+ All Categories
Home > Documents > Phys101 EqsheetF · 2020. 5. 3. · T=1 f € ω=2πf= 2π T € x max =A v max =ωA a max =ω 2A...

Phys101 EqsheetF · 2020. 5. 3. · T=1 f € ω=2πf= 2π T € x max =A v max =ωA a max =ω 2A...

Date post: 17-Mar-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
3
x cm = 1 M m i x i i = m 1 x 1 + m 2 x 2 + m 3 x 3 + .... m 1 + m 2 + m 3 y cm = 1 M m i y i i = m 1 y 1 + m 2 y 2 + m 3 y 3 + .... m 1 + m 2 + m 3 K rot = 1 2 Iω 2 I = m i i r i 2 τ rF sin φ τ = dF = (r sin φ ) F Torque s = rθ v cm = Rω a cm = Rα K rolling = 1 2 I cm ω 2 + 1 2 Mv cm 2 K rolling = 1 2 I cm v cm r " # $ % & ' 2 + 1 2 Mv cm 2 K rolling = 1 2 I cm ω 2 + 1 2 M (rω ) 2 Angular Momentum L = I ω For a point particle L = mr 2 v t r " # $ % & ' = mrv t I = mr 2 I = m i r i 2 i NII : Ang Mom Ang Mom Con I = I cm + md 2 F net = Δp A p = F g A = ρ f gd p = p o + ρ gd ρ = m V p o = p 1 or F 1 A 1 = F 2 A 2 T K = T C + 273.15 PV = Nk b T = nRT kB = 1.38 x 10 -23 J/K NA = 6.02 x 10 23 particles/mol R = 8.31 J/(mol K) W = pdV V i V f p f V f γ = p i V i γ T f V f γ 1 = T i V i γ 1 ΔE th = W + Q Q = McΔT Q ML General Physics - Phy101 Final Prof. Bob Ekey Center of Mass Rotational Kinetic Energy Moment of Inertia Inertia for Unknown system Newton’s II law for Rotations Stable Equilibrium Conditions Pressure Pressure from fluid above an area A Total Pressure from fluid above an area A Net force from pressure Density Pascal’s Principle Temperature conversion Ideal Gas Law number of moles n = N/NA 1 st Law of Thermodynamics Work done on gas by environment Adiabatic Heat within one phase (W=0) Heat during phase change (W=0) τ net = τ i = I α F net = F i = 0 τ net = τ i = 0 p = F A = F cos θ A I sys = I 1 + I 2 + I 3 + ... Kinetic Energy of a Rolling Body Kinetic Energy of a Rolling Body (no slip) Parallel Axis Theorem No Slip Conditions for Rolling Objects τ net = Δ L Δt = d L dt I for Point Particle I for Multiple Point Particles ! L f = ! L i γ = C p C V
Transcript
Page 1: Phys101 EqsheetF · 2020. 5. 3. · T=1 f € ω=2πf= 2π T € x max =A v max =ωA a max =ω 2A (s) € 2 T=2π L g € f= 1 2π g L € ω= g L Mass/Spring: Energy in System €

xcm =1M

mixii∑ =

m1x1 +m2x2 +m3x3 + ....m1 +m2 +m3

ycm =1M

miyii∑ =

m1y1 +m2y2 +m3y3 + ....m1 +m2 +m3 €

Krot = 12 Iω

2

I = mii∑ ri

2

τ ≡ rF sinφ

τ = dF = (r sinφ)F

Torque

s = rθ

vcm = Rω

acm = Rα

Krolling = 12 Icmω

2 + 12 Mvcm

2

Krolling = 12 Icm

vcmr

"

# $

%

& '

2

+12 Mvcm

2

Krolling = 12 Icmω

2 + 12 M (rω)2

Angular Momentum

L = I ω

For a point particle

L = mr2 vtr

"

# $

%

& ' = mrvt

Torque in terms of Angular Momentum Ang. Mom. Con.

I = mr2

I = miri2

i∑

NII : Ang Mom Ang Mom Con

I = Icm +md 2

Fnet = Δp• A

p =FgA= ρ f gd p = po + ρgd

ρ =mV

po = p1 or F1

A1

=F2

A2

TK = TC + 273.15

PV = NkbT = nRTkB = 1.38 x 10-23 J/K NA = 6.02 x 1023 particles/mol R = 8.31 J/(mol K)

W = − pdVVi

Vf

pfVfγ = piVi

γ

TfVfγ−1 =TiVi

γ−1ΔEth =W +Q

Q =McΔT Q = ±ML

General Physics - Phy101 Final Prof. Bob Ekey

Center of Mass Rotational Kinetic Energy Moment of Inertia Inertia for Unknown system Newton’s II law for Rotations

Stable Equilibrium Conditions

Pressure Pressure from fluid above an area A Total Pressure from fluid above an area A

Net force from pressure Density Pascal’s Principle Temperature conversion Ideal Gas Law number of moles n = N/NA 1st Law of Thermodynamics Work done on gas by environment Adiabatic

Heat within one phase (W=0) Heat during phase change (W=0)

τ net =

τ i∑ = I α

F net =

F i = 0 τ net =

τ i∑∑ = 0

p =

F⊥

A=

F cos θA

Isys = I1 + I2 + I3 + ...

Kinetic Energy of a Rolling Body

Kinetic Energy of a Rolling Body (no slip)

Parallel Axis Theorem

No Slip Conditions for Rolling Objects

τ net =

Δ L Δt

=d L

dt

I for Point Particle

I for Multiple Point Particles

!Lf∑ =

!Li∑

γ =Cp CV

Page 2: Phys101 EqsheetF · 2020. 5. 3. · T=1 f € ω=2πf= 2π T € x max =A v max =ωA a max =ω 2A (s) € 2 T=2π L g € f= 1 2π g L € ω= g L Mass/Spring: Energy in System €
Page 3: Phys101 EqsheetF · 2020. 5. 3. · T=1 f € ω=2πf= 2π T € x max =A v max =ωA a max =ω 2A (s) € 2 T=2π L g € f= 1 2π g L € ω= g L Mass/Spring: Energy in System €

T = 1f

ω = 2πf =2πT

xmax = Avmax =ωA

amax =ω 2A

(s)

T = 2π Lg

f =12π

gL

ω =gL

Mass/Spring: Energy in System

E = K +U = 12mv

2 + 12 kx

2

E = 12 kA

2 = 12 mvmax

2

v = ± km (A

2 − x 2)

x(t) = Acosωt = xmax cosωtv(t) = d

dt x(t) = −ωAsinωt = −vmax sinωt

a(t) = ddt v(t) = −ω2Acosωt = −amax cosωt

x(t) = Acos ωt +φo( )

ΔL =mgk

Position Equ Including Phase

Vertical Mass/Spring: Static Equilibrium, stretch of spring

fo= 0 rad fo= -π/2 rad fo= π rad fo= +π/2 rad

A = x2 + mk v

2 x = ± A2 − mk v

2 )

Period/Frequency Angular Frequency Equations of Motion Amplitudes Mass/Spring System Angular Frequency Frequency Period

Pendulum Angular Frequency Frequency Period

ω =

km

f = 12π

km

T = 2π mk

Mass/Spring velocity Mass/Spring: Total Energy

Mass/Spring Amplitude Mass/spring position


Recommended