysMicroscope image

- No scattering from the corner- Armchair edge confinement

Page 13: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

“Time”-domain simulations

Page 14: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Experimental results: group velocity vs. helix radius, R

R = 0µm(b) R = 2µm(c) R = 4µm(d) R = 6µm(e)

R = 8µm(f) R =10µm(g) R = 12µm(h) R = 14µm(i) R = 16µm(j)

(a)

R =10µmR =0R,

b c d e f g h i j

R = 0µm

Page 15: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Experimental results: triangular arrays with defects

missing waveguide R = 8 µmz = 10cm

Page 16: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Interactions: focusing nonlinearity gives solitons

kxky

Band gap

Y. Lumer et. al., (in preparation)

Page 17: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

- Disorder: Topological Anderson insulator?- Topological cloak?

- What effect do interactions have on edge states?- many modes on-site.

Conclusion and Future work

- Non-scattering in optoelectronics

- First Optical Topological Insulator- First robust one way optical edge states (without any magnetic field!)Future Work:

Page 18: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Acknowledgments

Discussions: Daniel Podolsky

Page 19: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Challenge of scaling down: Faraday effect is weakFaraday effect Largest Verdet constant(e.g. in TGG) is ~100

Optical wavelengths are the keyto all nanophotonics applications

The effect is too weak.We need another way!

·

rad

T m

Page 20: Photonic Topological Insulators Y. Plotnik 1, J.M. Zeuner 2, M.C. Rechtsman 1, Y. Lumer 1, S. Nolte 2, M. Segev 1, A. Szameit 2 1 Department of Physics,

Theoretical proposals(1) Two copies of the QHE

Hafezi, Demler, Lukin, Taylor, Nature Phys. (2005).

(2) Modulation to break TR

Other theoretical papers in different systems:(3) Koch, Houck, Le Hur, Girvin, PRA (2010): cavity QED system(4) Umucalilar and Carusotto, PRA (2011): using spin as polarization in PCs(5) Khanikev et. al. Nature Mat. (2012): birefringent metamaterials

Fang, Yu, Fan, Nature Photon. (2012).


Recommended