+ All Categories
Home > Education > Photosynthesis final

Photosynthesis final

Date post: 12-Apr-2017
Category:
Upload: mahtab-rashid
View: 17 times
Download: 0 times
Share this document with a friend
28
Photosynthesis It’s not simple being green
Transcript
Page 1: Photosynthesis final

Photosynthesis

It’s not simple being green

Page 2: Photosynthesis final

Objectives• Understand the difference between autotroph and heterotroph• Describe the location and structure of a chloroplast. Explain how

chloroplast structure is related to its function• Recognize and explain the summary equation for photosynthesis• Understand the role of REDOX reactions in photosynthesis• Understand the properties of light discussed in class• Describe the relationship between action and absorption

spectrum• Explain what happens when chlorophyll or accessory pigments

absorb photons

Page 3: Photosynthesis final

Objectives continued• List the function and components of a photosystem• Compare cyclic and noncyclic electron flow and explain

the relationship between these components of the light reactions

• Summarize the light reactions of photosynthesis• Summarize the carbon fixing reactions of the Calvin cycle• Describe the role of NADPH and ATP in the Calvin cycle• Understand why variations of photosynthesis evolved

Page 4: Photosynthesis final

Overview of Photosynthesis• Process by which chloroplast

bearing organisms transform solar light energy into chemical bond energy

• 2 metabolic pathways involved

• Light reactions: convert solar energy into cellular energy

• Calvin Cycle: reduce CO2 to CH2O

•Organisms that can perform photosynthesis are called autotrophs whereas those that cannot are called heterotrophs

Page 5: Photosynthesis final

Photosynthesis Equation• Reduction of carbon dioxide

into carbohydrate via the oxidation of energy carriers (ATP, NADPH)

• Light reactions energize the carriers

• Dark reactions (Calvin Cycle) produce PGAL (phosphoglyceraldehyde)

Photosynthesis6CO2 +6H20 + light C6H1206 + 6O2

Page 6: Photosynthesis final

Where is all this happening?

Page 7: Photosynthesis final

Structure of the Chloroplast• Thylakoid: membranous system within the

chloroplast (site of light reactions). Segregates the chloroplast into thylakoid space and stroma.

• Grana stacks of thylakoids in a chloroplast• Stroma: region of fluid between the thylakoids

and inner membrane where Calvin Cycle occurs

Page 8: Photosynthesis final

Light

• Electromagnetic energy travelling in waves• Wavelength (): distance from peak of one wave to the

peak of a second wave• inverse relationship between wavelength and energy

energy

Page 9: Photosynthesis final

Visible Spectrum

• The portion of the electromagnetic spectrum that our eyes can see• White light contains all of the visible spectrum• Colors are the reflection of specific within the visible spectrum not reflected are absorbed• Composition of pigments affects their absorption spectrum

Page 10: Photosynthesis final

Absorption vs. Action

• Absorption spectrum is the range of wavelengths that can be absorbed by a pigment

• Action spectrum means the wavelengths of light that trigger photosynthesis

Page 11: Photosynthesis final

Why are plants green?

• Pigments contained within the chloroplast absorb most of light but absorb the green the least

• Pigments include– Chlorophyll a– Chlorophyll b– Carotenoids

• Carotenes• Xanthophylls

Page 12: Photosynthesis final

Chlorophyll a• Is only pigment that directly

participates in the light reactions

• Other pigments add energy to chlorophyll a or dissipate excessive light energy

• Absorption of light elevates an electron to a higher energy orbital (increased potential energy)

Page 13: Photosynthesis final

Photosystems• Collection of pigments and

proteins found associated with the thylakoid membrane that harness the energy of an excited electron to do work

• Captured energy is transferred between photosystem molecules until it reaches the chlorophyll molecule at the reaction center

Page 14: Photosynthesis final

What Next?• At the reaction center are 2

molecules– Chlorophyll a– Primary electron acceptor

• The reaction-center chlorophyll is oxidized as the excited electron is removed through the reduction of the primary electron acceptor

• Photosystem I and II

Page 15: Photosynthesis final

Electron Flow• Two routes for the path of electrons stored in the primary electron acceptors• Both pathways

– begin with the capturing of photon energy– utilize an electron transport chain with cytochromes for chemiosmosis

• Noncyclic electron flow– uses both photosystem II and I– electrons from photosystem II are removed and replaced by electrons donated from water– synthesizes ATP and NADPH– electron donation converts water into ½ O2 and 2H+

• Cyclic electron flow– Uses photosystem I only– electrons from photosystem I are recycled– synthesizes ATP only

Page 16: Photosynthesis final

Noncyclic Electron Flow1 Electrons at reaction-center are

energized2 H2O split via enzyme catalysed

reaction forming 2H+, 2e-, and 1/2 O2. Electrons move to fill orbital vacated by removed electrons

3,4 Each excited electron is passed along an electron transport chain fueling the chemiosmotic synthesis of ATP

Page 17: Photosynthesis final

5 The electrons are now lower in energy and enters photosystem I via plastocyanin (PC) where they are re-energized

6 The electrons are then passed to a different electron transport system that includes the iron containing protein ferridoxin. The enzyme NADP+ reductase assists in the oxidation of ferridoxin and subsequent reduction of NADP+ to NADPH

Noncyclic Electron Flow

Page 18: Photosynthesis final

Non-cyclic Electron Flow

Page 19: Photosynthesis final

Cyclic Electron Flow

• Electrons in Photosystem I is excited and transferred to ferredoxin that shuttles the electron to the cytochrome complex.

• The electron then travels down the electron chain and re-enters photosystem I

Page 20: Photosynthesis final

Where are the photosystems found on the thylakoid membrane?

Page 21: Photosynthesis final

Chemiosmosis in 2 Organelles• Both the Mitochondria and Chloroplast

generate ATP via a proton motive force resulting from an electrochemical inbalance across a membrane

• Both utilize an electron transport chain primarily composed of cytochromes to pump H+ across a membrane.

• Both use a similar ATP synthase complex

• Source of “fuel” for the process differs• Location of the H+ “reservoir” differs

Page 22: Photosynthesis final

Calvin Cycle• Starts with CO2 and

produces Glyceraldehyde 3-phosphate

• Three turns of Calvin cycle generates one molecule of product

• Three phases to the process– Carbon Fixation– Reduction of CO2

– Regeneration of RuBP

Page 23: Photosynthesis final

1 A molecule of CO2 is converted from its inorganic form to an organic molecule (fixation) through the attachment to a 5C sugar (ribulose bisphosphate or RuBP). – Catalysed by the

enzyme RuBP carboxylase (Rubisco).

• The formed 6C sugar immediately cleaves into 3-phosphoglycerate

Page 24: Photosynthesis final

2 Each 3-phosphoglycerate molecule receives an additional phosphate group forming 1,3-Bisphosphoglycerate (ATP phosphorylation)

• NADPH is oxidized and the electrons transferred to 1,3-Bisphosphoglycerate cleaving the molecule as it is reduced forming Glyceraldehyde 3-phosphate

Page 25: Photosynthesis final

3 The final phase of the cycle is to regenerate RuBP

• Glyceraldehyde 3-phosphate is converted to RuBP through a series of reactions that involve the phosphorylation of the molecule by ATP

Page 26: Photosynthesis final

Variations Anyone?• In hot/arid regions plants may run

short of CO2 as a result of water conservation mechanisms

• C4 PhotosynthesisCO2 may be captured by conversion of PEP (Phosphoenolpyruvate) into oxaloacetate and ultimately malate that is exported to cells where the Calvin cycle is active

• CAM Photosynthesis CO2 may be captured as inorganic acids that my liberate CO2 during times of reduced availability

Page 27: Photosynthesis final
Page 28: Photosynthesis final

Why are CAM and C4 versions necessary?


Recommended