+ All Categories
Home > Documents > Phytomining = Fitomining

Phytomining = Fitomining

Date post: 27-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
PHYTOMINING INITIATIVES FOR LOW-GRADE ORES 25 August 2021 Phytomining = Fitomining SITI KHODIJAH CHAERUN Department of Metallurgical Engineering, Faculty of Mining & Petroleum Engineering, Institut Teknologi Bandung Biosciences and Biotechnology Research Center (BBRC), Institut Teknologi Bandung
Transcript

PHYTOMINING INITIATIVES FOR LOW-GRADE ORES25 August 2021

Phytomining = Fitomining

SITI KHODIJAH CHAERUN

Department of Metallurgical Engineering, Faculty of Mining & Petroleum Engineering, Institut Teknologi Bandung

Biosciences and Biotechnology Research Center (BBRC), Institut Teknologi Bandung

Educational Background B. Eng (Ir.) – Environmental Engineering, ITB, Indonesia (1988-1993)

M. Eng (M.T.) – Environmental Bioengineering, ITB, Indonesia (1996-1999)

Ph.D. – Petroleum and Environmental Geomicrobiology, Biomining/Bio-metallurgy, Minerals Biotechnology and Bioremediation, Department of Earth Sciences, Kanazawa University, Japan (2001 - 2004)

Research Interests

Work Background

Geomicrobiology, Biomining, Bio-metallurgy, Petroleum & Environmental Biomineralogy, Biocorrosion, Soil Microbiology, Bioremediation, Biogeochemistry, Microbial Taxonomy, Minerals Biotechnology, Bioenergy, Bionanotechnology (Bionanometallurgy = Bio-nanometals)

Postdoctoral Researcher, ZALF Centre, Berlin, Germany, 2006

Visiting Scientist, Tokyo University of Agriculture and Technology, Japan, 2007

Visiting Scientist, Dept. of Earth Sciences, Kanazawa University, Japan, 2008

Postdoctoral Associate, Dept. of Microbiology, Atlanta, Georgia, USA, 2008-2009

Visiting Research Fellow, Dept. of Energy & Resources Engineering, Peking University, Beijing, China, 2011-2014.

2

3

Definisi Fitomining

1997

The Streptanthus polygaloides plant is a hyperaccumulator of nickel, with hyperaccumulation defined as the presence of at least 1,000 µg nickel per gram of dry mass. This species averages 2,430 to 18,600 µg/g. This trait helps protect the plant against many types of pathogens.

4

5 Sheoran, 2009

- Extraction of metals from soil into the plant roots by active transport or sorption

Phytoextraction

- From the roots transfer/ translocation into the shoot parts

Willscher, 2018

Foto SEM dan analisis EDX dari sel tanaman Miscanthus sinensis yang memperlihatkankemampuan menyerap berbagai elemen Si, P, S, Cl, K, Ca dan logam berat Fe, Cu, Zn dan Pb(Tazaki & Chaerun, 2008).

Phytoaccumulation

6

Hyperaccumulator plants High biomass plants (crops)

- High metal uptake (metallophytes)

- Partially low biomass yields

- High ash contents of metals

- Lower metal uptake

- High biomass yields

- Higher metal extraction per square unit

7

Willscher, 2018

Hyperaccumulator plants

More than 400 plant species known for their use for phytoextraction

e.g. Thlaspi species, Helianthus annuus, Zea mays, Salix caprea, Populus tremola, Phragmites species

Co – Thlaspi caerulescens, Brassica juncea 3 g/kg

Cu – Haumaniastrum catangense, Ipomea alpine 8.36 g/kg

Ni – Alyssum bertolonii, Berkheya coddii, Phyllanthus serpentinus 13.4 – 17.8 g/kg

Zn – Thlaspi calaminare, Noccaea cerulescens 10 g/kg

Cr – Dicoma nicilifera

Mn – Macadamia neurophylla 55 g/kg

Ag – Brassica juncea, Medicago sativa

Au – Brassica juncea, Berkheya coddii, Cichorium intybus 0.326 g/ kg

Pt – Sinapis alba, Lolium perenne

REE – Dicranopteris dichotoma, Pronephrium simplexWillscher, 2018

9

Se – Astrogalus racemosus 38.1 g/kg

Sb – Agrostis capillaris

Ge – Phalaris arundinacea

As – Pteris vittata

Cd – Thlaspi caerulescens, Brassica juncea 3 g/kg

Pb – Thlaspi rotundifolium 8.2 g/kg

Tl – Iberis intermedia

U – Atriplex confertifolata

Berkheya coddii (Co, Ni, Au)

http://redlist.sanbi.org/imgs/photos/3077-31_54_8762.jpg

Willscher, 2018

10

11

Brooks et al., 1997

Requirements for the application

Bioavailability of the metals/ metalloids (mobility)

Occurrence of the metals in the rhizosphere

Tolerance of the plants to high metal concentrations

Satisfying growth of the plants

12Willscher, 2018

13

Advantages of Phytoextraction

•Many similarities to biosorption processes

•Good applicable processes (agricultural or forestry methods)

•Application in remote areas in all climatic zones where plant growth is possible

•Utilization of residues e.g. for bioenergy winning

•Performance on solid substrates (difference to biosorption)

•Improvement of soil and groundwater quality of the site

Willscher, 2018

14

Improvement of Phytoextraction

Application of chelators

- Natural chelators: Citric acid, other organic acids

- Synthetic chelators: EDTA, NTA, DTPA (diethylenetriamine pentaacetate)

Examples for chelators for the phytoextraction of Au

- Ammonium thiocyanate NH4SCN, sodium thiocyanate NaSCN

- Ammonium thiosulfate NH4S2O3

- Thiourea CH4N2S

- Potassium iodide KI, Potassium bromide KBr

- Potassium cyanide KCN, sodium cyanide NaCN

- Chelators have to be applicated according to the geochemistry and solution chemistry of the metals

Willscher, 2018 15

Organic complexes formed by plants and microorganisms

- Carbon- and hydroxy-carbon acids (acetic, lactic)

- Keto acids (pyruvic, -ketoglutaric)

- Dihydroxy aromatics

- Aldehydes, polyphenols, amino acids

- Glycoproteins (substances of bacterial slimes)

- Humic substances, esp. fulvic acids

Biogenic substances (plants, microorganisms

Solubilization and mobilization of heavy metals in the underground

Uptake by the plants (rhizosphere)

Willscher, 2018

X-ray tomography images of Co (red) and Ni (green) in hydrated Alyssum murale leaves

Chaney J. Environ. Qual. 36 (2007)

16

Agronomic practices

- Addition of fertilizers

- Utilization of inorganic acids (soil pH)

- Addition of elemental sulfur

- Co-cropping

- Field crops

Further factors for improvement

- Application of rhizosphere microorganisms

- Improvement of metal tolerance

- Accumulation of metals in harvestable plant parts

- Improvement of biomass/ growth rate

- Profuse root system

- Protection from predators and insectivores

Willscher, 2018 Tazaki & Chaerun, 2008

17

Plant extract- based biosynthesis of metal(loid) nanoparticlesSe – lemon leaves

Ag – many species: leaves, fruits, roots, peels, e.g. citrus peels

Au – many species; full plants, seeds, leaves, flowers

Pt - plant: Cacumen platycladi

TiO2 – leaves: Eclipta prostrata

Au/ TiO2 – leaves: Cinnamonum tamala

Au nanoparticles in leaves www.scinexx.de

Willscher, 2018

18

Phytomining

Substrates for application

- Low grade ores

- Overburden material

- Mill tailings

- Remainders of dump leaching

- Mineralized soil

- in all substrates uneconomical for conventional mining/ processing

- A large part of the processed mineral material contains low metal concentrations

- After the closedown of mining operations for the removal of lower amounts of the mined metals and first revegetation/ stabilization Foto Crop of Ni metals: SKC Lab

Willscher, 201819

Advantages of phytomining

- Less intrusive, low energy demand

- Soil recovering effect (improvement of soil ecology)

- Groundwater protection for the case of not too extensive application of chemicals

- No erosion effects like other mining activities

- For sustainable closure of mining sites

- Reduction of acid mine drainage formation

Challenges

- Solubility and availability as one of the key factors

Appliction of lixiviates (mostly complex forming agents)

- Phytoextraction only in the root zone of the plants

Engineering for mass transport

Willscher, 2018

20

Further factors for enhancement of phytoextraction

- Knowledge of geochemistry/ of the soil/ ore substrates/ tailings substrate

- Improvement of translocation of metals into stems, leaves and flowers/ seeds

- Application of solubilizing agents

- Low pH sulfidic tailings are well suited

- High pH (unoxidized) tailings have only low extraction yields

- Improvement by addition of organic/ inorganic chelating compounds

21

Economics of phytomining

Important parameters

- Metal content of the soil / solubilization behaviour

- Metal content of the plants

- Biomass production per area and time unit (e.g. ha/ a)

- Energy winning in the process (e.g. thermal energy, biogas)

- Metal price

Input costs

-Chemicals (metal mobilization in soil; processing from plants/ ashes

-Fertilizers

-Agronomic techniques (planting/ seeding, irrigation, care, pesticides, harvest)

-Pyro- and hydrometallurgical processing

-First cost/ benefit tables do exist22

Sheoran et al., 2013

23

Further research

- Search for appropriate plants

- fast growth

- high biomass

- good metal accumulation behaviour

- Bio-ore processing

- Pyro- and hydrometallurgy of plant ashes and remainders

- Soil parameters

- Soil geochemistry / soil transport to the roots

- Microbiology

- Agricultural parameters

- Environmental engineering

- Mass transport and groundwater protection 24

Summary

- Utilization of low grade ores, tailings and remainders

- Removal of valuable or toxic metals

- Better soil functions/ revitalization

- Improved soil fertility

- Coupled process with renewable energy production

- Lowering of the process costs

Advantages of the method

- Environmentally benign

- Non-invasive for the soil

- Low energy demand 25

A Proposed phytomining concept: SKC

Mine

Crushing plant

Phytomining(Concentrator)

Improved phyto-extraction parameters

Tailings, low-grade ores, lahan bekas tambang

-2 mm

Plant HarvestingCrop of metals (Biomass)

Biomass burning

Leaching/Bioleaching

ashes

Biomass drying under sunlight/oven

Biomass Grinding Bioenergy = Biogas

www.portonews.com

26

Vetiveria zizanioides (Rumput vetiver = ilalang akar wangi)

Sumeks.co

shopee.co.id

Vetiver dapat menahan gempuran aliran hujan deras dan menjaga kestabilan tanah

Akar serabut vetiver mampu menembus ke dalam tanah hingga 2-4 meter danmengikat partikel-partikel tanah

Vetiver sudah dikembangkan di Indonesia. Badan penelitian dan pengembanganpertanian sudah banyak melakukan penelitian tanaman tersebut baik untukproduksi minyak atsiri maupun sebagai tanaman pencegah erosi dan longsor

Tanaman rumput vetiver tidak menghasilkan bunga dan biji sehingga tidakberpotensi invasif dan merusak ekosistem

Ditumpangsari dengan rumput gajah ataupun tanaman sayur-sayuran juga sudahpernah dicobakan. Hasil penelitian menunjukkan karena sistem perakarannya yang dalam bisa memompa unsur hara ke atas supaya bisa digunakan oleh tanamanselanya seperti sayur-sayuran.

27

www.republika.co.id

Penanaman di ladang

http://p2kp.stiki.ac.idpadi gogo Willscher, 2018

28

South Carolina, USA, 2009Montana, USA, 2009 Montana, USA, 2009

Montana, USA, 2009Montana, USA, 2009Montana, USA, 2009

Altanta,USA, 2009

statik.tempo.co

www.google.com

bandingan-purbalingga.desa.id

Penanaman di Sawah

31

Prof. Dr. Willscher

BUKU FITOMINING


Recommended