+ All Categories
Home > Documents > PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated...

PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated...

Date post: 02-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
31
STIG Meeting February 12 2015 Phytoremediation Study February 12, 2015 Phytoremediation Study FINAL RESULTS Dr. Yarrow Nelson Matt Poltorak Michael Curto and Peter Waldburger California Polytechnic State University
Transcript
Page 1: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

STIG MeetingFebruary 12 2015

Phytoremediation Study

February 12, 2015

Phytoremediation StudyFINAL RESULTS

Dr. Yarrow Nelson 

Matt Poltorak 

Michael Curto and Peter Waldburger

California Polytechnic State University

Page 2: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Phytoremediation: Use of plants for remediation of contaminated soil

Obj iObjectives:1. Determine which plant species presently growing in 

SSFL Area IV soils may contribute to phytoremediation2. Estimate ability of plants to reduce concentrations of 

contaminants of interest (COIs) in soilscontaminants of interest (COIs) in soils3. Determine what nutrients/additives can be added to 

stimulate/increase phytoremediation rates/ p y4. Identify potential phytoremediation mechanisms for 

contaminant uptake/degradation

Page 3: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Phase 1: Field Screening

Phase 2: Greenhouse MicrocosmsField Screening Greenhouse Microcosms

Collected plants growing in SSFL soil Grew select species in greenhouse

Tested for contaminant uptake

Selected species for further study

Measured contaminant uptake

Estimated soil remediation rates

Tested effects of additives Tested effects of additives

Page 4: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Phase 1: Plant Screening for contaminant uptakePlant Screening for contaminant uptake

Scientific Name Common NameDate Sampled

Field Sampling: January and May 2014

Nassella pulchra Purple Needlegrass May 2014

Hirschfeldia incana Summer Mustard Jan 2014

Asclepias fascicularis Narrowleaf Milkweed Jan 2014

Sambucus nigra Blue Elderberry Jan 2014

Malosma (Rhus) laurnia Laurel Sumac Jan 2014

Baccharis salicifolia Mule-Fat Jan 2014

Ericameria palmeri Palmer Goldenbush Jan 2014

Baccharis pilularis Coyote Brush Jan 2014

Eriodictyon crassifolium Thickleaf Yerba Santa Jan 2014

Page 5: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Sampling Methodp g• 3 specimens of each species growing in contaminated soil • 1 specimen of each species growing in clean soil (control)

RootsFoliage Root Zone Soil

Page 6: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Phase 1: Plant sampling locations

Page 7: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: Petroleum Hydrocarbons• Extractable Fuel Hydrocarbons (EFH) were observed in the 

roots and foliage of all species– Soil EFH concentrations 200 mg/kg– Foliage EFH concentrations 1,000 – 12,000 mg/kg– Hydrocarbons observed in plant tissue appear to be phytogenicHydrocarbons observed in plant tissue appear to be phytogenic

(produced by plants)

FoliageSoil

Chromatograms of Palmer’s Goldenbush semi‐volatile compounds

Page 8: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: Polyaromatic Hydrocarbonsy y

• PAHs were detected in the roots of most species at low levels • Blue Elderberry, Yerba Santa, and Purple Needlegrass showed 

the most PAH uptake – but only for some specimens 

Total PAH concentrations for Purple Needlegrassp g

Page 9: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: Polyaromatic HydrocarbonsCont’dCont’d

• PAHs detected in some species appear to be phytogenicp pp p y g• Mule Fat: High PAH concentrations in foliage, even for control 

growing in clean soil

Total PAH concentrations for Mule Fat

Page 10: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: Polychlorinated Biphenyls (PCBs)y p y ( )

• No PCB uptake was observed for any plant species p y p p• All root and foliage PCB concentrations were below the 

detection limit of 50‐200 ug/kg• PCBs were not detected in the soils associated with Palmer’s 

Goldenbush or Purple Needlegrass specimens (so no PCB uptake was possible) p p )

Page 11: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: Chlorinated Dioxins/Furans• Chlorinated dioxins found in Blue Elderberry, Palmer’s 

Goldenbush, Yerba Santa, and Purple Needlegrass• Other species showed possible uptake into roots

l di i /f i fTotal dioxin/furan concentrations for Purple Needlegrass

Page 12: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results:Mercuryy

• No mercury uptake observed by any species y p y y p• All root and foliage mercury concentrations were below the 

detection limit of 0.1 mg/kg • Mercury was below the detection limits in soil associated with 

Palmer’s Goldenbush, Narrowleaf Milkweed, and Purple Needlegrass (so no Hg uptake was possible)g ( g p p )

Page 13: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Results: SilverField Results: Silver

• Silver was observed in the roots of all plant species except for P l ’ G ld b h d P l N dlPalmer’s Goldenbrush and Purple Needlegrass 

• Summer Mustard was the only species that showed uptake of silver into the foliage – but at much lower concentrations than gthe soil

Silver concentrations for Summer Mustard

Page 14: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Field Screening Summary

Contaminant Plant Species Root Conc. Foliage Conc.

Bl Eld b 1740 /k

PAHs

Blue Elderberry 1740 ug/kg ‐

Yerba Santa 200 ug/kg ‐

Purple Needlegrass 703 ug/kg ‐

Chlorinated Dioxins/Furans

Blue Elderberry 1026 ng/kg ‐

Yerba Santa 421 ng/kg 901 ng/kg

Purple Needlegrass 2237 ng/kg 694 ng/kg

Palmer's Goldenbush 432 ng/kg 757 ng/kg

SilverLaurel Sumac 7.34 mg/kg ‐

S M t d 1 43 /k 0 405 /kSummer Mustard 1.43 mg/kg 0.405 mg/kg

PCBs No Uptake ‐ ‐

Mercury No Uptake ‐ ‐p

Page 15: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Phase II Greenhouse MicrocosmsPhase II Greenhouse Microcosms

• Soil collected from SSFLSoil collected from SSFL Area IV

• Planted with three species

• 7‐month growthg• Measured soil and plant tissue for all COIs

Page 16: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Soil Collection for Greenhouse ExperimentsExperiments

• Bulk soil collected– Collected from the pond areaCollected from the pond area where the plants were sampled

– Soil sieved (#4 sieve ‐4.75mm)– Homogenized

Page 17: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Construction

Unplanted Microcosm 

Page 18: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Selection of Species for Phase II ( h )(Greenhouse Experiments)

• Coyote Brush (Baccharis pilularis) and Mule Fat (Baccharissalicifolia) both showed uptake of most contaminants

• A grass species had to be selected without field screening due to growing‐season constraints– Purple needlegrass (Nassella pulchra) was chosen because it is 

native to the site and known for its resilienceCoyote Brush Mule‐Fat Purple Needlegrass

Page 19: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Greenhouse MicrocosmsUn‐amended Microcosms  Three species

Sterilized MicrocosmsOnly one species

Fertilized Microcosms Unplanted MicrocosmsFertilized Microcosms Only one species

Unplanted Microcosms 

Chelated Microcosms O l i

Sterilized (gamma) Only one species Unplanted Microcosms

7‐month greenhouse study – soilanalyzed at 0, 3 and 7 months5 replicates for each treatment

Page 20: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Final Sampling

Plants at Day 211 Roots and Foliage Drying

Page 21: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: Petroleum Hydrocarbons• Slight decreases in EFH soil concentration observed after 85 days incubation 

for all microcosms except the sterilized control and the fertilized microcosms  • EFH concentrations at Day 211 under investigationy g• Plant tissue was not analyzed for EFH because compounds produced by the 

plants interfered with the EFH analysis

300

350

400

450

on (m

g/kg) Total EFH concentrations in microcosm soil

100

150

200

250

300

FH Con

centratio

0 Days

85 Days

0

50

100

Total EF 85 Days

Page 22: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

40000

50000

60000tio

n (ug/kg) Total PAH concentrations in soil

Microcosm Results: Polyaromatic

10000

20000

30000

PAH Con

centrat

0 Days

85 Days

211 Days

PolyaromaticHydrocarbons (PAHs)

0

10000

Total  211 Days

No statistically significant change in soil PAH concentrations observed 

60000

/kg) Total PAH concentrations in 

soil roots and foliage

after 211 days.

30000

40000

50000

ncen

tration (ug/

Soil

soil, roots, and foliage PAHs observed in the root 

tissue of all plants.

0

10000

20000

Total PAH

 Con Soil

Roots

Foliage

Page 23: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: Polychlorinated Biphenyls (PCBs)Polychlorinated Biphenyls (PCBs)

• PCB (Aroclor 1260) concentrations appeared to decrease in all soils for all microcosm treatments160

100

120

140

ation (ug/kg)

60

80

00

1260

 Con

centra

0 Days

85 Days

211 Days

0

20

40

Aroclor 

CoyoteBrush (CB)

MuleFat (MF)

Needlegrass (NG)

Fertilized CB Chelated CB Sterilized NG Unplanted Sterilized U

Page 24: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: ( )Polychlorinated Biphenyls (PCBs) cont’d.

• Decreases in Aroclor 1260 soil concentrations were:Decreases in Aroclor 1260 soil concentrations were: – Unplanted control: 29.7%– Sterilized Purple Needlegrass: 31.1%– Sterilized unplanted: 36.6%– Purple Needlegrass: 49.4%– Chelated Coyote Brush: 51.4%

• Only Purple Needlegrass plant tissue was analyzed f PCB d i d dfor PCBs and it was not detected

Page 25: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: hl i d i i /Chlorinated Dioxins/Furans

• Coyote Brush (fertilized and unfertilized) showed significantly lower dioxin/furan soil concentrations than the unplanted control

• Some dioxin uptake observed in roots of Coyote Brush

25000

30000

35000

40000

ratio

n (ng/kg)

10000

15000

20000

/Furan

 Con

centr

0 Days

85 Days

211 Days

0

5000

Total D

ioxin/

211 Days

Page 26: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: Mercury

• Mercury concentrations in the soil of all microcosms d d li htl (b t t t ti ti ll i ifi t)decreased slightly (but not statistically significant)

• Chelation with EDTA did not enhance uptake of mercury

0.6

0.7

0.8

0.9

tion (m

g/kg)

0.2

0.3

0.4

0.5

rcury Co

ncen

trat

0 Days

85 Days

211 Days

0

0.1

Mer

211 Days

Page 27: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: Mercury cont’d. 

• Mercury uptake into roots and foliage only observed for P l N dlPurple Needlegrass

• Chelation with EDTA did not enhance uptake of mercury

0.5

0.6

0.7

on (m

g/kg)

0.2

0.3

0.4

ury Co

ncen

tratio

Soil

Roots

0

0.1

Mercu Foliage

Page 28: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Microcosm Results: Silver

• Silver was observed in the root tissue of all plant species tested, but no decreases in silver concentration were observed in soil.

• Silver concentrations in the soil appeared to increase at Day 211, but this is likely an analytical anomaly since all silver concentrations increased.

1616 Sil S il

10

12

14

16

tion (m

g/kg)

10

12

14

16

tion (m

g/kg) Silver uptake

Silver Soil Concentrations

2

4

6

8

Silver Con

centra

0 Days

85 Days

211 Days2

4

6

8

Silver Con

centra

Soil

Roots

Foliage

0

2S0

2S

Page 29: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Volatilization from Plants • Preliminary tests were done to test for 

volatilization of COIs from the plantsvolatilization of COIs from the plants• No COIs were detected • Chemicals that were detected in off gas from 

plants growing in contaminated soil included: D‐limonene, stearic and oleic acids, and stigmastan‐3, 5‐dieneg– Stearic and oleic acids are produced by plants of 

the Baccharis genus and also found on human skin

– Stigmastan‐3, 5‐diene is an antimicrobial compound emitted from avocado roots and appears to be produced by the greenhouse plants

Page 30: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Conclusions• Petroleum hydrocarbons:

– Petroleum hydrocarbon degradation rates appeared to be slow over the first 85 days – with or without plantings.85 days  with or without plantings.

– Final EFH concentrations at 211 days are inconclusive because of an apparent anomaly in EFH measurement by two different labs ‐ we are currently looking into this.

• Polyaromatic hydrocarbons (PAHs):– No significant reductions of soil concentrations of PAHs were observed for any 

of the microcosms.

• Mercury:– No reductions of soil concentrations of mercury were observed.

Chelation with EDTA did not improve mercury uptake– Chelation with EDTA did not improve mercury uptake

• Silver:– No reductions of soil concentrations of silver were observed.

Page 31: PhytoremediationStudy - Energy.govPhytoremediation: Use of plants for remediation of contaminated soil Obj iObjectives: 1. Determine which plant species presently growing in SSFL Area

Conclusions cont’d.• Polychlorinated biphenyls (PCBs)

– Soil PCB concentrations decreased by 13‐15% over 7 months for soil microcosms planted with purple needlegrass and coyote brush, relative to sterile controls 

– Since no PCBs were observed in the plant tissue, the mechanism for this reduction appears to be stimulation of soil bacteriareduction appears to be stimulation of soil bacteria.

– Significant variability of PCB concentrations was observed.

• Chlorinated dioxins/furans:– Soil dioxin concentrations decreased by 18‐20% over 7 months for soil 

microcosms planted with coyote brush. – Rhizostimulation again appears to be the operative mechanism.

• Overall: – Phytoremediation of the residual COIs may be slow and more aggressive forms 

of remediation may be required to reduce the concentrations of COIs quickly.– Phytoremediation could be useful in conjunction with site restoration in areas 

with low COI concentrations


Recommended