+ All Categories
Home > Documents > Photosynthesis

Photosynthesis

Date post: 30-Dec-2015
Category:
Upload: zoe-shaw
View: 21 times
Download: 1 times
Share this document with a friend
Description:
Photosynthesis. Chapter 7. Photosynthesis. In photosynthesis, organisms trap radiant energy from sunlight and convert it into the energy of chemical bonds in large molecules. Chlorophyll is a green pigment that absorbs light energy. - PowerPoint PPT Presentation
19
Photosynthesis Chapter 7
Transcript
Page 1: Photosynthesis

Photosynthesis

Chapter 7

Page 2: Photosynthesis

Photosynthesis

• In photosynthesis, organisms trap radiant energy from sunlight and convert it into the energy of chemical bonds in large molecules.

• Chlorophyll is a green pigment that absorbs light energy.

• Photosynthesis transforms light energy into chemical bond energy in the form of ATP.

• ATP is then used to form complex organic molecules such as glucose.

Page 3: Photosynthesis

Chloropasts

• Chloroplasts are the organelles in which photosynthesis takes place.

• Two distinct regions in chloroplasts:– Grana – stacks of membranous stacks containing

chlorophyll.– Stroma – the spaces between the membranes.

Page 4: Photosynthesis

Summary of Photosynthetic Events

• Light energy + carbon dioxide + water glucose + oxygen

• Light energy + 6CO2 + 6H2O C6H12O6 + 6 O2

Page 5: Photosynthesis

3 Distinct Events In The Photosynthetic Pathway

• Light-Capturing events – chlorophyll and other pigments absorb specific wavelengths of light.– Light energy is captured by photosynthetic and

other pigments resulting in excited electrons.– When specific amounts of light are absorbed by

the photosynthetic pigments, the electrons become “excited” and can enter into chemical reactions responsible for the production of ATP.

– Takes place in the grana of the chloroplast.

Page 6: Photosynthesis

3 Distinct Events In The Photosynthetic Pathway

• Light-dependent reactions (light reactions)– Energy from the excited electrons is used to

dissociate water molecules into hydrogen and oxygen.

– use the excited electrons to produce ATP.– Takes place in the grana of the chloroplast.

• Light-independent reactions (dark reactions)– Organic molecules such as glucose is produced.– Takes place in the stroma.

Page 7: Photosynthesis
Page 8: Photosynthesis
Page 9: Photosynthesis
Page 10: Photosynthesis

Light-Capturing Events

• Chlorophyll and other pigments such as carotenoids use light energy to drive photosynthesis.

• Chloroplasts are membranous, saclike organelles containing many thin, flattened sacs called thylakoids.

Page 11: Photosynthesis

Light-Capturing Events

• The thyylakoids contain chlorophyll and are stacked in groups called grana.

• The pigments embedded in the thylakoids capture light energy and some of the electrons in the pigments become excited.

Page 12: Photosynthesis

Light-Capturing Events

• The chlorophylls are arranged in clusters called photosystems.

• Photons of light energy excited electrons from chlorophyll.

Page 13: Photosynthesis

Light-Dependent Reactions

• The excited electrons from the light-capturing stage are passed through a series of electron-transport steps.

Page 14: Photosynthesis

Light-Dependent Reactions

• The chloroplast in the electron transport system regains electrons from water; thereby producing hydrogen ions, electrons, and oxygen gas.

• Excited electrons + H20 + ADP + NADP+ ATP + NADPH + O2

Page 15: Photosynthesis

Light-Independent Reactions

• The light-independent reactions are a series of oxidation-reduction reactions, which combine hydrogen from water with carbon dioxide from the atmosphere to form simple organic molecules such as sugar.

• ATP + NADPH + ribulose + CO2 ADP + NADP+ + complex organic molecule + ribulose

Page 16: Photosynthesis

Plant Metabolism

• Photosynthetic organisms are able to manufacture organic molecules (including fats, proteins, and complex carbohydrates) from inorganic molecules.

• Vitamins are another important organic molecule derived from plants. Vitamins are organic molecules that we cannot manufacture, but must have in small amounts to maintain health.

Page 17: Photosynthesis

Interrelationships Between Autotrophs and Heterotrophs

• Autotrophs can capture energy and create organic molecules from inorganic molecules.

• Heterotrophs must have organic molecules as starting points.

• All organisms must do some form of respiration.

Page 18: Photosynthesis

Interrelationships Between Autotrophs and Heterotrophs

• Plants, like animals, require oxygen for the ETS portion of aerobic cellular respiration.

• Plants give off more oxygen to the atmosphere than they take in during respiration.

Page 19: Photosynthesis

Interrelationships Between Autotrophs and Heterotrophs

• The surplus oxygen given off is the source of oxygen for cellular respiration in both plants and animals.

• Animals supply the raw materials of CO2, H20, and nitrogen needed by plants, and plants supply the raw materials of sugar, oxygen, amino acids, fats, and vitamins needed by animals.


Recommended