+ All Categories
Home > Documents > Pile Foundation & Concrete Column Design

Pile Foundation & Concrete Column Design

Date post: 21-Nov-2014
Category:
Upload: denden-dermawan
View: 484 times
Download: 8 times
Share this document with a friend
30
SLAB CALCULATION Structural Model : Type Slab = S1 ly 5 1.0 < 2.5 ( two way slab ) Thickness = 100 mm lx 5 Material : fc' = 186.75 from SKSNI T-15-1991-03 table, we find : fy = 2400 Mlx = M 51 Mly = M 51 Loading : a.Dead Load - Selfweight of Slab = 240 - Tile , 3 cm = 72 - Mortar 2 cm = 42 - Ceiling, ( Asbes Cement + h = 18 - M & E = 0 q dl = 372 b.Live Load q ll = 250 c.Ultimate Load q u = 1.2 q dl + 1.6 = 846.4 Moment : Mlx = - Mtx = 1079.2 kg m Mly = - Mty = 1079.2 kg m a. Rebar Required : a.1 ( x - dirrection ) m = fy = 15.119 ; Rn = Mu = 70 d = 44 mm ø = 0.8 0.85 fc' b = 1000 mm = 1 1 - 1 - = 0.0430 > m fy = 1.4 = 0.0058 = 0.005833 fy As = r o * b * d 18.93 = = 0.043028 = 0.0572 a.2 ( y - dirrection ) m = fy = 15.119 ; Rn = Mu = 43 d = 56 mm ø = 0.8 0.85 fc' b = 1000 mm = 1 1 - 1 - 2 = 0.0214 > m fy = 1.4 = 0.0058 = 0.005833 fy As = r o * b * d 9.41 = = 0.021378 = 0.0284 b. Shrinkage and Temperature = 0.0018 As min = 0.0018 * b * d 0.8 A so = 18.93 x - dirrection A so = 9.41 y - dirrection c. Re-bar Selection D = 12 mm ; Ab = ### Longitudinal Re-bar ( for Shorter span ) S max= 3 * h = 300 mm Transversal Re-bar ( for Longer span ) S max= 5 * h = 500 mm No. of Re-bar per meter, n = A so / Ab n x = 17 n y = 8 Spacing of Re-bar, s 1000/(n-1) s x = 50 mm use D 12 @ 50 mm s y = 125 mm use D 12 @ 125 mm SKETCH : 50 100 50 12 @ 50 mm d. Crack Control Chose "1" or "2" : 2 INTERIOR EXPOSURE 1 EXTERIOR EXPOSURE 2 INTERIOR EXPOSURE s = 50 mm ; 1.35 for Slab bw = 1000 mm dc = 44 mm A = 2 * s* d = 4400 fs = 0.6 * fy = 144 MPa z = = 8330 N/mm = 8.33 MN/m < 30 MN/m OK !! w = = 0.124 mm < 0.4 mm OK !! kg/cm 2 kg/cm 2 0.001 q lx 2 * 0.001 q lx 2 * kg/m 2 kg/m 2 kg/m 2 kg/m 2 kg/m 2 kg/m 2 kg/m 2 kg/m 2 kg/cm 2 ø b d 2 r req min r min rmin cm 2 r r 1.33 * r req r o kg/ cm 2 ø b d 2 r req min r min rmin cm 2 r r 1.33 * r req r o r min cm 2 cm 2 cm 2 cm 2 b = mm 2 fs * ( dc * A) 1/3 11*b *fs* (dc*A) 1/3 lx 2 2 2 2 2 2 ly = = 2 2 2 2 2 2 2 2 2 2 + 2 2 2
Transcript
Page 1: Pile Foundation & Concrete Column Design

SLAB CALCULATIONStructural Model :

Type Slab = S1 ly 5 1.0 < 2.5 ( two way slab )

Thickness = 100 mm lx 5

Material :

fc' = 186.75 from SKSNI T-15-1991-03 table, we find :

fy = 2400

Mlx = Mtx 51

Mly = Mty 51

Loading : a. Dead Load - Selfweight of Slab = 240- Tile , t 3 cm = 72- Mortar, t 2 cm = 42

- Ceiling, ( Asbes Cement + hanger ) = 18- M & E = 0

q dl = 372b. Live Load q ll = 250c. Ultimate Load q u = 1.2 q dl + 1.6 q ll = 846.4

Moment : Mlx = - Mtx = 1079.16 kg m Mly = - Mty = 1079.16 kg m

a. Rebar Required : a.1 ( x - dirrection )

m = fy = 15.1193 ; Rn = Mu = 70 d = 44 mm ; ø = 0.8

0.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0430 >m fy

= 1.4 = 0.0058 = 0.005833

fy As = r o * b * d = 18.93

= = 0.043028= 0.0572

a.2 ( y - dirrection )

m = fy = 15.1193 ; Rn = Mu = 43 d = 56 mm ; ø = 0.80.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0214 >m fy

= 1.4 = 0.0058 = 0.005833 fy As = r o * b * d = 9.41

= = 0.021378= 0.0284

b. Shrinkage and Temperature= 0.0018

As min = 0.0018 * b * d = 0.8A so = 18.93 x - dirrectionA so = 9.41 y - dirrection

c. Re-bar SelectionD = 12 mm ; Ab = 1.13

Longitudinal Re-bar ( for Shorter span ) S max = 3 * h = 300 mmTransversal Re-bar ( for Longer span ) S max = 5 * h = 500 mm

No. of Re-bar per meter, n = A so / Abn x = 17n y = 8

Spacing of Re-bar, s =1000/(n-1)s x = 50 mm use D 12 @ 50 mms y = 125 mm use D 12 @ 125 mm

SKETCH :

50

10

0

50

12 @ 50 mmd. Crack Control

Chose "1" or "2" : 2 INTERIOR EXPOSURE

1 EXTERIOR EXPOSURE2 INTERIOR EXPOSURE

s = 50 mm ; 1.35 for Slabbw = 1000 mmdc = 44 mmA = 2 * s* dc = 4400

fs = 0.6 * fy = 144 MPa z = = 8330 N/mm

= 8.33 MN/m < 30 MN/m OK !!

w = = 0.124 mm < 0.4 mm OK !!

kg/cm2

kg/cm2

0.001 q lx2 *

0.001 q lx2 *

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/cm2

ø b d2

r req r min

r min rmin

cm2

r r 1.33 * r req r o

kg/ cm2 ;ø b d2

r req r min

r min rmin cm2

r r 1.33 * r req r o

r min cm2

cm2

cm2

cm2

b =

mm2

fs * ( dc * A)1/3

11*b *fs* (dc*A)1/3

lx22

22

22

ly

= =

22

2222

22

22

+

2222

Page 2: Pile Foundation & Concrete Column Design

100000

Page 3: Pile Foundation & Concrete Column Design

Ly/Lx 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

Mlx = Mtx 51 57 63 68 72 75 78 80 81 82 82 82 83 83 83 83Mly = Mty 51 53 54 55 55 55 54 54 54 54 53 53 53 52 52 51

Page 4: Pile Foundation & Concrete Column Design
Page 5: Pile Foundation & Concrete Column Design

SLAB CALCULATION W/ BONDEX :Structural Model :

Type Slab = S1 ly 6 1.4 < 2.5 ( two way slab )

Thickness = 100 mm lx 4.5

Material :

fc' = 332 from SKSNI T-15-1991-03 table, we find :

fy = 5000

Mlx = Mtx 72 Mly = Mty 55

Loading : a. Dead Load - Selfweight of Slab = 240- Tile , t 0 cm = 0- Mortar, t 3 cm = 63

- Ceiling, ( Asbes Cement + hanger = 18- M & E = 0 +

q dl = 321b. Live Load q ll = 100c. Ultimate Load q u = 1.2 q dl + 1.6 q ll = 545.2

Moment : Mlx = - Mtx = 794.902 kg m Mly = - Mty = 607.217 kg m

a. Rebar Required : a.1 ( x - dirrection )

m = fy = 17.7179 ; Rn = Mu = 47 d = 46 mm ; ø = 0.8

0.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0103 >m fy

= 1.4 = 0.0028 = 0.0028 fy As = r o * b * d = 4.76

= = 0.010338= 0.0138

kg/cm2

kg/cm2

0.001 q lx2 * 0.001 q lx2 *

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/cm2

ø b d2

r req r min

r min rmin cm2

r r 1.33 * r req r o

l x

22

22

22

ly

= =

2222

22

2222

22

22

+

2222

Page 6: Pile Foundation & Concrete Column Design

a.2 ( y - dirrection )m = fy = 17.7179 ; Rn = Mu = 26 d = 54 mm ; ø = 0.8

0.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0055 >m fy

= 1.4 = 0.0028 = 0.0028 fy As = r o * b * d = 2.52

= = 0.005471= 0.0073

b. Shrinkage and Temperature= 0.0018

As min = 0.0018 * b * d = 0.8A so = 4.76 x - dirrectionA so = 2.52 y - dirrection

c. Re-bar SelectionD = 8 mm ; Ab = 0.50

Longitudinal Re-bar ( for Shorter span ) S max = 3 * h = 300 mmTransversal Re-bar ( for Longer span ) S max = 5 * h = 500 mm

No. of Re-bar per meter, n = A so / Abn x = 9.5 n y = 5.0

Spacing of Re-bar, s =1000/(n-1)s x = 100 mm use D 8 @ 100 mms y = 225 mm use D 8 @ 225 mm

SKETCH : 50

100

50

8 @ 100 mmd. Crack Control

Chose "1" or "2" : 2 INTERIOR EXPOSURE

1 EXTERIOR EXPOSURE2 INTERIOR EXPOSURE

s = 150 mm ; 1.35 for Slabbw = 1000 mmdc = 29 mmA = 2 * s* dc = 8700

fs = 0.6 * fy = 300 MPa z = = 18957 N/mm

= 18.96 MN/m < 30 MN/m OK !!

w = = 0.282 mm < 0.4 mm OK !! 100000

kg/cm2

ø b d2

r req r min

r min rmin cm2

r r 1.33 * r req r o

r min cm2

cm2

cm2

cm2

b =

mm2

fs * ( dc * A)1/3

11*b *fs* (dc*A)1/3

2222

Page 7: Pile Foundation & Concrete Column Design
Page 8: Pile Foundation & Concrete Column Design
Page 9: Pile Foundation & Concrete Column Design

SLAB CALCULATIONStructural Model :

Type Slab = S1 ly 6 1.5 < 2.5 ( two way slab )

Thickness = 150 mm lx 4

Material :

fc' = 332 from SKSNI T-15-1991-03 table, we find :

fy = 4600

Mlx = Mtx 75

Mly = Mty 55

Loading : a. Dead Load - Selfweight of Slab = 360

- Tile , t - 2 cm = 48- Mortar, t - 3 cm = 63

- Ceiling, ( Asbes Cement + hanger ) = 18- M & E = 0 +

q dl = 489b. Live Load q ll = 800

c. Ultimate Load q u = 1.2 q dl + 1.6 q ll = 1866.8

Moment : Mlx = - Mtx = 2240.16 kg m Mly = - Mty = 1642.78 kg m

a. Rebar Required : a.1 ( x - dirrection )

m = fy = 16.3005 ; Rn = Mu = 23.1 d = 110 mm ; ø = 0.80.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0053 >m fy

= 1.4 = 0.0030 = 0.00304 fy As = r o * b * d = 5.78

= = 0.00526= 0.0070

a.2 ( y - dirrection )m = fy = 16.3005 ; Rn = Mu = 14.3 d = 120 mm ; ø = 0.8

0.85 fc' b = 1000 mm

= 1 1 - 1 - 2 m Rn = 0.0032 >m fy

= 1.4 = 0.0030 = 0.00304 fy As = r o * b * d = 3.50

= = 0.00318= 0.0042

b. Shrinkage and Temperature= 0.0018

As min = 0.0018 * b * d = 2A so = 5.78 x - dirrectionA so = 3.50 y - dirrection

c. Re-bar Selection

D = 10 mm ; Ab = 0.79

Longitudinal Re-bar ( for Shorter span ) S max = 3 * h = 450 mmTransversal Re-bar ( for Longer span ) S max = 5 * h = 750 mm

No. of Re-bar per meter, n = A so / Abn x = 7.4 n y = 4.5

Spacing of Re-bar, s =1000/(n-1)s x = 150 mm use D 10 @ 150 mms y = 275 mm use D 10 @ 275 mm

SKETCH :

150

10 @ 150 mmd. Crack Control

Chose "1" or "2" : 2 INTERIOR EXPOSURE

1 EXTERIOR EXPOSURE2 INTERIOR EXPOSURE

s = 150 mm ; 1.35 for Slabbw = 1000 mmdc = 30 mmA = 2 * s* dc = 9000

fs = 0.6 * fy = 276 MPa z = = 17839 N/mm

= 17.839 MN/m < 30 MN/m OK !!

kg/cm2

kg/cm2

0.001 q lx2 *

0.001 q lx2 *

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/m2

kg/cm2

ø b d2

r req r min

r min rmin cm2

r r 1.33 * r req r o

kg/cm2

ø b d2

r req r min

r min rmin cm2

r r 1.33 * r req r o

r min cm2

cm2

cm2

cm2

b =

mm2

fs * ( dc * A)1/3

lx22

22

22

ly

= ==

2222

2222

2

2

22

22

22

+

2222

2222

Page 10: Pile Foundation & Concrete Column Design

w = = 0.2649 mm < 0.4 mm OK !! 10000011*b *fs* (dc*A)1/3

Page 11: Pile Foundation & Concrete Column Design

SPREAD FOUNDATION1. Loading Data

Loading : a. Permanent Load b. Temporary Load

P = Axial Load

( w/o foundation weight )= 21.43 ton P = 23.62 ton

Vx = Shear ( x - direction )= 2.1 ton Vx = 2.95 ton

Vz = Shear ( z - direction )= 3.10 ton Vz = 2.58 ton

Mx = Moment ( x - direction )= 0.00 ton. m Mx = 0.00 ton.m

Mz = Moment ( z - direction )= 0.00 ton.m Mz = 0.00 ton.m

to this plane.

2. Assumed Dimension

Foundation Size Data :H = 110 cm

Df = 80 cmB = 440 cmL = 300 cm

hf = 40 cmd = 32.5 cmb = 45 cmh = 45 cm

Punching Shear Line :

b1 = b + d = 77.5 cmb2 = h + d = 77.5 cmc1 = b/2 + d = 55 cmc2 = h/2 + d = 55 cm

3. Check of Soil Reaction "fe"

Design Loads : a) Vertical Loads (P)

Perm. : P tot = P + Wf = 43800.4 kg

Temp. : P tot = P + Wf = 45990.4 kg

Where,Wf = Wp + Wb + Ws = 22370.4 Kg

Wp = Pedestal weight = 340.2 Kg

Wb = Footing weight = 12672 Kg

Ws = Soil weight on Footing = 9358.2 Kg

b) Moment due to Horizontal Force (M)

Permanent : Temporary :

Mx1 = Vx . H Mx1 = Vx . H

= 2310 kg m = 3245 kg m

Mz1 = Vz . H Mz1 = Vz . H

= 3404.5 kg m = 2835.8 kg m

c) Eccentricity (e)

- Perm. : Mx.tot = Mx1 + Mx = 2310 kg m ex = 5.2739 cm

Mz.tot = Mz1 + Mz = 3404.5 kg m ez = 7.7728 cm- Temp. : Mx.tot = Mx1 + Mx = 3245 kg m ex = 7.0558 cm

Mz.tot = Mz1 + Mz = 2835.8 kg m ez = 6.1661 cm

d) Compute "fe" : P tot B . L

Where : ex(ez) < B(L)/6, factor x (z) = 6 ex(ez)/ B (L)

ex(ez) > B(L)/6, factor x (z) = 2/ [3{0.5-ex(ez)/ B (L)}]

for this case :- Perm. : ex < B/6 Factor x = 0.07

ez < L/6 Factor z = 0.16

Note : Leter inside bracket means Forces which have direction perpendicular

Take " a " depend on " e " condition below :

a = 1 + factor x + factor z

P

Mx (Mz)

Vx (Vz)

H

H Df

hfd

b2

c2

c1

b1

L

B

h

b

Xn > B (L)

Xn < B (L)

P tot

ex (ez)

x

z

a 2

fe =

B (L)

Df

Page 12: Pile Foundation & Concrete Column Design

Xn = Neutral Axis- Temp. : ex < B/6 Factor x = 0.10

ez < L/6 Factor z = 0.12

e) Allowable soil stress "Fe" : - Permanent - Temporary

Fe = 0.40 Fe = 0.52

f) Soil stress "fe" :

- Permanent - Temporary

fe =P tot = 0.41

fe = P tot = 0.42

B * L B * L> Fe Change < Fe OK !

= 1.227 = 1.220

4. Check of Stability

Permanent : Temporary :

Overturning Moment ( OM ) : Mx tot = 2310 kg m Mx tot = 3245 kg mMz tot = 3404.5 kg m Mz tot = 2835.8 kg m9

Resistant Moment ( RM ) : Ptot.B/2 = 96361 kg m Ptot . B/2 = ### kg mPtot.L/2 = 65701 kg m Ptot . L/2 = 68986 kg m

41.7 > 2.0 2 . Mx tot Ptot . L 19.3 > 2.0 2 . Mz tot

31.2 > 1.5 2 . Mx tot Ptot . L 24.3 > 1.5

2 . Mz tot

5. Footing Design

5.1 Design Soil Reaction "qus"

fe max = 0.425

qus = 1.6 * ( fe max - Wf ) 0.409B . L because the proportion of dead and

live load are not known.

5.2 Required Re-bar due to Bending Moment

a. Design Moment :

23912.0 kg m

14616.1 kg m

fy = 4000fc' = 122.5m = fy 38.4 ; Ø = 0.9

0.85 fc'

Rn = Mux 8.4

1 1 - 1 - 2 m Rn 0.0022 < m fy

1.4 0.0035 fy = 0.0029

0.0029= 0.0029

As = 28.4

D = 16 mm ; Ab = 2.01 n = A s / Ab 15

Spacing, s = 191 mm ; whichever is smaller.

2d = 650 mm Spacing s = 190 mm

take : D 16 @ 190

Rn = Muz 3.5

1 1 - 1 - 2 m Rn 0.0009 < m fy

1.4 0.0035 fy = 0.0012

0.0012= 0.0012

As = 16.9

D = 16 mm ; Ab = 2.01 n = A s / Ab 9

spacing, s = 522 mm Whichever is smaller.

2 d = 650 mm spacing s = 500 mm

take : D 16 @ 500

kg/cm2 kg/cm2

kg/cm2 kg/cm2

Permanent Load : RM / OM = Ptot . B =

Temporary Load : RM / OM = Ptot . B =

kg/cm2

kg/cm2 ; Note : 1.6 is used an average load factor,

Mux = qus . L . ( B - b )2 /8 =

Muz = qus . B . ( L - h )2 /8 =

b. Steel Ratio, r :

kg/cm2

kg/cm2

- About x - dirrection :

kg/ cm2

ø L d2

r req = r min

r min = r min

r r = 1.33 * r req = r o

r o * L * d = cm2

cm2

Spacing Limit : S max =

- About z - dirrection :

kg/ cm2

ø B d2

r req = r min

r min = r min

r r = 1.33 * r req = r o

r o * B * d = cm2

cm2

Spacing Limit : S max =

a

a

a

a

Page 13: Pile Foundation & Concrete Column Design

5.3 Check of Shear Stress

Vux = qus * ( B/2 - c1) / d = 2.07 <ø (0.53 vfc') = 4.986

Vuz = qus * ( L/2 - c2) / d = 1.19 <Ok !!

5.4 Check of Punching Shear

Vup = qus * ( B*L - b1*b2) = 5.11 < ø (1.06 vfc') = 9.972

2 * ( b1 + b2 ) * dOk !!

6. Sketch :

D 16 @ 190 D 16 @ 500

7. Pedestal :

Check requirement :

Ratio = Pedestal Length 701.56 < 2.5 Short ColumnWidth of pedestal 45

Rebar requirement :

0.01 As = 20.25

Used 8 D-13 As = 10.62 No Ok!

kg/cm2

kg/cm2

kg/cm2

kg/cm2 kg/cm2

r o = r o Ag = cm2

cm2

= =

Page 14: Pile Foundation & Concrete Column Design

Pile Foundation

1. Dimensions : 2. Loading Data :

Loading : a. Permanent Load ; b. Temporary Load

P = Axial Load ( w/o foundation weight )P = 15.00 ton ; P =

Vx = Shear ( x - direction )Vx = 5.00 ton ; Vx =Vz = Shear ( z - direction )Vz = 1.50 ton ; Vz =Mx = Moment ( x - direction )Mx = 0.50 ton. m ; Mx =Mz = Moment ( z - direction )Mz = 0.60 ton.m ; Mz =

3. Reaction :Footing weight, Wf = Wp + Wc + Ws + Wt =

Wp = Pedestal weight =

Wc = Pile Cap weight =

Ws = Soil weight on Footing =

Ws = Slab weight on Footing =

Total Loading : a. Permanent L ; b. Temporary Load

Pt = Total Axial Load = P + Wf

Pt = 20.284 ton Pt =

Pedestal / Column : Vx = 5.00 ton ; Vx =

length, lp = 40.0 cm Vz = 1.50 ton ; Vz =

width, wp = 40.0 cm Mtx = 6.02 ton. m ; Mtx =

depth, hp = 120.0 cm Mtz = 2.40 ton. m ; Mtz =

Foundation : Eccentricity, ( = e) : a. Permanent ; b. Temporary Loadlength, lc = 230.0 cm (min = ### cm) epx = (A+E) - lc/2width, wc = 100.0 cm (min = 96.0 cm) epx = 0.100 mdepth, hc = 55.0 cm (min = 55.0 cm) ex = 0.297 m ; ex =

A = 50.0 cm (min = 48.0 cm) ez = 0.118 m ; ez =B = 130.0 cm (min = ### cm) so, ex1 = 0.9468 m ; ex1 =C = 50.0 cm (min = 48.0 cm) ex2 = 0.353 m ; ex2 =E = 75.0 cm ez1 = ez2 = ez = 0.118 m ; 1 = ez2 = ez =

Others : 4. Pile Reaction :Slab thk., hs = 15.0 cm if any ) Pile-1 : P1 = 24.84 ton ; P1 =Soil thk., ht = 25.0 cm if any ) P2 = 36.01 ton ; P2 =

Pile Data : PC40 5. Check Pile Reactions vs Allowable :Length L = 12.0 m (from Soil Invest.)

Dia/Rec = 40.0

Allow.Comp.Call = 70.0 ton (from Soil Invest.)Allow.Tension Tall = 35.0 ton (from Soil Invest.)

Lall = 6.0 ton (from Soil Invest.)

hs

ht

hc

hp

CC

B AA

Elc

wc

P

Vx

Mx

Mz

Vz

lp

wp

1 2

X

Z

Page 15: Pile Foundation & Concrete Column Design

b. Temporary Load f Dia. / Pall Tall Lall

( w/o foundation weight ) Rect. ton ton ton16.00 ton RC20 20 35 25 3

PC35 35 60 30 56.00 ton PC40 40 70 35 6

PC45 45 90 40 72.50 ton RC25 25 50 30 4

RC30 30 60 35 51.50 ton.m

0.90 ton.m

5.284 ton

0.461 ton

3.036 ton

1.017 ton

0.770 ton

b. Temporary Load

21.284 ton

6.00 ton

2.50 ton

7.23 ton.m

3.90 ton.m

b. Temporary Load

0.340 m0.183 m

0.9898 m0.310 m0.183 m

25.27 ton38.58 ton

Page 16: Pile Foundation & Concrete Column Design

SECONDARY BEAM DESIGN

1. Loading Data

Loading : a. Dead Load

- Selfweight of Beam = 730.8 kg/m2- Slab = 360 kg/m2 (Thk. = 150 )- Tile = 0 kg/m2 (Thk. = 0 )- Mortar = 0 kg/m2 (Thk. = 0 )- Ceiling, ( Asbes Cement + hanger ) = 0 kg/m2

q dl = 1090.8 kg/m2

b. Live Load q ll = 525 kg/m2

c. Ultimate Load q u = 1.4 q dl + 1.7 q ll 2419.6 kg/m2

Material : fc' = 332 kg/cm2 fy = 4100 kg/cm2

2. Structural Model

Mu - DIAGRAM

Vu - DIAGRAM

span, B = 4 mL = 7 mb = 30 cmh = 70 cmd = 62.8 cm

Mu = 1/12 qu * B * L^2 39.52 ton.m

Vu = 1/2 qu * B * L = 33.87 ton

3. Re-bar due to Bending Moment

m = fy = 14.529 ; ø = 0.90.85 fc'

Rn = Mu = 37.114 kg/ cm2

22

22

22

L

+

b

d

Page 17: Pile Foundation & Concrete Column Design

ø b d^2

= 1 1 - 1 - 2 m Rn = 0.010 >m fy

= 1.4 = 0.0034 fy = 0.0034

= = 0.0130= 0.0097

As = 18.35 cm2

D = 20 mm ; Ab = 3.14 cm2n = A s / Ab = 6 Aprov. = 18.85 cm2

Spacing = 2.12 cm

4. Stirrup due to Shear

4.a Necessity of Stirrups :

i) When Vu < 1/2 øVc , Shear re-bar is not necessary.

ii) When øVc > Vu > 1/2 øVc , Min. shear re-bar is required.

iii) When Vu > ø Vc , Shear re-bar is required

4.b Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

Vu = 33874.68 kg

Vc = 18194 kg Shear re-bar is required

ø Vc = 15465 kg

Vs = 21659 kg < oke !!!

= 72776 kg

D = 12 mm ; Ab = 1.13 cm2

As = Vs*100/(fy*d) = 8.4118 cm2n = 4

spacing,s = 1000 / (n - 1) = 333 mm

4.c Stirrups Spacing Limits

= 36388 kg > Vs

Smax = d/2 or 60 cm ; whichever is smaller

SKETCH :

SIZE : 300 X 700

BOTH END MIDDLETOP : 2 D20 2 D20BOT : 2 D20 4 D20STIRRUP D10 - 150 D10 - 250

r req r min

r min r min

r r 1.33 * r req r o

r o * b * d =

0.53efc' b d =

2.12efc'bd

2.12efc'bd

1.06efc'bd

Page 18: Pile Foundation & Concrete Column Design

CONCRETE-GIRDER DESIGNMaterial =

fc' = 332 fy = 4100

m = 14.5287 i) When Vu < 1/2 øVc , Not Necessary r min = 0.003 ii) When øVc > Vu > 1/2 øVMin. is Required

iii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

MARK

BEAM SIZELongitudinal Reinforcement due to Bending Moment Stirrup due to Shear

Design MomentReq'd Re-bar Min Re-bar Actual Re-bar Re-bar

Design ShearMin. Shear Actual

b h d r As Asm r Aso Arrangement 1/2øVc øVc Reinf. Spacing Stirrup

(cm) (cm) (cm) ( ton.m ) (cm2) (cm2) (cm2) n n ( ton ) ( ton ) ( ton ) s ( mm ) (mm )

1 1GY1 100 55 48

END BOTH MuTOP 19.76 0.0024 11.35 16.39 0.0034 16.39 5.2 6 -D 20

Vu33.870

19.700 39.401 D 10 @ 240 D 10 @ 225BOT 11.86 0.0014 6.76 16.39 0.0034 16.39 5.2 6 -D 20

MIDDLE MuTOP 15.81 0.0019 9.05 16.39 0.0034 16.39 5.2 6 -D 20

Vu20.322

19.700 39.401 D 10 @ 240 D 10 @ 225BOT 39.52 0.0048 23.12 16.39 0.0048 23.12 7.4 8 -D 20

2 1GY2 20 70 63.2

END BOTH MuTOP 6.95 0.0024 3.03 4.32 0.0034 4.32 2.1 3 -D 16

Vu8.223

5.188 10.376 D 10 @ 316 D 10 @ 300BOT 2.09 0.0007 0.90 4.32 0.0034 4.32 2.1 3 -D 16

MIDDLE MuTOP 1.43 0.0005 0.61 4.32 0.0034 4.32 2.1 3 -D 16

Vu4.112

5.188 10.376 D 10 @ 316 D 10 @ 300BOT 4.76 0.0016 2.07 4.32 0.0034 4.32 2.1 3 -D 16

3 1GX1 15 40 33.2

END BOTH MuTOP 3.59 0.0062 3.07 1.70 0.0062 3.07 1.5 2 -D 16

Vu4.486

2.044 4.088 D 10 @ 166 D 10 @ 150BOT 1.08 0.0018 0.89 1.70 0.0034 1.70 0.8 2 -D 16

MIDDLE MuTOP 0.89 0.0015 0.74 1.70 0.0034 1.70 0.8 2 -D 16

Vu2.243

2.044 4.088 D 10 @ 166 D 10 @ 150BOT 2.98 0.0051 2.52 1.70 0.0051 2.52 1.3 2 -D 16

4 1GX2 15 40 33.2

END BOTH MuTOP 8.69 0.0161 8.03 1.70 0.0161 8.03 4.0 4 -D 16

Vu8.456

2.044 4.088 D 10 @ 166 D 10 @ 150BOT 2.61 0.0044 2.20 1.70 0.0044 2.20 1.1 2 -D 16

MIDDLE MuTOP 1.46 0.0024 1.21 1.70 0.0034 1.70 0.8 2 -D 16

Vu4.228

2.044 4.088 D 10 @ 166 D 10 @ 150BOT 4.87 0.0085 4.23 1.70 0.0085 4.23 2.1 3 -D 16

5 1GX3 30 50 43.2

END BOTH MuTOP 4.65 0.0023 2.97 4.43 0.0034 4.43 2.2 3 -D 16

Vu8.328

5.319 10.638 D 10 @ 216 D 10 @ 200BOT 1.40 0.0007 0.88 4.43 0.0034 4.43 2.2 3 -D 16

MIDDLE MuTOP 3.88 0.0019 2.47 4.43 0.0034 4.43 2.2 3 -D 16

Vu4.164

5.319 10.638 D 10 @ 216 D 10 @ 200BOT 12.95 0.0066 8.53 4.43 0.0066 8.53 4.2 5 -D 16

6 1GX4 40 65 58.2

END BOTH MuTOP 24.29 0.0050 11.74 7.95 0.0050 11.74 5.8 6 -D 16

Vu19.846

9.555 19.109 D 10 @ 291 D 10 @ 275BOT 7.29 0.0015 3.43 7.95 0.0034 7.95 4.0 4 -D 16

MIDDLE MuTOP 8.75 0.0018 4.13 7.95 0.0034 7.95 4.0 4 -D 16

Vu9.923

9.555 19.109 D 10 @ 291 D 10 @ 275BOT 29.18 0.0061 14.22 7.95 0.0061 14.22 7.1 8 -D 16

7 1GX5 40 65 58.2

END BOTH MuTOP 19.51 0.0040 9.36 7.95 0.0040 9.36 4.7 5 -D 16

Vu19.551

9.555 19.109 D 10 @ 291 D 10 @ 275BOT 5.85 0.0012 2.75 7.95 0.0034 7.95 4.0 4 -D 16

MIDDLE MuTOP 3.14 0.0006 1.47 7.95 0.0034 7.95 4.0 4 -D 16

Vu9.776

9.555 19.109 D 10 @ 291 D 10 @ 275BOT 10.47 0.0021 4.95 7.95 0.0034 7.95 4.0 4 -D 16

8 2GY1 15 30 23.2

END BOTH MuTOP 2.83 0.0103 3.58 1.19 0.0103 3.58 1.8 2 -D 16

Vu3.765

1.428 2.857 D 10 @ 116 D 10 @ 100BOT 0.85 0.0029 1.01 1.19 0.0034 1.19 0.6 2 -D 16

MIDDLE MuTOP 0.78 0.0027 0.93 1.19 0.0034 1.19 0.6 2 -D 16

Vu1.883

1.428 2.857 D 10 @ 116 D 10 @ 100BOT 2.61 0.0094 3.27 1.19 0.0094 3.27 1.6 2 -D 16

9 2GY2 15 70 63.2

END BOTH MuTOP 5.87 0.0027 2.57 3.24 0.0034 3.24 1.6 2 -D 16

Vu6.782

3.891 7.782 D 10 @ 316 D 10 @ 300BOT 1.76 0.0008 0.76 3.24 0.0034 3.24 1.6 2 -D 16

MIDDLE MuTOP 1.11 0.0005 0.48 3.24 0.0034 3.24 1.6 2 -D 16

Vu3.391

3.891 7.782 D 10 @ 316 D 10 @ 300BOT 3.71 0.0017 1.61 3.24 0.0034 3.24 1.6 2 -D 16

10 2GX1 15 40 33.2END BOTH Mu

TOP 1.22 0.0020 1.01 1.70 0.0034 1.70 0.8 2 -D 16Vu

3.1822.044 4.088 D 10 @ 166 D 10 @ 150

BOT 0.37 0.0006 0.30 1.70 0.0034 1.70 0.8 2 -D 16

MIDDLE MuTOP 0.97 0.0016 0.80 1.70 0.0034 1.70 0.8 2 -D 16

Vu1.591

2.044 4.088 D 10 @ 166 D 10 @ 150BOT 3.24 0.0055 2.76 1.70 0.0055 2.76 1.4 2 -D 16

11 2GX2 20 40 33.2END BOTH Mu

TOP 2.77 0.0035 2.32 2.27 0.0035 2.32 1.2 2 -D 16Vu

5.4622.725 5.450 D 10 @ 166 D 10 @ 150

BOT 0.83 0.0010 0.68 2.27 0.0034 2.27 1.1 2 -D 16

MIDDLE MuTOP 1.62 0.0020 1.34 2.27 0.0034 2.27 1.1 2 -D 16

Vu2.731

2.725 5.450 D 10 @ 166 D 10 @ 150BOT 5.40 0.0070 4.65 2.27 0.0070 4.65 2.3 3 -D 16

12 2GX3 30 60 53.2END BOTH Mu

TOP 2.72 0.0009 1.39 5.45 0.0034 5.45 2.7 3 -D 16Vu

6.8426.550 13.101 D 10 @ 266 D 10 @ 250

BOT 0.81 0.0003 0.42 5.45 0.0034 5.45 2.7 3 -D 16

MIDDLE MuTOP 3.46 0.0011 1.78 5.45 0.0034 5.45 2.7 3 -D 16

Vu3.421

6.550 13.101 D 10 @ 266 D 10 @ 250BOT 11.54 0.0038 6.05 5.45 0.0038 6.05 3.0 4 -D 16

13 2GX4 40 60 53.2END BOTH Mu

TOP 17.14 0.0042 9.01 7.27 0.0042 9.01 4.5 5 -D 16Vu

12.2998.734 17.468 D 10 @ 266 D 10 @ 250

BOT 5.14 0.0012 2.64 7.27 0.0034 7.27 3.6 4 -D 16

MIDDLE MuTOP 5.99 0.0014 3.08 7.27 0.0034 7.27 3.6 4 -D 16

Vu6.149

8.734 17.468 D 10 @ 266 D 10 @ 250BOT 19.96 0.0050 10.55 7.27 0.0050 10.55 5.2 6 -D 16

14 2GX5 40 60 53.2

END BOTH MuTOP 11.41 0.0028 5.93 7.27 0.0034 7.27 3.6 4 -D 16

Vu13.872

8.734 17.468 D 10 @ 266 D 10 @ 250BOT 3.42 0.0008 1.75 7.27 0.0034 7.27 3.6 4 -D 16

MIDDLE MuTOP 4.32 0.0010 2.22 7.27 0.0034 7.27 3.6 4 -D 16

Vu6.936

8.734 17.468 D 10 @ 266 D 10 @ 250BOT 14.41 0.0035 7.54 7.27 0.0035 7.54 3.7 4 -D 16

15 20 40 33.2

END BOTH MuTOP 3.37 0.0043 2.84 2.27 0.0043 2.84 1.4 2 -D 16

Vu7.081

2.725 5.450 D 10 @ 166 D 10 @ 150BOT 1.01 0.0013 0.83 2.27 0.0034 2.27 1.1 2 -D 16

MIDDLE MuTOP 2.32 0.0029 1.93 2.27 0.0034 2.27 1.1 2 -D 16

Vu3.540

2.725 5.450 D 10 @ 166 D 10 @ 150BOT 7.72 0.0103 6.81 2.27 0.0103 6.81 3.4 4 -D 16

16 20 40 33.2

END BOTH MuTOP 1.25 0.0016 1.03 2.27 0.0034 2.27 1.1 2 -D 16

Vu5.069

2.725 5.450 D 10 @ 166 D 10 @ 150BOT 0.37 0.0005 0.31 2.27 0.0034 2.27 1.1 2 -D 16

MIDDLE MuTOP 1.50 0.0019 1.24 2.27 0.0034 2.27 1.1 2 -D 16

Vu2.534

2.725 5.450 D 10 @ 166 D 10 @ 150BOT 5.00 0.0064 4.28 2.27 0.0064 4.28 2.1 3 -D 16

kg/cm2

kg/cm2

1BY1 2BY1

1BY2 2BY2

Page 19: Pile Foundation & Concrete Column Design

Stirrup due to Shear

Shear

Reinforcement

Not Necessary

To be Required

To be Required

To be Required

Not Necessary

To be Required

To be Required

To be Required

Not Necessary

Not Necessary

To be Required

Not Necessary

Not Necessary

Not Necessary

To be Required

Not Necessary

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Min. is Required

Page 20: Pile Foundation & Concrete Column Design

COLUMN-TBL

SIZE Check of Slenderness Effects Moment magnification factor

MARK b h Dir Luk

rkLu/r Check Cm

øPc d( cm ) ( cm ) ( cm ) TOP BOT ( cm ) ( ton )

C1 30 30X

3502.17 10 2.00 8.66 80.83 To be considered 1 0.5 55.53 2.045

Z 1.81 10 1.22 8.66 49.31 To be considered 1 0.5 149.25 1.235

NOTE :ø = 0.7

Pc =

(kLu)^2 1 + ßd 1 + ßd

fc' = 210 kg/cm2Ec = 15100* fc'^.5 = 218.82 ton/cm2

x - dir : z - dir :67500 cm4 67500 cm4

1477.0 ton m2 1477.0 ton m2393.9 ton m2 393.9 ton m2

106667 cm4 106667 cm42334.1 ton m2 2334.1 ton m2

311.2 ton m2 311.2 ton m26.0 m 5.0 m

2.17 1.8110 10

k = 2 ( from monogram ) k = 1.22 ( from monogram )

Check Eccentricity :

et = 0 mmet min = ( 15 + 0.03 h ) = 24 mm

If et < et min , Mu should be taken from Pu . et min

SIZE Check of Slenderness Effects Moment magnification factor

MARK b h Dir Luk

rkLu/r Check Cm

øPc d( cm ) ( cm ) ( cm ) TOP BOT ( cm ) ( ton )

C2 30 30X

3502.17 2.17 1.60 8.66 64.66 To be considered 1 0.5 86.77 1.257

Z 1.81 1.81 1.60 8.66 64.66 To be considered 1 0.5 86.77 1.257

NOTE :ø = 0.7

Pc =

(kLu)^2 1 + ßd 1 + ßd

fc' = 210 kg/cm2Ec = 15100* fc'^.5 = 218.82 ton/cm2

x - dir : z - dir :67500 cm4 67500 cm4

1477.0 ton m2 1477.0 ton m2

393.9 ton m2 393.9 ton m2

106667 cm4 106667 cm4

2334.1 ton m2 2334.1 ton m2

311.2 ton m2 311.2 ton m2

6.0 m 5.0 m

2.17 1.81

2.17 1.81

k = 1.6 ( from monogram ) k = 1.6 ( from monogram )

Check Eccentricity :

et = 444 mm

et min = ( 15 + 0.03 h ) = 24 mm

If et < et min , Mu should be taken from Pu . et min

COLUMN TABLE ( FOR UNBRACED FRAME ONLY )

yA yB bd

y = S EIk / lk ; y = 0 ( fixed end ) S EIb / lb y = 10 ( column end supported on footing ) p2 EIk

EIk = ( Ec Igk / 2.5 ) ; EIb = ( Ec Igb / 5 )

Igk = 1/12 bh3 = Igk = 1/12 hb3 = Ec Igk = Ec Igk =

EIk = EIk =

Igb = Igb = Ec Igb = Ec Igb =

EIb = EIb =

lb = lb =

y = A y = Ay = B y = B

dMu / Pu =

COLUMN TABLE ( FOR UNBRACED FRAME ONLY )

yA yB bd

y = S EIk / lk ; y = 0 ( fixed end ) S EIb / lb y = 10 ( column end supported on footing ) p2 EIk

EIk = ( Ec Igk / 2.5 ) ; EIb = ( Ec Igb / 5 )

Igk = 1/12 bh3 = Igk = 1/12 hb3 =

Ec Igk = Ec Igk =

EIk = EIk =

Igb = Igb =

Ec Igb = Ec Igb =

EIb = EIb =

lb = lb =

y = A y = A

y = B y = B

dMu / Pu =

Page 21: Pile Foundation & Concrete Column Design

COLUMN-TBL

SIZE Check of Slenderness Effects Moment magnification factor

MARK b h Dir Luk

rkLu/r Check Cm

øPc d( cm ) ( cm ) ( cm ) TOP BOT ( cm ) ( ton )

C3 30 30X

3502.17 10 2.00 8.66 80.83 To be considered 1 0.5 55.53 2.045

Z 1.81 10 1.22 8.66 49.31 To be considered 1 0.5 149.25 1.235

NOTE :

ø = 0.7

Pc =

(kLu)^2 1 + ßd 1 + ßd

fc' = 210 kg/cm2Ec = 15100* fc'^.5 = 218.82 ton/cm2

x - dir : z - dir :67500 cm4 67500 cm4

1477.0 ton m2 1477.0 ton m2

393.9 ton m2 393.9 ton m2

106667 cm4 106667 cm4

2334.1 ton m2 2334.1 ton m2

311.2 ton m2 311.2 ton m2

6.0 m 5.0 m

2.17 1.81

10 10

k = 2 ( from monogram ) k = 1.22 ( from monogram )

Check Eccentricity :

et = 0 mm

et min = ( 15 + 0.03 h ) = 24 mm

If et < et min , Mu should be taken from Pu . et min

SIZE Check of Slenderness Effects Moment magnification factor

MARK b h Dir Luk

rkLu/r Check Cm

øPc d( cm ) ( cm ) ( cm ) TOP BOT ( cm ) ( ton )

C4 30 30X

3502.17 2.17 1.60 8.66 64.66 To be considered 1 0.5 86.77 1.257

Z 1.81 1.81 1.60 8.66 64.66 To be considered 1 0.5 86.77 1.257

NOTE :

ø = 0.7

Pc =

(kLu)^2 1 + ßd 1 + ßd

fc' = 210 kg/cm2Ec = 15100* fc'^.5 = 218.82 ton/cm2

x - dir : z - dir :67500 cm4 67500 cm4

1477.0 ton m2 1477.0 ton m2

393.9 ton m2 393.9 ton m2

106667 cm4 106667 cm4

2334.1 ton m2 2334.1 ton m2

311.2 ton m2 311.2 ton m2

6.0 m 5.0 m

2.17 1.81

2.17 1.81

k = 1.6 ( from monogram ) k = 1.6 ( from monogram )

Check Eccentricity :

et = 444 mm

et min = ( 15 + 0.03 h ) = 24 mm

If et < et min , Mu should be taken from Pu . et min

COLUMN TABLE ( FOR UNBRACED FRAME ONLY )

yA yB bd

y = S EIk / lk ; y = 0 ( fixed end )

S EIb / lb y = 10 ( column end supported on footing ) p2 EIk

EIk = ( Ec Igk / 2.5 ) ; EIb = ( Ec Igb / 5 )

Igk = 1/12 bh3 = Igk = 1/12 hb3 =

Ec Igk = Ec Igk =

EIk = EIk =

Igb = Igb =

Ec Igb = Ec Igb =

EIb = EIb =

lb = lb =

y = A y = A

y = B y = B

dMu / Pu =

COLUMN TABLE ( FOR UNBRACED FRAME ONLY )

yA yB bd

y = S EIk / lk ; y = 0 ( fixed end )

S EIb / lb y = 10 ( column end supported on footing ) p2 EIk

EIk = ( Ec Igk / 2.5 ) ; EIb = ( Ec Igb / 5 )

Igk = 1/12 bh3 = Igk = 1/12 hb3 =

Ec Igk = Ec Igk =

EIk = EIk =

Igb = Igb =

Ec Igb = Ec Igb =

EIb = EIb =

lb = lb =

y = A y = A

y = B y = B

dMu / Pu =

Page 22: Pile Foundation & Concrete Column Design

COLUMN-TBL

SIZE Check of Slenderness Effects Moment magnification factor

MARK b h Dir Luk

rkLu/r Check Cm

øPc d( cm ) ( cm ) ( cm ) TOP BOT ( cm ) ( ton )

C5 60 60X

35016.00 10 2.20 17.32 44.46 To be considered 1 0.5 45.90 -0.777

Z 14.81 10 2.15 17.32 43.45 To be considered 1 0.5 48.06 -0.844

NOTE :

ø = 0.7

Pc =

(kLu)^2 1 + ßd 1 + ßd

fc' = 210 kg/cm2Ec = 15100* fc'^.5 = 218.82 ton/cm2

x - dir : z - dir :1080000 cm4 1080000 cm4

23632.5 ton m2 23632.5 ton m2

6302.0 ton m2 6302.0 ton m2

208333 cm4 208333 cm4

4558.7 ton m2 4558.7 ton m2

607.8 ton m2 607.8 ton m2

5.4 m 5.0 m

16.00 14.81

10 10

k = 2.2 ( from monogram ) k = 2.15 ( from monogram )

Check Eccentricity :

et = -30 mm

et min = ( 15 + 0.03 h ) = 33 mm

If et < et min , Mu should be taken from Pu . et min

COLUMN TABLE ( FOR UNBRACED FRAME ONLY )

yA yB bd

y = S EIk / lk ; y = 0 ( fixed end )

S EIb / lb y = 10 ( column end supported on footing ) p2 EIk

EIk = ( Ec Igk / 2.5 ) ; EIb = ( Ec Igb / 5 )

Igk = 1/12 bh3 = Igk = 1/12 hb3 =

Ec Igk = Ec Igk =

EIk = EIk =

Igb = Igb =

Ec Igb = Ec Igb =

EIb = EIb =

lb = lb =

y = A y = A

y = B y = B

dMu / Pu =

Page 23: Pile Foundation & Concrete Column Design

COLUMN-TBL

Moment magnification factor

Pu Mu

( ton ) (ton.m) (ton.m)

28.380.00 0.00

0.00 0.00

Moment magnification factor

Pu Mu

( ton ) (ton.m) (ton.m)

17.7256.26 7.87

4.48 5.62

dMu

dMu

Page 24: Pile Foundation & Concrete Column Design

COLUMN-TBL

Moment magnification factor

Pu Mu

( ton ) (ton.m) (ton.m)

28.380.00 0.00

0.00 0.00

Moment magnification factor

Pu Mu

( ton ) (ton.m) (ton.m)

17.7256.26 7.87

4.48 5.62

dMu

dMu

Page 25: Pile Foundation & Concrete Column Design

COLUMN-TBL

Moment magnification factor

Pu Mu

( ton ) (ton.m) (ton.m)

1054.00 -3.11

10.80 -9.11

dMu

Page 26: Pile Foundation & Concrete Column Design

CONCRETE-COLUMN DESIGNMaterial :

fc' = 210 kg/cm2 fy = 4000 kg/cm2

MARK

Longitudinal Reinforcement due to Bending Moment Tie due to Shear

DirAg

Pu Pu et r

rAst Ast.min Asto

Re-barDesign Shear 1/2øVc øVc Vc1 Vc2

Min. Shear Actual Shear

(see table) Arr. Reinf.spacing Stirrup Reinforcement

( cm2 ) ( cm2 ) ( cm2 ) ( cm2 ) n ( ton ) ( ton ) ( ton ) (ton) (ton) s ( mm ) (mm )

C1X

900 0.27 0.00 0.022 0.0176 15.8 9.0 15.8 8 - D 16 Vu 1.300 3.666 7.332 7.332 14.545 D 10 @ 130 D 10 @ 125 Not NecessaryZ

NOTE :

d'/h = 0.17d = 26

0.8 : ø = 0.65

Ast = Actual Re-bar,

Ast min = 0.01 Ag Asto is Ast or Ast min whichever is larger

i) When Vu < 1/2 øVc , Not Necessaryii) When øVc > Vu > 1/2 øVc , Min. is Requirediii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

Vc = 0.53 (1 + 0.0071 Pu/Ag) √fc' b d (kg)

or Vc = 0.93 √fc' b d √(1 + 0.029 Pu/Ag) (kg)

Vs = (Vu-Vc)/0.85 < 2.12√fc' bd

CONCRETE-COLUMN DESIGNMaterial :

fc' = 210 kg/cm2 fy = 4000 kg/cm2

MARK

Longitudinal Reinforcement due to Bending Moment Tie due to Shear

DirAg

Pu Pu et r

r Ast Ast.min AstoRe-bar

Design Shear 1/2øVc øVc Vc1 Vc2Min. Shear Actual Shear

(see table) Arr. Reinf.spacing Stirrup Reinforcement

( cm2 ) ( cm2 ) ( cm2 ) ( cm2 ) n ( ton ) ( ton ) ( ton ) (ton) (ton) s ( mm ) (mm )

C2X

900 0.17 0.14 0.016 0.0128 11.5 9.0 11.5 6 - D 16 Vu 2.040 3.414 6.828 6.828 13.176 D 10 @ 130 D 10 @ 125 Not NecessaryZ

NOTE :

d'/h = 0.17d = 26

0.8 : ø = 0.65Ast = Actual Re-bar,

Ast min = 0.01 Ag Asto is Ast or Ast min whichever is larger

i) When Vu < 1/2 øVc , Not Necessaryii) When øVc > Vu > 1/2 øVc , Min. is Requirediii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

Vc = 0.53 (1 + 0.0071 Pu/Ag) √fc' b d (kg)or Vc = 0.93 √fc' b d √(1 + 0.029 Pu/Ag) (kg)

ø Agr.0.85fc' ø Agr.0.85fc' h

r = r b ; b =

r Ag

ø Agr.0.85fc' ø Agr.0.85fc' h

r = r b ; b = r Ag

whichever is smaller

whichever is smaller

Page 27: Pile Foundation & Concrete Column Design

Vs = (Vu-Vc)/0.85 < 2.12√fc' bd

Page 28: Pile Foundation & Concrete Column Design

CONCRETE-COLUMN DESIGNMaterial :

fc' = 210 kg/cm2 fy = 4000 kg/cm2

MARK

Longitudinal Reinforcement due to Bending Moment Tie due to Shear

DirAg

Pu Pu et r

r Ast Ast.min AstoRe-bar

Design Shear 1/2øVc øVc Vc1 Vc2Min. Shear Actual Shear

(see table) Arr. Reinf.spacing Stirrup Reinforcement

( cm2 ) ( cm2 ) ( cm2 ) ( cm2 ) n ( ton ) ( ton ) ( ton ) (ton) (ton) s ( mm ) (mm )

C3X

900 0.27 0.22 0.016 0.0128 11.5 9.0 11.5 6 - D 16 Vu 2.040 3.666 7.332 7.332 10.512 D 10 @ 130 D 10 @ 125 Not NecessaryZ

NOTE :

d'/h = 0.17d = 26

0.8 : ø = 0.65

Ast = Actual Re-bar,

Ast min = 0.01 Ag Asto is Ast or Ast min whichever is larger

i) When Vu < 1/2 øVc , Not Necessaryii) When øVc > Vu > 1/2 øVc , Min. is Requirediii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

Vc = 0.53 (1 + 0.0071 Pu/Ag) √fc' b d (kg)or Vc = 0.93 √fc' b d √(1 + 0.029 Pu/Ag) (kg)

Vs = (Vu-Vc)/0.85 < 2.12√fc' bd

CONCRETE-COLUMN DESIGNMaterial :

fc' = 210 kg/cm2 fy = 4000 kg/cm2

MARK

Longitudinal Reinforcement due to Bending Moment Tie due to Shear

DirAg

Pu Pu et r

r Ast Ast.min AstoRe-bar

Design Shear 1/2øVc øVc Vc1 Vc2Min. Shear Actual Shear

(see table) Arr. Reinf.spacing Stirrup Reinforcement

( cm2 ) ( cm2 ) ( cm2 ) ( cm2 ) n ( ton ) ( ton ) ( ton ) (ton) (ton) s ( mm ) (mm )

C4X

900 0.17 0.14 0.016 0.0128 11.5 9.0 11.5 6 - D 16 Vu 2.040 3.414 6.828 6.828 13.176 D 10 @ 130 D 10 @ 125 Not NecessaryZ

NOTE :

d'/h = 0.17d = 26

0.8 : ø = 0.65

Ast = Actual Re-bar,

Ast min = 0.01 Ag Asto is Ast or Ast min whichever is larger

i) When Vu < 1/2 øVc , Not Necessaryii) When øVc > Vu > 1/2 øVc , Min. is Requirediii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

ø Agr.0.85fc' ø Agr.0.85fc' h

r = r b ; b =

r Ag

ø Agr.0.85fc' ø Agr.0.85fc' h

r = r b ; b =

r Ag

whichever is smaller

whichever is smaller

Page 29: Pile Foundation & Concrete Column Design

Vc = 0.53 (1 + 0.0071 Pu/Ag) √fc' b d (kg)or Vc = 0.93 √fc' b d √(1 + 0.029 Pu/Ag) (kg)

Vs = (Vu-Vc)/0.85 < 2.12√fc' bd

whichever is smaller

Page 30: Pile Foundation & Concrete Column Design

CONCRETE-COLUMN DESIGNMaterial :

fc' = 210 kg/cm2 fy = 4000 kg/cm2

MARK

Longitudinal Reinforcement due to Bending Moment Tie due to Shear

DirAg

Pu Pu et r

r Ast Ast.min AstoRe-bar

Design Shear 1/2øVc øVc Vc1 Vc2Min. Shear Actual Shear

(see table) Arr. Reinf.spacing Stirrup Reinforcement

( cm2 ) ( cm2 ) ( cm2 ) ( cm2 ) n ( ton ) ( ton ) ( ton ) (ton) (ton) s ( mm ) (mm )

C5X

3600 0.25 0.14 0.06 0.048 172.8 36.0 172.8 86 - D 16 Vu 2.040 15.575 31.150 31.150 61.522 D 10 @ 280 D 10 @ 125 Not NecessaryZ

NOTE :

d'/h = 0.08d = 56

0.8 : ø = 0.65

Ast = Actual Re-bar,

Ast min = 0.01 Ag Asto is Ast or Ast min whichever is larger

i) When Vu < 1/2 øVc , Not Necessaryii) When øVc > Vu > 1/2 øVc , Min. is Requirediii) When Vu > ø Vc , To be RequiredIV) Vs > 2.12√fc'bd Change Size !!!

Compute Shear Reinforcement

Vu < ø Vn = ø (Vc + Vs) ; ø = 0.85

Vc = 0.53 (1 + 0.0071 Pu/Ag) √fc' b d (kg)or Vc = 0.93 √fc' b d √(1 + 0.029 Pu/Ag) (kg)

Vs = (Vu-Vc)/0.85 < 2.12√fc' bd

ø Agr.0.85fc' ø Agr.0.85fc' h

r = r b ; b =

r Ag

whichever is smaller

Page 31: Pile Foundation & Concrete Column Design

CONCRETE MEMBER SCHEDULLE

MARKS GB1 GB2 GB3 GB4DIMENSION 400 x 200 500 x 200 500 x 200 250 x 150

BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE

SECTION

TOP BAR 5 D16 2 D16 6 D16 2 D16 5 D20 2 D20 4 D16 2 D16WEB BAR - - - - - - - -

BOTTOM BAR 3 D16 3 D16 3 D16 5 D16 2 D16 4 D16 2 D16 4 D16STIRRUP D10 - 150 D10 - 150 D10 - 200 D10 - 200 D10 - 200 D10 - 200 D8 - 100 D8 - 100

CROSS BAR - - - - - - - -

MARKS GB5 B1 B2 B3DIMENSION 400 x 200 400 x 200 300 x 200 450 x 200

SECTION

BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE

TOP BAR 4 D16 2 D16 5 D16 2 D16 6 D16 4 D16 4 D16 4 D16WEB BAR - - - - - - - -

BOTTOM BAR 2 D16 4 D16 3 D16 3 D16 3 D16 5 D16 2 D16 5 D16STIRRUP D10 - 150 D10 - 150 D10 - 150 D10 - 175 D10 - 175 D10 - 200 D10 - 175 D10 - 200

CROSS BAR - - - - - - - -

MARKS B4DIMENSION 300 x 150

BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE BOTH END MIDDLE

SECTION

TOP BAR 3 D16 2 D16 - - - - - -WEB BAR - - - - - - - -

BOTTOM BAR 2 D16 3 D16 - - - - - -STIRRUP D8 - 100 D8 - 125 - - - - - -

CROSS BAR - - - - - - - -

Page 32: Pile Foundation & Concrete Column Design

C1300 x 300

8 D16--

D10 - 125-

Lintel Column150 x 150

4 D10--

D8 - 125-

Page 33: Pile Foundation & Concrete Column Design

CONCRETE MEMBER SCHEDULLE

MARKS C1 C2 C3DIMENSION 275 x 275 300 x 300 325 x 325

SECTION

TOP BAR 8 D16 12 D16 12 D16WEB BAR - - -

BOTTOM BAR - - -STIRRUP D10 - 150 D10 - 150 D10 - 175

CROSS BAR - - -

MARKS C4 C5 Lintel ColumnDIMENSION 400 x 400 300 x 350 130 x 130

SECTION

TOP BAR 12 D16 6 D16 4 D10WEB BAR - - -

BOTTOM BAR - - -STIRRUP D10 - 125 D10 - 125 D8 - 125

CROSS BAR - - -


Recommended