+ All Categories
Home > Documents > Physics 224 The Interstellar Medium - Karin...

Physics 224 The Interstellar Medium - Karin...

Date post: 09-Mar-2021
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
37
© Karin Sandstrom, UC San Diego - Do not distribute without permission Physics 224 The Interstellar Medium Lecture #11: Dust Composition, Neutral Gas
Transcript
Page 1: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Physics 224 The Interstellar Medium

Lecture #11: Dust Composition, Neutral Gas

Page 2: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Outline

• Part I: Dust Composition

• Part II: “ISM Phases”

• Part III: Neutral Gas Heating & Cooling

• Part IV: Neutral Gas Observations

Page 3: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

What is dust made of?

Page 4: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Dust Composition

• Spectroscopic features in absorption

• Spectroscopic features in emission

• Depletions of heavy elements from the gas

✓✓

Page 5: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

DepletionsA

bund

ance

in g

as re

lativ

e to

Sol

ar

Expect: Agas = A⦿

depletion

Page 6: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Depletions

Page 7: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

DepletionsJenkins 2009:

compiled depletion measurements for 17 elements on ~250 lines-of-sight

Model for depletions includes: F* = parameterization of overall depletion [Xgas/H]0 = “baseline” or “initial” depetion

AX = depletion rate for element X as a function of F*

Page 8: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Depletions

Page 9: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

Element

Log(

X/H

) - L

og(X

/H) ⨀

0

-1

-2

C N O Mg Si P Cl Ti Cr Mn Fe

-3

F*=0

F*=1

F*=0.25F*=0.5F*=0.75

“baseline depletion”

like ζ OphNH ~ 1021

Page 10: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Dust Composition

Page 11: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Dust Composition

The observation that F* depends on density and H2 fraction shows us that grains evolve in the ISM.

Page 12: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Dust is Awesome.

Page 13: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

What are “ISM Phases”?Characteristic states of gas in a galaxy:

defined by ionization, chemical, density, temperature state

Possibly the result of some sort of equilibrium: pressure, chemical, thermal, etc

Questions: - What are the dominant processes that set these phases

and how do they change from galaxy to galaxy? - To what degree is the idea of “phases” an accurate

representation of the ISM?

Page 14: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Name T (K) Ionization frac of volume density (cm-3) P ~ nT (cm-3 K)

hot ionized medium 106 H+ 0.5(?) 0.004 4000

ionized gas (HII & WIM) 104 H+ 0.1 0.2-104 2000 - 108

warm neutral medium 5000 H0 0.4 0.6 3000

cold neutral medium 100 H0 0.01 30 3000

diffuse molecular 50 H2 0.001 100 5000

dense molecular 10-50 H2 10-4 103-106 105 - 107

Phases in the Milky Way

Pressure equilibrium

Page 15: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

What we are going to do next:Understand what sets the properties of

various ISM phases:

Neutral gas

Molecular gas

Ionized gas

Page 16: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Neutral Gas~60% of gas in MW is in “HI regions”

where hydrogen is atomic (not ionized, not molecular)

• Cosmic Ray Ionization • Photoionization of H & He • Photoionization of metals • Photoelectric effect from dust • Shocks, turbulent dissipation,

MHD phenomena

• Collisionally excited fine structure lines

• Lyman α at T>104 K • recombination of e-

and grains

Heating: Cooling:

Page 17: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Cosmic Ray Ionization • Photoionization of H & He • Photoionization of metals • Photoelectric effect from dust • Shocks, turbulent dissipation,

MHD phenomena

Heating:

heating rate per volume

~ nH XH ncoll vcoll σ Y(E)

density of whatever is being ionized XH = abundance

relative to H

energy yield per interaction

interaction rate

* Integrate this over the distribution of collider

energies

• H & He • H & He • C, O, Ne, Mg, Si (IP < 13.6 eV) • Dust • Shocks, turbulent dissipation,

MHD phenomena

Γ

Page 18: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Cosmic Ray Ionization • Photoionization of H & He • Photoionization of metals • Photoelectric effect from dust • Shocks, turbulent dissipation,

MHD phenomena

Heating:

heating rate per volume

~ nH XH ncoll vcoll σ Y(E)

density of whatever is being ionized XH = abundance

relative to H

energy yield per interaction

interaction rate

* Integrate this over the distribution of collider

energies

• ζCR • (uν/hν) c σH,He(E) • (uν/hν) c σZ(E) • (uν/hν) c <Qabs,*> πa2

(integrate over a) • Shocks, turbulent dissipation,

MHD phenomenaDepend on CR flux and radiation field strength.

Γ

Page 19: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Cosmic Ray Ionization • Photoionization of H & He • Photoionization of metals • Photoelectric effect from dust • Shocks, turbulent dissipation,

MHD phenomena

Heating:

heating rate per volume

~ nH XH ncoll vcoll σ Y(E)

density of whatever is being ionized XH = abundance

relative to H

energy yield per interaction

interaction rate

* Integrate this over the distribution of collider

energies

Depends on ionization state of gas, energy

of collider & “work function”

Γ

Page 20: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Cosmic Ray Ionization • Photoionization of H & He • Photoionization of metals • Photoelectric effect from dust • Shocks, turbulent dissipation,

MHD phenomena

Heating:

heating rate per volume

~ nH XH ncoll vcoll σ Y(E)

density of whatever is being ionized XH = abundance

relative to H

energy yield per interaction

interaction rate

* Integrate this over the distribution of collider

energies

Common theme: interaction rate is set by external radiation field or cosmic ray flux so…

Γ ~ nH ζ E

Γ

Page 21: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Collisionally excited fine structure lines

• Lyman α at T>104 K • recombination of e-

and grains

Cooling:

cooling rate per volume

~ nC nX k10 E10

In the case where nc >> ncrit, i.e. every collision leads to radiative transition.

where nc = collider density nX = collisionally excited species density

k10 = collisional rate coefficient E10 = energy difference of levels

Recall “collision strength” Ωul

separates gas temperature from atomic properties

Λ

Page 22: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

• Collisionally excited fine structure lines

• Lyman α at T>104 K • recombination of e-

and grains

Cooling:

cooling rate per volume

~ nC nX k10 E10

In the case where nc >> ncrit, i.e. every collision leads to radiative transition.

Important point: cooling rate ~ n2

Λ ~ n2 λ(T) const

function of gas temperature

quantum mechanics

Λ

note that different colliders have different k values

Page 23: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Page 24: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumL(n,T) = Γ - Λnet heating

or cooling

L > 0 heating L = 0 equilibrium L < 0 cooling

Recall: Γ ~ n ζΛ ~ n2 λ(T) const

insensitive to Tsensitive to T

Find combination of n and T were L(n,T) = 0

Page 25: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumSolid line is L(n,T) = 0

heating/cooling equilibrium

Details include: solving self-consistently

for ionization state of gas, electron density, dust grain charge

Range of pressures where there are multiple

n,T combos with L=0

Page 26: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumThree points at fixed P = nkT

where L=0.

T ~ 103 - 104 branch = WNM

T ~ 101 - 102 branch = WNM

Page 27: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumL(n,T) = Γ - Λnet heating

or cooling

L > 0 heating L = 0 equilibrium L < 0 cooling

Recall: Γ ~ n ζΛ ~ n2 λ(T) const

insensitive to Tsensitive to T

Perturb the fluid away from equilibrium (i.e L=0) at a fixed pressure, instability results if:

If this is true, making the gas colder makes L < 0 which results in more cooling.

Page 28: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumL(n,T) = Γ - Λnet heating

or cooling

L > 0 heating L = 0 equilibrium L < 0 cooling

Recall: Γ ~ n ζΛ ~ n2 λ(T) const

insensitive to Tsensitive to T

Perturb the fluid away from equilibrium (i.e L=0) at a fixed pressure, instability results if:

Page 29: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure EquilibriumL(n,T) = Γ - Λnet heating

or cooling

L > 0 heating L = 0 equilibrium L < 0 cooling

Recall: Γ ~ n ζΛ ~ n2 λ(T) const

insensitive to Tsensitive to T

Perturb the fluid away from equilibrium (i.e L=0) at a fixed pressure, instability results if:

Page 30: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Phases in Pressure Equilibrium

L > 0 L < 0

[CII] 158 µm drives this behavior ΔE = 92 K, steep increase at

lower T reflects increasing ability to populate upper level

Page 31: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Is the FGH model a good representation of the ISM?

GALFA HI Survey Peak TB

https://sites.google.com/site/galfahi/galfa-hi-science

Page 32: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Is the FGH model a good representation of the ISM?Audit & Hennebelle 2005

Turbulent simulations suggest lots of gas in “unstable” areas of the n,T diagram

Page 33: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

Is the FGH model a good representation of the ISM?

How can we test this model?

Measure the spin temperature of HI and see

how much falls in the unstable area

Page 34: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

HI Spin Temperature ReviewTexc ≡ Tspin ≫ 0.0682 K

because cosmic microwave background can populate levels

Under all ISM conditions, 75% of HI is in upper level. Emissivity is independent of Tspin!!

Page 35: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

HI Spin Temperature ReviewTexc ≡ Tspin ≫ 0.0682 K

because cosmic microwave background can populate levels

absorption coefficient depends inversely on Tspin as a consequence of stimulated emission not being negligible!

Page 36: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

HI Spin Temperature ReviewMeasuring spin temperature

Page 37: Physics 224 The Interstellar Medium - Karin Sandstromkarinsandstrom.github.io/sp16_phys224/l12_slides.pdf · 2020. 10. 30. · © Karin Sandstrom, UC San Diego - Do not distribute

© Karin Sandstrom, UC San Diego - Do not distribute without permission

HI Spin Temperature Review

Dickey et al. 1983

Absorption - weighted to low T

Emission - independent of T

⟨Tspin⟩ = TB/(1-e-τ)


Recommended